Properties

Label 12.0.122...000.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.221\times 10^{35}$
Root discriminant \(839.25\)
Ramified primes $2,3,5,37$
Class number $42805152$ (GRH)
Class group [6, 6, 1189032] (GRH)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736)
 
gp: K = bnfinit(y^12 - 264*y^10 - 1332*y^9 + 41472*y^8 + 346320*y^7 - 451748*y^6 - 3516480*y^5 + 219344376*y^4 + 1374245712*y^3 + 4479083712*y^2 + 36662777856*y + 412946670736, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736)
 

\( x^{12} - 264 x^{10} - 1332 x^{9} + 41472 x^{8} + 346320 x^{7} - 451748 x^{6} - 3516480 x^{5} + \cdots + 412946670736 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(122089905124794772482173239296000000\) \(\medspace = 2^{22}\cdot 3^{18}\cdot 5^{6}\cdot 37^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(839.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}3^{3/2}5^{1/2}37^{5/6}\approx 839.2473521053773$
Ramified primes:   \(2\), \(3\), \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{12}a^{6}-\frac{1}{3}$, $\frac{1}{12}a^{7}-\frac{1}{3}a$, $\frac{1}{12}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{24}a^{9}-\frac{1}{6}a^{3}$, $\frac{1}{125596728}a^{10}-\frac{128609}{6977596}a^{9}+\frac{606137}{15699591}a^{8}+\frac{707317}{20932788}a^{7}-\frac{778315}{62798364}a^{6}+\frac{229632}{1744399}a^{5}+\frac{3344873}{31399182}a^{4}+\frac{199163}{3488798}a^{3}+\frac{971245}{15699591}a^{2}+\frac{2607539}{5233197}a-\frac{4142324}{15699591}$, $\frac{1}{18\!\cdots\!44}a^{11}+\frac{21\!\cdots\!47}{18\!\cdots\!44}a^{10}+\frac{21\!\cdots\!45}{22\!\cdots\!43}a^{9}+\frac{42\!\cdots\!97}{91\!\cdots\!72}a^{8}+\frac{62\!\cdots\!31}{22\!\cdots\!43}a^{7}-\frac{27\!\cdots\!89}{91\!\cdots\!72}a^{6}+\frac{56\!\cdots\!31}{45\!\cdots\!86}a^{5}+\frac{50\!\cdots\!09}{45\!\cdots\!86}a^{4}-\frac{13\!\cdots\!77}{45\!\cdots\!86}a^{3}-\frac{10\!\cdots\!11}{22\!\cdots\!43}a^{2}+\frac{49\!\cdots\!40}{22\!\cdots\!43}a+\frac{10\!\cdots\!11}{22\!\cdots\!43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{6}\times C_{6}\times C_{1189032}$, which has order $42805152$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{506759090925825}{84\!\cdots\!77}a^{11}-\frac{51\!\cdots\!58}{84\!\cdots\!77}a^{10}-\frac{20\!\cdots\!15}{16\!\cdots\!54}a^{9}+\frac{13\!\cdots\!81}{16\!\cdots\!54}a^{8}+\frac{16\!\cdots\!24}{84\!\cdots\!77}a^{7}-\frac{56\!\cdots\!11}{16\!\cdots\!54}a^{6}-\frac{43\!\cdots\!40}{84\!\cdots\!77}a^{5}+\frac{61\!\cdots\!67}{84\!\cdots\!77}a^{4}+\frac{48\!\cdots\!18}{84\!\cdots\!77}a^{3}-\frac{14\!\cdots\!56}{84\!\cdots\!77}a^{2}+\frac{13\!\cdots\!88}{84\!\cdots\!77}a+\frac{11\!\cdots\!17}{84\!\cdots\!77}$, $\frac{79\!\cdots\!11}{15\!\cdots\!62}a^{11}-\frac{13\!\cdots\!07}{76\!\cdots\!81}a^{10}+\frac{32\!\cdots\!29}{30\!\cdots\!24}a^{9}+\frac{12\!\cdots\!83}{10\!\cdots\!08}a^{8}-\frac{55\!\cdots\!98}{76\!\cdots\!81}a^{7}-\frac{20\!\cdots\!61}{10\!\cdots\!08}a^{6}-\frac{16\!\cdots\!64}{76\!