Normalized defining polynomial
\( x^{12} + 1095 x^{10} + 160965 x^{8} + 9460800 x^{6} + 262241550 x^{4} + 3368192625 x^{2} + 15971752125 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1829654030234673819254664000000000=2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 73^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $591.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4380=2^{2}\cdot 3\cdot 5\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4380}(1,·)$, $\chi_{4380}(3649,·)$, $\chi_{4380}(649,·)$, $\chi_{4380}(1703,·)$, $\chi_{4380}(1487,·)$, $\chi_{4380}(721,·)$, $\chi_{4380}(3623,·)$, $\chi_{4380}(1463,·)$, $\chi_{4380}(3001,·)$, $\chi_{4380}(3407,·)$, $\chi_{4380}(2929,·)$, $\chi_{4380}(3647,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{45} a^{4}$, $\frac{1}{45} a^{5}$, $\frac{1}{135} a^{6}$, $\frac{1}{945} a^{7} + \frac{3}{7} a$, $\frac{1}{297675} a^{8} - \frac{2}{945} a^{6} + \frac{2}{315} a^{4} + \frac{8}{49} a^{2} + \frac{1}{3}$, $\frac{1}{297675} a^{9} + \frac{2}{315} a^{5} + \frac{8}{49} a^{3} + \frac{4}{21} a$, $\frac{1}{553165582725} a^{10} - \frac{48301}{61462842525} a^{8} + \frac{1749539}{585360405} a^{6} + \frac{6506102}{1365840945} a^{4} - \frac{26594168}{273168189} a^{2} + \frac{152441}{619429}$, $\frac{1}{3872159079075} a^{11} + \frac{190376}{143413299225} a^{9} - \frac{56201}{117072081} a^{7} - \frac{88885964}{9560886615} a^{5} + \frac{107202496}{1912177323} a^{3} - \frac{466988}{4336003} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1372628}$, which has order $21962048$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 196804.70719979244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{365}) \), 3.3.5329.1, 4.0.7002306000.2, 6.6.259133949125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.12.9.3 | $x^{12} - 25 x^{4} + 250$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $73$ | 73.12.11.8 | $x^{12} + 9125$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |