Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $32$ | |
| Group : | $S_{6}$ | |
| CHM label : | $S_{6}(10)=L(10):2$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,3,2,6)(4,5,8,7), (3,6)(4,7)(5,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
6T16 x 2, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 4, 8)( 5, 7)( 9,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7, 8)( 9,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 9)( 4, 5)( 6,10)$ |
| $ 4, 4, 1, 1 $ | $90$ | $4$ | $( 3, 9, 6,10)( 4, 8, 5, 7)$ |
| $ 6, 3, 1 $ | $120$ | $6$ | $( 2, 3, 5, 8, 4, 9)( 6, 7,10)$ |
| $ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 3, 6)( 4, 9, 7)( 5, 8,10)$ |
| $ 6, 3, 1 $ | $120$ | $6$ | $( 2, 3, 6)( 4,10, 7, 8, 9, 5)$ |
| $ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 4, 5)( 3, 9, 8)( 6, 7,10)$ |
| $ 4, 4, 2 $ | $90$ | $4$ | $( 1, 2)( 3, 9, 6,10)( 4, 7, 5, 8)$ |
| $ 5, 5 $ | $144$ | $5$ | $( 1, 2, 3, 4, 9)( 5, 7,10, 6, 8)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 763] |
| Character table: |
2 4 4 4 4 3 1 1 1 1 3 .
3 2 1 . 1 . 1 2 1 2 . .
5 1 . . . . . . . . . 1
1a 2a 2b 2c 4a 6a 3a 6b 3b 4b 5a
2P 1a 1a 1a 1a 2b 3b 3a 3a 3b 2b 5a
3P 1a 2a 2b 2c 4a 2c 1a 2a 1a 4b 5a
5P 1a 2a 2b 2c 4a 6a 3a 6b 3b 4b 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.3 5 -3 1 1 -1 1 2 . -1 -1 .
X.4 5 3 1 -1 -1 -1 2 . -1 1 .
X.5 5 -1 1 3 -1 . -1 -1 2 1 .
X.6 5 1 1 -3 -1 . -1 1 2 -1 .
X.7 9 -3 1 -3 1 . . . . 1 -1
X.8 9 3 1 3 1 . . . . -1 -1
X.9 10 -2 -2 2 . -1 1 1 1 . .
X.10 10 2 -2 -2 . 1 1 -1 1 . .
X.11 16 . . . . . -2 . -2 . 1
|