Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $(C_3\times C_3):C_4$ | |
| CHM label : | $[3^{2}]4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,10,6)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$
Low degree siblings
6T10 x 2, 9T9, 12T17, 18T10, 36T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 4,12, 8)$ |
| $ 4, 4, 4 $ | $9$ | $4$ | $( 1, 2, 3, 8)( 4, 9,10,11)( 5, 6, 7,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)$ |
| $ 4, 4, 4 $ | $9$ | $4$ | $( 1, 4,11, 2)( 3, 6, 5, 8)( 7,10, 9,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 9] |
| Character table: |
2 2 . 2 2 2 .
3 2 2 . . . 2
1a 3a 4a 2a 4b 3b
2P 1a 3a 2a 1a 2a 3b
3P 1a 1a 4b 2a 4a 1a
X.1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 1
X.3 1 1 A -1 -A 1
X.4 1 1 -A -1 A 1
X.5 4 1 . . . -2
X.6 4 -2 . . . 1
A = -E(4)
= -Sqrt(-1) = -i
|