Show commands:
Magma
magma: G := TransitiveGroup(10, 32);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $32$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_{6}$ | ||
CHM label: | $S_{6}(10)=L(10):2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,3,2,6)(4,5,8,7), (3,6)(4,7)(5,8) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
6T16 x 2, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 4, 8)( 5, 7)( 9,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7, 8)( 9,10)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 9)( 4, 5)( 6,10)$ |
$ 4, 4, 1, 1 $ | $90$ | $4$ | $( 3, 9, 6,10)( 4, 8, 5, 7)$ |
$ 6, 3, 1 $ | $120$ | $6$ | $( 2, 3, 5, 8, 4, 9)( 6, 7,10)$ |
$ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 3, 6)( 4, 9, 7)( 5, 8,10)$ |
$ 6, 3, 1 $ | $120$ | $6$ | $( 2, 3, 6)( 4,10, 7, 8, 9, 5)$ |
$ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 4, 5)( 3, 9, 8)( 6, 7,10)$ |
$ 4, 4, 2 $ | $90$ | $4$ | $( 1, 2)( 3, 9, 6,10)( 4, 7, 5, 8)$ |
$ 5, 5 $ | $144$ | $5$ | $( 1, 2, 3, 4, 9)( 5, 7,10, 6, 8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 720.763 | magma: IdentifyGroup(G);
|
Character table: |
2 4 4 4 4 3 1 1 1 1 3 . 3 2 1 . 1 . 1 2 1 2 . . 5 1 . . . . . . . . . 1 1a 2a 2b 2c 4a 6a 3a 6b 3b 4b 5a 2P 1a 1a 1a 1a 2b 3b 3a 3a 3b 2b 5a 3P 1a 2a 2b 2c 4a 2c 1a 2a 1a 4b 5a 5P 1a 2a 2b 2c 4a 6a 3a 6b 3b 4b 1a X.1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 X.3 5 -3 1 1 -1 1 2 . -1 -1 . X.4 5 3 1 -1 -1 -1 2 . -1 1 . X.5 5 -1 1 3 -1 . -1 -1 2 1 . X.6 5 1 1 -3 -1 . -1 1 2 -1 . X.7 9 -3 1 -3 1 . . . . 1 -1 X.8 9 3 1 3 1 . . . . -1 -1 X.9 10 -2 -2 2 . -1 1 1 1 . . X.10 10 2 -2 -2 . 1 1 -1 1 . . X.11 16 . . . . . -2 . -2 . 1 |
magma: CharacterTable(G);