Normalized defining polynomial
\( x^{10} - 18x^{5} + 36 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(51257812500000000\)
\(\medspace = 2^{8}\cdot 3^{8}\cdot 5^{15}\)
|
| |
| Root discriminant: | \(46.88\) |
| |
| Galois root discriminant: | $2^{4/5}3^{4/5}5^{163/100}\approx 57.78859123106383$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6}a^{5}$, $\frac{1}{6}a^{6}$, $\frac{1}{6}a^{7}$, $\frac{1}{6}a^{8}$, $\frac{1}{6}a^{9}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{6}a^{5}-1$, $\frac{4}{3}a^{9}-\frac{1}{2}a^{8}-\frac{2}{3}a^{7}+\frac{17}{6}a^{6}-\frac{11}{6}a^{5}-20a^{4}+8a^{3}+12a^{2}-36a+46$, $\frac{7}{3}a^{9}-\frac{16}{3}a^{8}+\frac{23}{3}a^{7}-\frac{16}{3}a^{6}-8a^{5}-4a^{4}+14a^{3}-23a^{2}+20a+11$, $\frac{1}{3}a^{9}+\frac{5}{3}a^{8}-\frac{5}{6}a^{7}+\frac{8}{3}a^{6}+\frac{1}{6}a^{5}-5a^{4}-26a^{3}+14a^{2}-41a-1$, $\frac{1}{6}a^{9}+\frac{1}{3}a^{8}-\frac{5}{6}a^{7}-\frac{5}{6}a^{6}+\frac{1}{6}a^{5}+a^{4}-3a^{3}+5a^{2}$
|
| |
| Regulator: | \( 37137.9196262 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 37137.9196262 \cdot 1}{2\cdot\sqrt{51257812500000000}}\cr\approx \mathstrut & 0.511313202903 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 100 |
| The 10 conjugacy class representatives for $C_5^2 : C_4$ |
| Character table for $C_5^2 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Minimal sibling: | 10.2.51257812500000000.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{5}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.5.0.1}{5} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.5.8a1.1 | $x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 51 x^{5} + 45 x^{4} + 30 x^{3} + 15 x^{2} + 5 x + 3$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |
|
\(3\)
| 3.2.5.8a1.1 | $x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 720 x^{4} + 640 x^{3} + 400 x^{2} + 160 x + 35$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |
|
\(5\)
| 5.1.10.15a2.3 | $x^{10} + 10 x^{7} + 10 x^{6} + 5$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $$[\frac{5}{4}, \frac{7}{4}]_{4}$$ |