Normalized defining polynomial
\( x^{12} + 168 x^{10} - x^{9} + 9774 x^{8} - 1701 x^{7} + 257648 x^{6} - 137187 x^{5} + 3288795 x^{4} - 3206849 x^{3} + 21932874 x^{2} - 17829192 x + 76909321 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112015891613143986328125=3^{18}\cdot 5^{9}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1035=3^{2}\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1035}(1,·)$, $\chi_{1035}(482,·)$, $\chi_{1035}(68,·)$, $\chi_{1035}(137,·)$, $\chi_{1035}(139,·)$, $\chi_{1035}(413,·)$, $\chi_{1035}(691,·)$, $\chi_{1035}(758,·)$, $\chi_{1035}(484,·)$, $\chi_{1035}(346,·)$, $\chi_{1035}(827,·)$, $\chi_{1035}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} + \frac{2}{19} a^{7} - \frac{8}{19} a^{6} + \frac{9}{19} a^{5} + \frac{1}{19} a^{4} + \frac{6}{19} a^{3} + \frac{6}{19} a^{2} + \frac{2}{19} a$, $\frac{1}{209} a^{9} - \frac{69}{209} a^{7} - \frac{51}{209} a^{6} + \frac{2}{209} a^{5} + \frac{42}{209} a^{4} - \frac{63}{209} a^{3} + \frac{104}{209} a^{2} + \frac{53}{209} a + \frac{4}{11}$, $\frac{1}{209} a^{10} - \frac{3}{209} a^{8} + \frac{81}{209} a^{7} + \frac{101}{209} a^{6} + \frac{9}{209} a^{5} + \frac{3}{209} a^{4} + \frac{82}{209} a^{3} + \frac{31}{209} a^{2} - \frac{1}{209} a$, $\frac{1}{22829470222215888165021121362449} a^{11} + \frac{45780017973093265498271519013}{22829470222215888165021121362449} a^{10} + \frac{46616885901185639470383196520}{22829470222215888165021121362449} a^{9} + \frac{175511980997474625187197755496}{22829470222215888165021121362449} a^{8} - \frac{749886571955321380923570070230}{2075406383837808015001920123859} a^{7} - \frac{7649976640103301816778340793537}{22829470222215888165021121362449} a^{6} + \frac{7438141123713615931674698657144}{22829470222215888165021121362449} a^{5} - \frac{6161147023255820699831689734686}{22829470222215888165021121362449} a^{4} - \frac{1981115067728447088407936952210}{22829470222215888165021121362449} a^{3} + \frac{3384937003651269602903635421079}{22829470222215888165021121362449} a^{2} - \frac{679490270942364175485192452016}{22829470222215888165021121362449} a - \frac{45438065516194889802344872072}{1201551064327152008685322176971}$
Class group and class number
$C_{2}\times C_{8770}$, which has order $17540$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.595125.1, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.74 | $x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $23$ | 23.12.6.2 | $x^{12} - 6436343 x^{2} + 2220538335$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |