Normalized defining polynomial
\( x^{12} - 6 x^{11} + 14 x^{10} - 8 x^{9} - 34 x^{8} + 100 x^{7} - 120 x^{6} + 16 x^{5} + 182 x^{4} + \cdots + 16 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(323921668734976\)
\(\medspace = 2^{26}\cdot 13^{6}\)
|
| |
| Root discriminant: | \(16.19\) |
| |
| Galois root discriminant: | $2^{11/4}13^{1/2}\approx 24.255161140409015$ | ||
| Ramified primes: |
\(2\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-13}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{11}-\frac{1}{8}a^{10}+\frac{3}{16}a^{9}+\frac{1}{8}a^{8}+\frac{3}{16}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{5}{16}a^{3}+\frac{3}{8}a-\frac{1}{4}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{101}{32}a^{11}-\frac{135}{8}a^{10}+\frac{527}{16}a^{9}-\frac{23}{8}a^{8}-\frac{1761}{16}a^{7}+242a^{6}-\frac{859}{4}a^{5}-97a^{4}+\frac{8183}{16}a^{3}-\frac{1201}{2}a^{2}+\frac{2679}{8}a-\frac{301}{4}$, $\frac{193}{32}a^{11}-\frac{259}{8}a^{10}+\frac{1027}{16}a^{9}-\frac{67}{8}a^{8}-\frac{3357}{16}a^{7}+472a^{6}-\frac{1719}{4}a^{5}-170a^{4}+\frac{15851}{16}a^{3}-\frac{2385}{2}a^{2}+\frac{5443}{8}a-\frac{617}{4}$, $a^{11}-5a^{10}+9a^{9}+a^{8}-33a^{7}+67a^{6}-53a^{5}-37a^{4}+145a^{3}-155a^{2}+81a-15$, $\frac{9}{8}a^{11}-\frac{11}{2}a^{10}+\frac{35}{4}a^{9}+\frac{9}{2}a^{8}-\frac{153}{4}a^{7}+65a^{6}-37a^{5}-62a^{4}+\frac{603}{4}a^{3}-122a^{2}+\frac{75}{2}a-2$, $\frac{815}{32}a^{11}-\frac{1093}{8}a^{10}+\frac{4317}{16}a^{9}-\frac{261}{8}a^{8}-\frac{14179}{16}a^{7}+1984a^{6}-\frac{7189}{4}a^{5}-732a^{4}+\frac{66709}{16}a^{3}-\frac{9989}{2}a^{2}+\frac{22741}{8}a-\frac{2567}{4}$
|
| |
| Regulator: | \( 512.823336015 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 512.823336015 \cdot 2}{2\cdot\sqrt{323921668734976}}\cr\approx \mathstrut & 1.75318194362 \end{aligned}\]
Galois group
$C_2\times S_4$ (as 12T23):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2 \times S_4$ |
| Character table for $C_2 \times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.1.104.1, 6.0.2249728.1, 6.0.2249728.3, 6.2.692224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.2.1384448.1, 6.0.2249728.1 |
| Degree 8 siblings: | 8.4.708837376.1, 8.0.7487094784.4 |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Minimal sibling: | 6.2.1384448.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.8.22d1.22 | $x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $$[2, 3, \frac{7}{2}]$$ | |
|
\(13\)
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |