Normalized defining polynomial
\( x^{12} + 12 x^{10} - 8 x^{9} + 78 x^{8} - 72 x^{7} + 308 x^{6} - 288 x^{5} + 711 x^{4} - 592 x^{3} + \cdots + 526 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(41085390865563648\)
\(\medspace = 2^{33}\cdot 3^{14}\)
|
| |
| Root discriminant: | \(24.24\) |
| |
| Galois root discriminant: | $2^{11/4}3^{25/18}\approx 30.93861708477606$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.18432.2 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{92}a^{10}-\frac{3}{23}a^{9}-\frac{9}{92}a^{8}-\frac{9}{23}a^{7}-\frac{29}{92}a^{6}-\frac{10}{23}a^{5}-\frac{39}{92}a^{4}-\frac{7}{23}a^{3}+\frac{15}{46}a^{2}-\frac{3}{23}a-\frac{9}{46}$, $\frac{1}{100147246024}a^{11}+\frac{433626103}{100147246024}a^{10}+\frac{17866447045}{100147246024}a^{9}+\frac{11609465747}{100147246024}a^{8}+\frac{33759513395}{100147246024}a^{7}-\frac{3161873683}{100147246024}a^{6}+\frac{20217800271}{100147246024}a^{5}+\frac{9691153321}{100147246024}a^{4}-\frac{3572510263}{7153374716}a^{3}+\frac{8483199065}{50073623012}a^{2}+\frac{5707193217}{50073623012}a-\frac{10981382801}{50073623012}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{15519}{9147538}a^{11}-\frac{18711}{18295076}a^{10}+\frac{104444}{4573769}a^{9}-\frac{370185}{18295076}a^{8}+\frac{1521663}{9147538}a^{7}-\frac{3660897}{18295076}a^{6}+\frac{2920773}{4573769}a^{5}-\frac{15852027}{18295076}a^{4}+\frac{6738645}{4573769}a^{3}-\frac{16606359}{9147538}a^{2}+\frac{6275490}{4573769}a-\frac{7449199}{9147538}$, $\frac{1404788337}{50073623012}a^{11}+\frac{965501839}{50073623012}a^{10}+\frac{17049697447}{50073623012}a^{9}+\frac{208775229}{50073623012}a^{8}+\frac{104071766763}{50073623012}a^{7}-\frac{30246176579}{50073623012}a^{6}+\frac{377081683073}{50073623012}a^{5}-\frac{141667545877}{50073623012}a^{4}+\frac{55581814627}{3576687358}a^{3}-\frac{145750375675}{25036811506}a^{2}+\frac{414792347485}{25036811506}a-\frac{287258155965}{25036811506}$, $\frac{68285995}{100147246024}a^{11}+\frac{330117327}{100147246024}a^{10}+\frac{1127310323}{100147246024}a^{9}+\frac{2246928255}{100147246024}a^{8}+\frac{5678106377}{100147246024}a^{7}+\frac{8010342925}{100147246024}a^{6}+\frac{9858381201}{100147246024}a^{5}+\frac{27053130653}{100147246024}a^{4}-\frac{773861201}{7153374716}a^{3}+\frac{21977231029}{50073623012}a^{2}-\frac{18472337305}{50073623012}a+\frac{15494938903}{50073623012}$, $\frac{96126309}{14306749432}a^{11}+\frac{102315549}{14306749432}a^{10}+\frac{1088929833}{14306749432}a^{9}+\frac{696868177}{14306749432}a^{8}+\frac{6246801071}{14306749432}a^{7}+\frac{1941946199}{14306749432}a^{6}+\frac{16368494667}{14306749432}a^{5}+\frac{3544258147}{14306749432}a^{4}+\frac{10919660759}{7153374716}a^{3}-\frac{1106500961}{7153374716}a^{2}+\frac{5377155909}{7153374716}a+\frac{202027135}{311016292}$, $\frac{78345697}{25036811506}a^{11}-\frac{178004486}{12518405753}a^{10}+\frac{408338926}{12518405753}a^{9}-\frac{4253028401}{25036811506}a^{8}+\frac{8039388669}{25036811506}a^{7}-\frac{13323635676}{12518405753}a^{6}+\frac{19334803844}{12518405753}a^{5}-\frac{90321137107}{25036811506}a^{4}+\frac{7398587056}{1788343679}a^{3}-\frac{79995512155}{12518405753}a^{2}+\frac{49557442635}{12518405753}a-\frac{22674771670}{12518405753}$
|
| |
| Regulator: | \( 6058.14180821 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 6058.14180821 \cdot 2}{2\cdot\sqrt{41085390865563648}}\cr\approx \mathstrut & 1.83897122475 \end{aligned}\]
Galois group
$C_3^2:C_4$ (as 12T17):
| A solvable group of order 36 |
| The 6 conjugacy class representatives for $(C_3\times C_3):C_4$ |
| Character table for $(C_3\times C_3):C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.18432.2, 6.2.11943936.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 36 |
| Degree 6 siblings: | 6.2.11943936.1, 6.2.11943936.2 |
| Degree 9 sibling: | 9.1.2229025112064.1 |
| Degree 12 sibling: | 12.0.41085390865563648.12 |
| Degree 18 sibling: | deg 18 |
| Minimal sibling: | 6.2.11943936.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{6}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ |
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ | |
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ | |
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |