Properties

Label 7.2.1.2
Base \(\Q_{7}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $2$
Ramification exponent $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $i$
$\card{ \Gal(K/\Q_{ 7 }) }$: $2$
This field is Galois and abelian over $\Q_{7}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{2} + 14 \) Copy content Toggle raw display
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:$C_2$ (as 2T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{2} + 14$