Show commands: Magma
Group invariants
| Abstract group: | $(C_3\times C_3):C_4$ |
| |
| Order: | $36=2^{2} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $17$ |
| |
| CHM label: | $[3^{2}]4$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(2,10,6)(4,8,12)$, $(1,4,7,10)(2,5,8,11)(3,6,9,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$
Low degree siblings
6T10 x 2, 9T9, 12T17, 18T10, 36T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 3)( 2, 8)( 4,10)( 5, 7)( 6,12)( 9,11)$ |
| 3A | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 9, 5)( 3, 7,11)$ |
| 3B | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| 4A1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1, 8, 3, 2)( 4,11,10, 9)( 5,12, 7, 6)$ |
| 4A-1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1, 2, 3, 8)( 4, 9,10,11)( 5, 6, 7,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 3A | 3B | 4A1 | 4A-1 | ||
| Size | 1 | 9 | 4 | 4 | 9 | 9 | |
| 2 P | 1A | 1A | 3A | 3B | 2A | 2A | |
| 3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | |
| Type | |||||||
| 36.9.1a | R | ||||||
| 36.9.1b | R | ||||||
| 36.9.1c1 | C | ||||||
| 36.9.1c2 | C | ||||||
| 36.9.4a | R | ||||||
| 36.9.4b | R |
Regular extensions
Data not computed