Normalized defining polynomial
\( x^{12} + 4x^{6} + 54 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(54780521154084864\)
\(\medspace = 2^{35}\cdot 3^{13}\)
|
| |
| Root discriminant: | \(24.82\) |
| |
| Galois root discriminant: | $2^{35/12}3^{7/6}\approx 27.20480503537909$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5}a^{6}+\frac{2}{5}$, $\frac{1}{5}a^{7}+\frac{2}{5}a$, $\frac{1}{15}a^{8}+\frac{7}{15}a^{2}$, $\frac{1}{15}a^{9}+\frac{7}{15}a^{3}$, $\frac{1}{45}a^{10}+\frac{22}{45}a^{4}$, $\frac{1}{135}a^{11}+\frac{1}{45}a^{9}+\frac{1}{15}a^{7}-\frac{23}{135}a^{5}+\frac{22}{45}a^{3}+\frac{7}{15}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2}{45}a^{10}-\frac{1}{45}a^{4}+1$, $\frac{1}{15}a^{10}+\frac{7}{15}a^{4}-a^{2}+1$, $\frac{4}{135}a^{11}+\frac{1}{45}a^{10}-\frac{2}{45}a^{9}-\frac{2}{15}a^{7}+\frac{1}{5}a^{6}+\frac{43}{135}a^{5}-\frac{23}{45}a^{4}+\frac{1}{45}a^{3}+\frac{1}{15}a+\frac{7}{5}$, $\frac{2}{15}a^{9}-\frac{2}{5}a^{6}+\frac{14}{15}a^{3}+\frac{1}{5}$, $\frac{2}{135}a^{11}+\frac{1}{45}a^{10}-\frac{1}{45}a^{9}-\frac{1}{15}a^{7}+\frac{1}{5}a^{6}-\frac{46}{135}a^{5}+\frac{22}{45}a^{4}-\frac{22}{45}a^{3}+a^{2}-\frac{22}{15}a+\frac{7}{5}$
|
| |
| Regulator: | \( 7606.11042789 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 7606.11042789 \cdot 1}{2\cdot\sqrt{54780521154084864}}\cr\approx \mathstrut & 0.999766915829 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 9 conjugacy class representatives for $D_{12}$ |
| Character table for $D_{12}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 3.1.108.1, 4.0.6144.2, 6.0.1492992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 12 sibling: | 12.2.164341563462254592.71 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.2.0.1}{2} }^{5}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.12.35a1.19 | $x^{12} + 8 x^{9} + 8 x^{3} + 2$ | $12$ | $1$ | $35$ | $D_{12}$ | $$[3, 4]_{3}^{2}$$ |
|
\(3\)
| 3.1.6.7a2.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ |
| 3.2.3.6a2.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 39 x^{2} + 30 x + 17$ | $3$ | $2$ | $6$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ |