Normalized defining polynomial
\( x^{10} - 10x^{8} + 40x^{6} - 240x^{4} + 720x^{2} - 1440 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(167961600000000000\)
\(\medspace = 2^{19}\cdot 3^{8}\cdot 5^{11}\)
|
| |
| Root discriminant: | \(52.79\) |
| |
| Galois root discriminant: | $2^{53/20}3^{7/6}5^{23/20}\approx 143.94164358580844$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{10}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{2}$, $\frac{1}{8}a^{5}-\frac{1}{2}a$, $\frac{1}{16}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{96}a^{7}+\frac{1}{48}a^{5}+\frac{1}{24}a^{3}-\frac{1}{4}a$, $\frac{1}{192}a^{8}-\frac{1}{48}a^{6}-\frac{1}{24}a^{4}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{192}a^{9}+\frac{1}{12}a^{3}-\frac{1}{4}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{48}a^{9}+\frac{1}{64}a^{8}-\frac{1}{6}a^{7}-\frac{3}{16}a^{6}+\frac{5}{12}a^{5}+\frac{5}{8}a^{4}-\frac{43}{12}a^{3}-\frac{13}{4}a^{2}+\frac{15}{2}a+\frac{57}{4}$, $\frac{1}{48}a^{9}-\frac{1}{64}a^{8}-\frac{1}{6}a^{7}+\frac{3}{16}a^{6}+\frac{5}{12}a^{5}-\frac{5}{8}a^{4}-\frac{43}{12}a^{3}+\frac{13}{4}a^{2}+\frac{15}{2}a-\frac{57}{4}$, $\frac{1}{192}a^{9}+\frac{1}{96}a^{8}-\frac{11}{96}a^{7}-\frac{1}{6}a^{6}+\frac{31}{48}a^{5}+\frac{17}{12}a^{4}-\frac{9}{8}a^{3}-6a^{2}+\frac{5}{2}a+\frac{17}{2}$, $\frac{1}{192}a^{9}-\frac{1}{64}a^{8}-\frac{5}{96}a^{7}+\frac{1}{16}a^{6}+\frac{1}{48}a^{5}-\frac{1}{4}a^{4}-\frac{9}{8}a^{3}+\frac{5}{4}a^{2}+\frac{3}{2}a-\frac{11}{4}$, $\frac{1}{192}a^{9}+\frac{1}{64}a^{8}-\frac{5}{96}a^{7}-\frac{1}{16}a^{6}+\frac{1}{48}a^{5}+\frac{1}{4}a^{4}-\frac{9}{8}a^{3}-\frac{5}{4}a^{2}+\frac{3}{2}a+\frac{11}{4}$
|
| |
| Regulator: | \( 90878.1631646 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 90878.1631646 \cdot 2}{2\cdot\sqrt{167961600000000000}}\cr\approx \mathstrut & 1.38240088668 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr S_5$ (as 10T39):
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for $C_2 \wr S_5$ |
| Character table for $C_2 \wr S_5$ |
Intermediate fields
| 5.1.4050000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 10.2.33592320000000000.44 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.10.19a1.32 | $x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ | $10$ | $1$ | $19$ | $((C_2^4 : C_5):C_4)\times C_2$ | $$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$$ |
|
\(3\)
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.1.10.11a1.4 | $x^{10} + 20 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $$[\frac{5}{4}]_{4}^{2}$$ |