Properties

Label 10.4.9903331494610723.1
Degree $10$
Signature $[4, 3]$
Discriminant $-9.903\times 10^{15}$
Root discriminant \(39.77\)
Ramified primes $13,16519$
Class number $2$
Class group [2]
Galois group $S_{6}$ (as 10T32)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24)
 
gp: K = bnfinit(y^10 - 5*y^9 - 3*y^8 + 31*y^7 + 29*y^6 - 172*y^5 + 151*y^4 - 45*y^3 + 117*y^2 - 91*y - 24, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24)
 

\( x^{10} - 5x^{9} - 3x^{8} + 31x^{7} + 29x^{6} - 172x^{5} + 151x^{4} - 45x^{3} + 117x^{2} - 91x - 24 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-9903331494610723\) \(\medspace = -\,13^{3}\cdot 16519^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(39.77\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{1/2}16519^{1/2}\approx 463.4080275523936$
Ramified primes:   \(13\), \(16519\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-214747}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{19}a^{7}+\frac{3}{19}a^{6}-\frac{3}{19}a^{4}-\frac{3}{19}a^{3}-\frac{6}{19}a-\frac{9}{19}$, $\frac{1}{19}a^{8}-\frac{9}{19}a^{6}-\frac{3}{19}a^{5}+\frac{6}{19}a^{4}+\frac{9}{19}a^{3}-\frac{6}{19}a^{2}+\frac{9}{19}a+\frac{8}{19}$, $\frac{1}{250211}a^{9}-\frac{2549}{250211}a^{8}+\frac{5505}{250211}a^{7}-\frac{19211}{250211}a^{6}+\frac{15823}{250211}a^{5}-\frac{48927}{250211}a^{4}+\frac{102403}{250211}a^{3}+\frac{22219}{250211}a^{2}+\frac{114850}{250211}a-\frac{37395}{250211}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{3272}{250211}a^{9}-\frac{17520}{250211}a^{8}-\frac{2832}{250211}a^{7}+\frac{102597}{250211}a^{6}+\frac{31855}{250211}a^{5}-\frac{559878}{250211}a^{4}+\frac{872903}{250211}a^{3}-\frac{505903}{250211}a^{2}+\frac{64461}{250211}a+\frac{23077}{250211}$, $\frac{11387}{250211}a^{9}-\frac{53663}{250211}a^{8}-\frac{51681}{250211}a^{7}+\frac{350165}{250211}a^{6}+\frac{22780}{13169}a^{5}-\frac{1926709}{250211}a^{4}+\frac{1159559}{250211}a^{3}+\frac{360488}{250211}a^{2}+\frac{826376}{250211}a-\frac{1221967}{250211}$, $\frac{478}{250211}a^{9}-\frac{6874}{250211}a^{8}+\frac{10759}{250211}a^{7}+\frac{74949}{250211}a^{6}-\frac{74626}{250211}a^{5}-\frac{499384}{250211}a^{4}+\frac{407700}{250211}a^{3}+\frac{849284}{250211}a^{2}-\frac{793401}{250211}a-\frac{109829}{250211}$, $\frac{7278}{250211}a^{9}-\frac{22839}{250211}a^{8}-\frac{73722}{250211}a^{7}+\frac{116136}{250211}a^{6}+\frac{523649}{250211}a^{5}-\frac{396016}{250211}a^{4}-\frac{405591}{250211}a^{3}-\frac{255649}{250211}a^{2}+\frac{173560}{250211}a+\frac{371645}{250211}$, $\frac{18775}{250211}a^{9}-\frac{67174}{250211}a^{8}-\frac{151965}{250211}a^{7}+\frac{354779}{250211}a^{6}+\frac{1077212}{250211}a^{5}-\frac{1567941}{250211}a^{4}+\frac{26768}{13169}a^{3}-\frac{940856}{250211}a^{2}+\frac{1017534}{250211}a+\frac{290659}{250211}$, $\frac{18315}{250211}a^{9}-\frac{66675}{250211}a^{8}-\frac{142648}{250211}a^{7}+\frac{342271}{250211}a^{6}+\frac{1067920}{250211}a^{5}-\frac{1475159}{250211}a^{4}+\frac{284852}{250211}a^{3}-\frac{2127662}{250211}a^{2}+\frac{1955561}{250211}a+\frac{504349}{250211}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 25771.8295197 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 25771.8295197 \cdot 2}{2\cdot\sqrt{9903331494610723}}\cr\approx \mathstrut & 1.02781317253 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 5*x^9 - 3*x^8 + 31*x^7 + 29*x^6 - 172*x^5 + 151*x^4 - 45*x^3 + 117*x^2 - 91*x - 24);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_6$ (as 10T32):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for $S_{6}$
Character table for $S_{6}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.4.214747.1, 6.0.9903331494610723.1
Degree 12 siblings: data not computed
Degree 15 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: 6.4.214747.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ R ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.5.0.1}{5} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.3.0.1}{3} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.2$x^{4} - 156 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
\(16519\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$