Properties

Label 11.3.29393280000000000.1
Degree $11$
Signature $[3, 4]$
Discriminant $2.939\times 10^{16}$
Root discriminant \(31.41\)
Ramified primes $2,3,5,7$
Class number $1$
Class group trivial
Galois group $S_{11}$ (as 11T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592)
 
gp: K = bnfinit(y^11 - 4*y^10 + 20*y^9 - 40*y^8 + 90*y^7 - 48*y^6 - 8*y^5 + 300*y^4 - 360*y^3 + 240*y^2 + 128*y - 592, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592)
 

\( x^{11} - 4 x^{10} + 20 x^{9} - 40 x^{8} + 90 x^{7} - 48 x^{6} - 8 x^{5} + 300 x^{4} - 360 x^{3} + \cdots - 592 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(29393280000000000\) \(\medspace = 2^{16}\cdot 3^{8}\cdot 5^{10}\cdot 7\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.41\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{139/48}3^{7/6}5^{123/100}7^{1/2}\approx 513.6369813514681$
Ramified primes:   \(2\), \(3\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{7}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{1184}a^{10}-\frac{9}{592}a^{9}+\frac{25}{592}a^{8}-\frac{1}{8}a^{7}-\frac{29}{592}a^{6}+\frac{43}{296}a^{5}-\frac{49}{296}a^{4}+\frac{21}{296}a^{3}+\frac{67}{148}a^{2}-\frac{57}{148}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11}{592}a^{10}+\frac{3}{74}a^{9}-\frac{21}{296}a^{8}+a^{7}-\frac{319}{296}a^{6}+\frac{181}{74}a^{5}+\frac{349}{148}a^{4}-\frac{731}{148}a^{3}+\frac{276}{37}a^{2}-\frac{183}{74}a-13$, $\frac{29}{592}a^{10}-\frac{19}{74}a^{9}+\frac{355}{296}a^{8}-3a^{7}+\frac{1971}{296}a^{6}-\frac{271}{37}a^{5}+\frac{873}{148}a^{4}+\frac{1423}{148}a^{3}-\frac{638}{37}a^{2}+\frac{2047}{74}a-9$, $\frac{15}{296}a^{10}+\frac{15}{592}a^{9}+\frac{21}{74}a^{8}+\frac{11}{8}a^{7}-\frac{65}{148}a^{6}+\frac{1877}{296}a^{5}+\frac{227}{74}a^{4}-\frac{369}{148}a^{3}+\frac{2281}{148}a^{2}-\frac{485}{37}a-\frac{53}{2}$, $\frac{63}{1184}a^{10}-\frac{10}{37}a^{9}+\frac{687}{592}a^{8}-\frac{11}{4}a^{7}+\frac{2909}{592}a^{6}-\frac{699}{148}a^{5}+\frac{21}{296}a^{4}+\frac{1841}{296}a^{3}-\frac{757}{74}a^{2}+\frac{257}{148}a+4$, $\frac{23}{37}a^{10}-\frac{759}{296}a^{9}+\frac{373}{37}a^{8}-\frac{73}{4}a^{7}+\frac{886}{37}a^{6}+\frac{913}{148}a^{5}-\frac{2399}{37}a^{4}+\frac{7527}{74}a^{3}-\frac{4759}{74}a^{2}-\frac{3162}{37}a+98$, $\frac{1}{74}a^{10}-\frac{33}{592}a^{9}+\frac{13}{74}a^{8}-\frac{1}{8}a^{7}-\frac{21}{74}a^{6}+\frac{577}{296}a^{5}-\frac{233}{74}a^{4}+\frac{649}{148}a^{3}+\frac{73}{148}a^{2}-\frac{80}{37}a+\frac{19}{2}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 131601.956099 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 131601.956099 \cdot 1}{2\cdot\sqrt{29393280000000000}}\cr\approx \mathstrut & 4.78539491153 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 4*x^10 + 20*x^9 - 40*x^8 + 90*x^7 - 48*x^6 - 8*x^5 + 300*x^4 - 360*x^3 + 240*x^2 + 128*x - 592);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{11}$ (as 11T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 39916800
The 56 conjugacy class representatives for $S_{11}$
Character table for $S_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.11.0.1}{11} }$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.11.0.1}{11} }$ ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.11.0.1}{11} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.10.4$x^{4} + 4 x^{3} + 8 x^{2} + 10$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.4.4.5$x^{4} + 2 x + 2$$4$$1$$4$$S_4$$[4/3, 4/3]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.7.2$x^{6} + 3 x^{2} + 6$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.10.10.12$x^{10} - 30 x^{6} + 10 x^{5} + 25 x^{2} - 150 x + 25$$5$$2$$10$$(C_5^2 : C_4) : C_2$$[5/4, 5/4]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.2.0.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.7.0.1$x^{7} + 6 x + 4$$1$$7$$0$$C_7$$[\ ]^{7}$