\cdots\!81}a^{5}-\frac{22\!\cdots\!79}{15\!\cdots\!62}a^{4}-\frac{73\!\cdots\!83}{76\!\cdots\!81}a^{3}-\frac{11\!\cdots\!94}{25\!\cdots\!27}a^{2}-\frac{14\!\cdots\!68}{76\!\cdots\!81}a+\frac{19\!\cdots\!80}{25\!\cdots\!27}$, $\frac{96\!\cdots\!01}{15\!\cdots\!62}a^{11}-\frac{31\!\cdots\!27}{30\!\cdots\!24}a^{10}-\frac{24\!\cdots\!79}{30\!\cdots\!24}a^{9}+\frac{49\!\cdots\!55}{30\!\cdots\!24}a^{8}+\frac{11\!\cdots\!16}{76\!\cdots\!81}a^{7}-\frac{65\!\cdots\!11}{30\!\cdots\!24}a^{6}+\frac{26\!\cdots\!86}{76\!\cdots\!81}a^{5}+\frac{22\!\cdots\!17}{15\!\cdots\!62}a^{4}-\frac{40\!\cdots\!71}{76\!\cdots\!81}a^{3}-\frac{54\!\cdots\!50}{76\!\cdots\!81}a^{2}+\frac{52\!\cdots\!64}{76\!\cdots\!81}a-\frac{42\!\cdots\!16}{76\!\cdots\!81}$, $\frac{13\!\cdots\!45}{10\!\cdots\!08}a^{11}-\frac{22\!\cdots\!11}{20\!\cdots\!16}a^{10}-\frac{76\!\cdots\!62}{25\!\cdots\!27}a^{9}+\frac{20\!\cdots\!15}{15\!\cdots\!62}a^{8}+\frac{12\!\cdots\!00}{25\!\cdots\!27}a^{7}+\frac{18\!\cdots\!79}{76\!\cdots\!81}a^{6}-\frac{48\!\cdots\!97}{25\!\cdots\!27}a^{5}+\frac{45\!\cdots\!91}{50\!\cdots\!54}a^{4}+\frac{44\!\cdots\!06}{25\!\cdots\!27}a^{3}+\frac{30\!\cdots\!33}{76\!\cdots\!81}a^{2}-\frac{43\!\cdots\!66}{25\!\cdots\!27}a+\frac{18\!\cdots\!51}{76\!\cdots\!81}$, $\frac{10\!\cdots\!09}{15\!\cdots\!62}a^{11}-\frac{39\!\cdots\!87}{61\!\cdots\!48}a^{10}-\frac{45\!\cdots\!53}{30\!\cdots\!24}a^{9}+\frac{19\!\cdots\!96}{25\!\cdots\!27}a^{8}+\frac{18\!\cdots\!83}{76\!\cdots\!81}a^{7}-\frac{13\!\cdots\!51}{10\!\cdots\!08}a^{6}-\frac{49\!\cdots\!83}{76\!\cdots\!81}a^{5}+\frac{10\!\cdots\!31}{15\!\cdots\!62}a^{4}+\frac{60\!\cdots\!43}{76\!\cdots\!81}a^{3}+\frac{19\!\cdots\!56}{25\!\cdots\!27}a^{2}+\frac{90\!\cdots\!30}{76\!\cdots\!81}a+\frac{54\!\cdots\!24}{25\!\cdots\!27}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 207114.39572456083 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 207114.39572456083 \cdot 42805152}{2\cdot\sqrt{122089905124794772482173239296000000}}\cr\approx \mathstrut & 0.780576848158092 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 264*x^10 - 1332*x^9 + 41472*x^8 + 346320*x^7 - 451748*x^6 - 3516480*x^5 + 219344376*x^4 + 1374245712*x^3 + 4479083712*x^2 + 36662777856*x + 412946670736);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{37}) \), \(\Q(\sqrt{-1110}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-30}, \sqrt{37})\), 6.6.7279451230032.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.6.0.1}{6} }^{2}$ ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ R ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.22.27$x^{12} + 8 x^{9} + 16 x^{8} + 4 x^{7} + 2 x^{6} + 40 x^{5} + 104 x^{4} - 48 x^{3} - 12 x^{2} + 56 x + 196$$6$$2$$22$$C_6\times S_3$$[3]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.6.9.9$x^{6} + 6 x^{4} + 21$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(37\) Copy content Toggle raw display 37.6.5.1$x^{6} + 37$$6$$1$$5$$C_6$$[\ ]_{6}$
37.6.5.1$x^{6} + 37$$6$$1$$5$$C_6$$[\ ]_{6}$