Normalized defining polynomial
\( x^{10} - 3x^{9} - 26x^{8} + 68x^{7} + 210x^{6} - 464x^{5} - 526x^{4} + 987x^{3} + 166x^{2} - 389x + 43 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[10, 0]$ |
| |
| Discriminant: |
\(304358957700017\)
\(\medspace = 11^{8}\cdot 17^{5}\)
|
| |
| Root discriminant: | \(28.08\) |
| |
| Galois root discriminant: | $11^{4/5}17^{1/2}\approx 28.076218190635743$ | ||
| Ramified primes: |
\(11\), \(17\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(187=11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(69,·)$, $\chi_{187}(135,·)$, $\chi_{187}(137,·)$, $\chi_{187}(103,·)$, $\chi_{187}(16,·)$, $\chi_{187}(86,·)$, $\chi_{187}(169,·)$, $\chi_{187}(152,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{48621749287}a^{9}-\frac{13674562081}{48621749287}a^{8}-\frac{22080750492}{48621749287}a^{7}-\frac{19937438765}{48621749287}a^{6}+\frac{8084525792}{48621749287}a^{5}+\frac{18976718707}{48621749287}a^{4}+\frac{20987082499}{48621749287}a^{3}+\frac{233579219}{48621749287}a^{2}+\frac{21444104401}{48621749287}a+\frac{3415815615}{48621749287}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{223499010}{48621749287}a^{9}-\frac{238326345}{48621749287}a^{8}-\frac{6927315080}{48621749287}a^{7}+\frac{4266897445}{48621749287}a^{6}+\frac{70336251153}{48621749287}a^{5}-\frac{20438240715}{48621749287}a^{4}-\frac{260782547535}{48621749287}a^{3}+\frac{38211114160}{48621749287}a^{2}+\frac{277882622773}{48621749287}a-\frac{70829832130}{48621749287}$, $\frac{439929706}{48621749287}a^{9}-\frac{1096515009}{48621749287}a^{8}-\frac{11875821044}{48621749287}a^{7}+\frac{23490878475}{48621749287}a^{6}+\frac{100226826543}{48621749287}a^{5}-\frac{141411691658}{48621749287}a^{4}-\frac{263568024079}{48621749287}a^{3}+\frac{211142498787}{48621749287}a^{2}+\frac{90528742997}{48621749287}a+\frac{294356794}{48621749287}$, $\frac{143108798}{48621749287}a^{9}-\frac{254434914}{48621749287}a^{8}-\frac{4168223744}{48621749287}a^{7}+\frac{4832708853}{48621749287}a^{6}+\frac{40149881979}{48621749287}a^{5}-\frac{20197475672}{48621749287}a^{4}-\frac{145387974957}{48621749287}a^{3}-\frac{16878946590}{48621749287}a^{2}+\frac{163613510789}{48621749287}a+\frac{21114138744}{48621749287}$, $\frac{143108798}{48621749287}a^{9}-\frac{254434914}{48621749287}a^{8}-\frac{4168223744}{48621749287}a^{7}+\frac{4832708853}{48621749287}a^{6}+\frac{40149881979}{48621749287}a^{5}-\frac{20197475672}{48621749287}a^{4}-\frac{145387974957}{48621749287}a^{3}-\frac{16878946590}{48621749287}a^{2}+\frac{163613510789}{48621749287}a+\frac{69735888031}{48621749287}$, $\frac{114292607}{48621749287}a^{9}+\frac{378686506}{48621749287}a^{8}-\frac{5597562415}{48621749287}a^{7}-\frac{7932094203}{48621749287}a^{6}+\frac{77881929767}{48621749287}a^{5}+\frac{33647154402}{48621749287}a^{4}-\frac{346391110709}{48621749287}a^{3}+\frac{71595264426}{48621749287}a^{2}+\frac{213690033723}{48621749287}a-\frac{29620393755}{48621749287}$, $\frac{243714579}{48621749287}a^{9}-\frac{716828360}{48621749287}a^{8}-\frac{6814115021}{48621749287}a^{7}+\frac{19665400144}{48621749287}a^{6}+\frac{52381578674}{48621749287}a^{5}-\frac{164167225710}{48621749287}a^{4}-\frac{51213796684}{48621749287}a^{3}+\frac{365578263488}{48621749287}a^{2}-\frac{194392992035}{48621749287}a-\frac{22910919595}{48621749287}$, $\frac{31782682}{48621749287}a^{9}-\frac{192960082}{48621749287}a^{8}-\frac{730465667}{48621749287}a^{7}+\frac{5264325546}{48621749287}a^{6}+\frac{6055124621}{48621749287}a^{5}-\frac{49915271537}{48621749287}a^{4}-\frac{12739355259}{48621749287}a^{3}+\frac{156736396911}{48621749287}a^{2}-\frac{38208300336}{48621749287}a-\frac{27267817058}{48621749287}$, $\frac{179721433}{48621749287}a^{9}-\frac{93242111}{48621749287}a^{8}-\frac{4980200433}{48621749287}a^{7}-\frac{341162249}{48621749287}a^{6}+\frac{42064011111}{48621749287}a^{5}+\frac{21485855584}{48621749287}a^{4}-\frac{110341825982}{48621749287}a^{3}-\frac{97050455668}{48621749287}a^{2}+\frac{42836216919}{48621749287}a+\frac{36620620802}{48621749287}$, $\frac{200322127}{48621749287}a^{9}-\frac{140917133}{48621749287}a^{8}-\frac{7193434148}{48621749287}a^{7}+\frac{4222122152}{48621749287}a^{6}+\frac{83389389587}{48621749287}a^{5}-\frac{48586425006}{48621749287}a^{4}-\frac{324714115784}{48621749287}a^{3}+\frac{237277230085}{48621749287}a^{2}+\frac{167503885295}{48621749287}a-\frac{104007446008}{48621749287}$
|
| |
| Regulator: | \( 6521.45238479 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 6521.45238479 \cdot 1}{2\cdot\sqrt{304358957700017}}\cr\approx \mathstrut & 0.191390882340 \end{aligned}\]
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.10.0.1}{10} }$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{5}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.10.0.1}{10} }$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.1.0.1}{1} }^{10}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(11\)
| 11.2.5.8a1.2 | $x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31367 x^{5} + 29970 x^{4} + 14840 x^{3} + 4000 x^{2} + 560 x + 43$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
|
\(17\)
| 17.5.2.5a1.2 | $x^{10} + 2 x^{6} + 28 x^{5} + x^{2} + 28 x + 213$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |