Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $D_{12}$ | |
| CHM label : | $1/2[3:2]cD(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,10)(3,9)(4,8)(5,7), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Low degree siblings
12T12, 24T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 12 $ | $2$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 12 $ | $2$ | $12$ | $( 1, 6,11, 4, 9, 2, 7,12, 5,10, 3, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 6] |
| Character table: |
2 3 2 2 2 2 2 2 2 3
3 1 . . 1 1 1 1 1 1
1a 2a 2b 12a 6a 4a 3a 12b 2c
2P 1a 1a 1a 6a 3a 2c 3a 6a 1a
3P 1a 2a 2b 4a 2c 4a 1a 4a 2c
5P 1a 2a 2b 12b 6a 4a 3a 12a 2c
7P 1a 2a 2b 12b 6a 4a 3a 12a 2c
11P 1a 2a 2b 12a 6a 4a 3a 12b 2c
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1
X.4 1 1 -1 -1 1 -1 1 -1 1
X.5 2 . . . -2 . 2 . -2
X.6 2 . . -1 -1 2 -1 -1 2
X.7 2 . . 1 -1 -2 -1 1 2
X.8 2 . . A 1 . -1 -A -2
X.9 2 . . -A 1 . -1 A -2
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
|