Normalized defining polynomial
\( x^{12} + 1092 x^{10} + 424242 x^{8} + 70309512 x^{6} + 4510403352 x^{4} + 61163496576 x^{2} + 222991914600 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1320330028678597666666010640384=2^{33}\cdot 3^{6}\cdot 7^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $323.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4368=2^{4}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4368}(1,·)$, $\chi_{4368}(4033,·)$, $\chi_{4368}(2857,·)$, $\chi_{4368}(1805,·)$, $\chi_{4368}(2645,·)$, $\chi_{4368}(2477,·)$, $\chi_{4368}(3025,·)$, $\chi_{4368}(3317,·)$, $\chi_{4368}(2521,·)$, $\chi_{4368}(3865,·)$, $\chi_{4368}(125,·)$, $\chi_{4368}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{21} a^{2}$, $\frac{1}{21} a^{3}$, $\frac{1}{882} a^{4}$, $\frac{1}{4410} a^{5} + \frac{2}{5} a$, $\frac{1}{92610} a^{6} + \frac{2}{105} a^{2}$, $\frac{1}{92610} a^{7} + \frac{2}{105} a^{3}$, $\frac{1}{19448100} a^{8} + \frac{1}{231525} a^{6} - \frac{1}{7350} a^{4} - \frac{2}{175} a^{2}$, $\frac{1}{19448100} a^{9} + \frac{1}{231525} a^{7} + \frac{1}{11025} a^{5} - \frac{2}{175} a^{3} + \frac{2}{5} a$, $\frac{1}{1112917522500} a^{10} + \frac{209}{26498036250} a^{8} - \frac{191}{50472450} a^{6} - \frac{1936}{4291875} a^{4} - \frac{8359}{1430625} a^{2} - \frac{1236}{2725}$, $\frac{1}{1112917522500} a^{11} + \frac{209}{26498036250} a^{9} - \frac{191}{50472450} a^{7} + \frac{73}{30043125} a^{5} - \frac{8359}{1430625} a^{3} + \frac{944}{2725} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4820212}$, which has order $19280848$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4543.270357084286 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), 3.3.169.1, 4.0.1984260096.2, 6.6.190102016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.340 | $x^{12} - 8 x^{10} - 28 x^{8} - 8 x^{6} + 20 x^{4} + 16 x^{2} - 24$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |