Properties

Label 12.0.279...136.1
Degree $12$
Signature $[0, 6]$
Discriminant $2.794\times 10^{35}$
Root discriminant \(899.20\)
Ramified primes $2,3,11,13,19$
Class number $19295496$ (GRH)
Class group [3, 6, 6, 178662] (GRH)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281)
 
gp: K = bnfinit(y^12 - 2*y^11 + 167*y^10 - 1246*y^9 + 24756*y^8 - 132978*y^7 + 1130569*y^6 - 3335608*y^5 + 25742792*y^4 - 60568948*y^3 + 342253035*y^2 + 20074400*y + 1190281, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281)
 

\( x^{12} - 2 x^{11} + 167 x^{10} - 1246 x^{9} + 24756 x^{8} - 132978 x^{7} + 1130569 x^{6} + \cdots + 1190281 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(279442937001407746455186229208699136\) \(\medspace = 2^{8}\cdot 3^{6}\cdot 11^{6}\cdot 13^{10}\cdot 19^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(899.20\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{1/2}11^{1/2}13^{5/6}19^{5/6}\approx 899.2030295511601$
Ramified primes:   \(2\), \(3\), \(11\), \(13\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{542}a^{10}+\frac{35}{271}a^{9}+\frac{23}{542}a^{8}+\frac{64}{271}a^{7}+\frac{105}{542}a^{6}+\frac{91}{271}a^{5}-\frac{99}{542}a^{4}-\frac{44}{271}a^{3}-\frac{201}{542}a^{2}+\frac{42}{271}a-\frac{107}{542}$, $\frac{1}{12\!\cdots\!66}a^{11}-\frac{10\!\cdots\!77}{12\!\cdots\!66}a^{10}+\frac{11\!\cdots\!16}{60\!\cdots\!83}a^{9}-\frac{11\!\cdots\!74}{60\!\cdots\!83}a^{8}+\frac{11\!\cdots\!78}{60\!\cdots\!83}a^{7}+\frac{11\!\cdots\!21}{12\!\cdots\!66}a^{6}+\frac{80\!\cdots\!11}{12\!\cdots\!66}a^{5}-\frac{31\!\cdots\!17}{12\!\cdots\!66}a^{4}-\frac{25\!\cdots\!12}{60\!\cdots\!83}a^{3}+\frac{22\!\cdots\!49}{60\!\cdots\!83}a^{2}-\frac{22\!\cdots\!61}{60\!\cdots\!83}a+\frac{16\!\cdots\!17}{11\!\cdots\!26}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}\times C_{6}\times C_{6}\times C_{178662}$, which has order $19295496$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1104275774544408105169912}{22315938126273364211338100369773} a^{11} - \frac{2221226333382221377090028}{22315938126273364211338100369773} a^{10} + \frac{184187854407656776177513118}{22315938126273364211338100369773} a^{9} - \frac{1378160302726217578056273481}{22315938126273364211338100369773} a^{8} + \frac{27316432908721986448249792168}{22315938126273364211338100369773} a^{7} - \frac{146969608742931861558299353276}{22315938126273364211338100369773} a^{6} + \frac{1245217378148184102332848720622}{22315938126273364211338100369773} a^{5} - \frac{3685833742550290806998557842744}{22315938126273364211338100369773} a^{4} + \frac{28357947233214022187898250231264}{22315938126273364211338100369773} a^{3} - \frac{67793372330307910230213077929992}{22315938126273364211338100369773} a^{2} + \frac{376393670947972548439061415236406}{22315938126273364211338100369773} a + \frac{20235439219713677910927419736}{20454572068078244006726031503} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{89\!\cdots\!28}{22\!\cdots\!73}a^{11}+\frac{17\!\cdots\!54}{22\!\cdots\!73}a^{10}+\frac{13\!\cdots\!84}{22\!\cdots\!73}a^{9}-\frac{68\!\cdots\!96}{22\!\cdots\!73}a^{8}+\frac{15\!\cdots\!73}{22\!\cdots\!73}a^{7}-\frac{45\!\cdots\!20}{22\!\cdots\!73}a^{6}+\frac{41\!\cdots\!56}{22\!\cdots\!73}a^{5}-\frac{85\!\cdots\!20}{22\!\cdots\!73}a^{4}+\frac{87\!\cdots\!84}{22\!\cdots\!73}a^{3}-\frac{16\!\cdots\!80}{22\!\cdots\!73}a^{2}-\frac{34\!\cdots\!40}{22\!\cdots\!73}a-\frac{53\!\cdots\!08}{20\!\cdots\!03}$, $\frac{13\!\cdots\!65}{60\!\cdots\!83}a^{11}-\frac{70\!\cdots\!72}{60\!\cdots\!83}a^{10}-\frac{16\!\cdots\!19}{60\!\cdots\!83}a^{9}+\frac{52\!\cdots\!93}{12\!\cdots\!66}a^{8}-\frac{13\!\cdots\!42}{60\!\cdots\!83}a^{7}-\frac{62\!\cdots\!28}{60\!\cdots\!83}a^{6}+\frac{41\!\cdots\!09}{60\!\cdots\!83}a^{5}-\frac{10\!\cdots\!33}{12\!\cdots\!66}a^{4}+\frac{11\!\cdots\!59}{60\!\cdots\!83}a^{3}-\frac{42\!\cdots\!46}{60\!\cdots\!83}a^{2}+\frac{91\!\cdots\!22}{60\!\cdots\!83}a-\frac{27\!\cdots\!05}{11\!\cdots\!26}$, $\frac{20\!\cdots\!20}{22\!\cdots\!73}a^{11}+\frac{32\!\cdots\!44}{22\!\cdots\!73}a^{10}-\frac{48\!\cdots\!18}{22\!\cdots\!73}a^{9}+\frac{59\!\cdots\!33}{22\!\cdots\!73}a^{8}-\frac{10\!\cdots\!16}{22\!\cdots\!73}a^{7}+\frac{86\!\cdots\!24}{22\!\cdots\!73}a^{6}-\frac{70\!\cdots\!02}{22\!\cdots\!73}a^{5}+\frac{23\!\cdots\!76}{22\!\cdots\!73}a^{4}-\frac{16\!\cdots\!92}{22\!\cdots\!73}a^{3}+\frac{43\!\cdots\!68}{22\!\cdots\!73}a^{2}-\frac{31\!\cdots\!62}{22\!\cdots\!73}a+\frac{13\!\cdots\!35}{20\!\cdots\!03}$, $\frac{19\!\cdots\!21}{11\!\cdots\!26}a^{11}+\frac{15\!\cdots\!27}{55\!\cdots\!13}a^{10}+\frac{19\!\cdots\!67}{55\!\cdots\!13}a^{9}+\frac{13\!\cdots\!44}{55\!\cdots\!13}a^{8}+\frac{20\!\cdots\!43}{11\!\cdots\!26}a^{7}+\frac{35\!\cdots\!67}{11\!\cdots\!26}a^{6}+\frac{41\!\cdots\!61}{11\!\cdots\!26}a^{5}+\frac{50\!\cdots\!99}{55\!\cdots\!13}a^{4}+\frac{80\!\cdots\!06}{55\!\cdots\!13}a^{3}+\frac{11\!\cdots\!22}{55\!\cdots\!13}a^{2}+\frac{13\!\cdots\!39}{11\!\cdots\!26}a+\frac{78\!\cdots\!89}{11\!\cdots\!26}$, $\frac{50\!\cdots\!31}{60\!\cdots\!83}a^{11}+\frac{20\!\cdots\!11}{12\!\cdots\!66}a^{10}+\frac{73\!\cdots\!92}{60\!\cdots\!83}a^{9}-\frac{38\!\cdots\!46}{60\!\cdots\!83}a^{8}+\frac{17\!\cdots\!35}{12\!\cdots\!66}a^{7}-\frac{24\!\cdots\!62}{60\!\cdots\!83}a^{6}+\frac{22\!\cdots\!48}{60\!\cdots\!83}a^{5}-\frac{87\!\cdots\!65}{12\!\cdots\!66}a^{4}+\frac{47\!\cdots\!39}{60\!\cdots\!83}a^{3}-\frac{89\!\cdots\!14}{60\!\cdots\!83}a^{2}-\frac{10\!\cdots\!33}{12\!\cdots\!66}a-\frac{29\!\cdots\!86}{55\!\cdots\!13}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3173377.1710623284 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3173377.1710623284 \cdot 19295496}{6\cdot\sqrt{279442937001407746455186229208699136}}\cr\approx \mathstrut & 1.18784296828840 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 + 167*x^10 - 1246*x^9 + 24756*x^8 - 132978*x^7 + 1130569*x^6 - 3335608*x^5 + 25742792*x^4 - 60568948*x^3 + 342253035*x^2 + 20074400*x + 1190281);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2717}) \), \(\Q(\sqrt{-8151}) \), \(\Q(\sqrt{-3}, \sqrt{2717})\), 6.6.19578652781045072.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ R R ${\href{/padicField/17.2.0.1}{2} }^{6}$ R ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(11\) Copy content Toggle raw display 11.12.6.1$x^{12} + 72 x^{10} + 8 x^{9} + 2034 x^{8} + 38 x^{7} + 27996 x^{6} - 6312 x^{5} + 196025 x^{4} - 84710 x^{3} + 695581 x^{2} - 235284 x + 1080083$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(13\) Copy content Toggle raw display 13.6.5.1$x^{6} + 52$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.1$x^{6} + 52$$6$$1$$5$$C_6$$[\ ]_{6}$
\(19\) Copy content Toggle raw display 19.6.5.4$x^{6} + 76$$6$$1$$5$$C_6$$[\ ]_{6}$
19.6.5.4$x^{6} + 76$$6$$1$$5$$C_6$$[\ ]_{6}$