Normalized defining polynomial
\( x^{12} - 4 x^{11} + 20 x^{10} - 32 x^{9} + 66 x^{8} - 8 x^{7} + 64 x^{6} - 16 x^{5} + 34 x^{4} + \cdots + 4 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(56593444029595648\)
\(\medspace = 2^{36}\cdot 7^{7}\)
|
| |
| Root discriminant: | \(24.89\) |
| |
| Galois root discriminant: | $2^{27/8}7^{5/6}\approx 52.5078942662214$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.7168.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{43377401686}a^{11}-\frac{2970900619}{43377401686}a^{10}+\frac{7168422369}{43377401686}a^{9}-\frac{6650360157}{43377401686}a^{8}+\frac{5830216737}{21688700843}a^{7}-\frac{8656324209}{21688700843}a^{6}+\frac{2763325602}{21688700843}a^{5}-\frac{4309791153}{21688700843}a^{4}-\frac{9600215558}{21688700843}a^{3}+\frac{217209975}{21688700843}a^{2}+\frac{3290551801}{21688700843}a-\frac{9963173026}{21688700843}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3202742188}{21688700843}a^{11}-\frac{13543508826}{21688700843}a^{10}+\frac{66962016374}{21688700843}a^{9}-\frac{117085643400}{21688700843}a^{8}+\frac{234546714740}{21688700843}a^{7}-\frac{74333820066}{21688700843}a^{6}+\frac{211820522599}{21688700843}a^{5}-\frac{103693614045}{21688700843}a^{4}+\frac{125459208770}{21688700843}a^{3}-\frac{154749297505}{21688700843}a^{2}+\frac{350906192408}{21688700843}a+\frac{48226297089}{21688700843}$, $\frac{35599}{3760829}a^{11}-\frac{170891}{7521658}a^{10}+\frac{484617}{3760829}a^{9}+\frac{38669}{3760829}a^{8}+\frac{347266}{3760829}a^{7}+\frac{4352744}{3760829}a^{6}+\frac{70996}{3760829}a^{5}+\frac{5985017}{3760829}a^{4}-\frac{870082}{3760829}a^{3}-\frac{413337}{3760829}a^{2}-\frac{37558}{3760829}a+\frac{9086705}{3760829}$, $\frac{2873752541}{21688700843}a^{11}-\frac{25532677033}{43377401686}a^{10}+\frac{62841723864}{21688700843}a^{9}-\frac{118587492806}{21688700843}a^{8}+\frac{236175443998}{21688700843}a^{7}-\frac{116978003816}{21688700843}a^{6}+\frac{212783563665}{21688700843}a^{5}-\frac{132139057500}{21688700843}a^{4}+\frac{130890954579}{21688700843}a^{3}-\frac{174561530785}{21688700843}a^{2}+\frac{324338527737}{21688700843}a-\frac{48829030267}{21688700843}$, $\frac{663262294}{21688700843}a^{11}-\frac{2583771396}{21688700843}a^{10}+\frac{12941844662}{21688700843}a^{9}-\frac{19568344686}{21688700843}a^{8}+\frac{40177925758}{21688700843}a^{7}+\frac{3227858452}{21688700843}a^{6}+\frac{32375905797}{21688700843}a^{5}+\frac{9461636536}{21688700843}a^{4}-\frac{3476692918}{21688700843}a^{3}+\frac{3585811143}{21688700843}a^{2}+\frac{38333127564}{21688700843}a+\frac{37152718771}{21688700843}$, $\frac{179134940}{21688700843}a^{11}-\frac{1332494889}{43377401686}a^{10}+\frac{3284582927}{21688700843}a^{9}-\frac{4642979685}{21688700843}a^{8}+\frac{9380207003}{21688700843}a^{7}-\frac{299776089}{21688700843}a^{6}+\frac{12381350240}{21688700843}a^{5}-\frac{14006168641}{21688700843}a^{4}-\frac{2852080939}{21688700843}a^{3}-\frac{4362459662}{21688700843}a^{2}+\frac{19719857473}{21688700843}a+\frac{39344335}{21688700843}$
|
| |
| Regulator: | \( 1522.06607332 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1522.06607332 \cdot 6}{2\cdot\sqrt{56593444029595648}}\cr\approx \mathstrut & 1.18100274912 \end{aligned}\]
Galois group
$C_6^2:C_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_6^2:C_4$ |
| Character table for $C_6^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.7168.1, 6.2.802816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.0.1154968245501952.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.10a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 2$ | $4$ | $1$ | $10$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ |
| 2.1.8.26c1.11 | $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $$[2, 3, \frac{7}{2}, 4]$$ | |
|
\(7\)
| 7.1.3.2a1.2 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.2 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.3.2.3a1.1 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 7 x + 16$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |