Properties

Label 12T17
12T17 1 4 1->4 2 5 2->5 10 2->10 3 6 3->6 7 4->7 8 4->8 5->8 6->2 9 6->9 7->10 11 8->11 12 8->12 9->12 10->1 10->6 11->2 12->3 12->4
Degree $12$
Order $36$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $(C_3\times C_3):C_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(12, 17);
 

Group invariants

Abstract group:  $(C_3\times C_3):C_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $36=2^{2} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $12$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $17$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $[3^{2}]4$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $6$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(2,10,6)(4,8,12)$, $(1,4,7,10)(2,5,8,11)(3,6,9,12)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $C_4$

Degree 6: $C_3^2:C_4$

Low degree siblings

6T10 x 2, 9T9, 12T17, 18T10, 36T14

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{12}$ $1$ $1$ $0$ $()$
2A $2^{6}$ $9$ $2$ $6$ $( 1, 3)( 2, 8)( 4,10)( 5, 7)( 6,12)( 9,11)$
3A $3^{2},1^{6}$ $4$ $3$ $4$ $( 1, 9, 5)( 3, 7,11)$
3B $3^{4}$ $4$ $3$ $8$ $( 1, 9, 5)( 2, 6,10)( 3, 7,11)( 4,12, 8)$
4A1 $4^{3}$ $9$ $4$ $9$ $( 1, 8, 3, 2)( 4,11,10, 9)( 5,12, 7, 6)$
4A-1 $4^{3}$ $9$ $4$ $9$ $( 1, 2, 3, 8)( 4, 9,10,11)( 5, 6, 7,12)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A 3B 4A1 4A-1
Size 1 9 4 4 9 9
2 P 1A 1A 3A 3B 2A 2A
3 P 1A 2A 1A 1A 4A-1 4A1
Type
36.9.1a R 1 1 1 1 1 1
36.9.1b R 1 1 1 1 1 1
36.9.1c1 C 1 1 1 1 i i
36.9.1c2 C 1 1 1 1 i i
36.9.4a R 4 0 2 1 0 0
36.9.4b R 4 0 1 2 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed