Properties

Label 12.0.41085390865563648.20
Degree $12$
Signature $[0, 6]$
Discriminant $2^{33}\cdot 3^{14}$
Root discriminant $24.24$
Ramified primes $2, 3$
Class number $2$
Class group $[2]$
Galois group $(C_3\times C_3):C_4$ (as 12T17)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![526, -816, 924, -592, 711, -288, 308, -72, 78, -8, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 12*x^10 - 8*x^9 + 78*x^8 - 72*x^7 + 308*x^6 - 288*x^5 + 711*x^4 - 592*x^3 + 924*x^2 - 816*x + 526)
 
gp: K = bnfinit(x^12 + 12*x^10 - 8*x^9 + 78*x^8 - 72*x^7 + 308*x^6 - 288*x^5 + 711*x^4 - 592*x^3 + 924*x^2 - 816*x + 526, 1)
 

Normalized defining polynomial

\( x^{12} + 12 x^{10} - 8 x^{9} + 78 x^{8} - 72 x^{7} + 308 x^{6} - 288 x^{5} + 711 x^{4} - 592 x^{3} + 924 x^{2} - 816 x + 526 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(41085390865563648=2^{33}\cdot 3^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{92} a^{10} - \frac{3}{23} a^{9} - \frac{9}{92} a^{8} - \frac{9}{23} a^{7} - \frac{29}{92} a^{6} - \frac{10}{23} a^{5} - \frac{39}{92} a^{4} - \frac{7}{23} a^{3} + \frac{15}{46} a^{2} - \frac{3}{23} a - \frac{9}{46}$, $\frac{1}{100147246024} a^{11} + \frac{433626103}{100147246024} a^{10} + \frac{17866447045}{100147246024} a^{9} + \frac{11609465747}{100147246024} a^{8} + \frac{33759513395}{100147246024} a^{7} - \frac{3161873683}{100147246024} a^{6} + \frac{20217800271}{100147246024} a^{5} + \frac{9691153321}{100147246024} a^{4} - \frac{3572510263}{7153374716} a^{3} + \frac{8483199065}{50073623012} a^{2} + \frac{5707193217}{50073623012} a - \frac{10981382801}{50073623012}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6058.14180821 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_3.C_2$ (as 12T17):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 6 conjugacy class representatives for $(C_3\times C_3):C_4$
Character table for $(C_3\times C_3):C_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.0.18432.2, 6.2.11943936.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 siblings: data not computed
Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.4$x^{4} + 12 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.4.11.4$x^{4} + 12 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.4.11.4$x^{4} + 12 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
$3$3.12.14.1$x^{12} + 3 x^{8} + 3 x^{6} - 9 x^{4} + 9 x^{2} - 9$$6$$2$$14$$(C_3\times C_3):C_4$$[3/2, 3/2]_{2}^{2}$