Normalized defining polynomial
\( x^{10} - 3x^{9} - 27x^{8} + 44x^{7} + 228x^{6} - 138x^{5} - 634x^{4} - 95x^{3} + 435x^{2} + 225x + 25 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[10, 0]$ |
| |
| Discriminant: |
\(2665284492003125\)
\(\medspace = 5^{5}\cdot 31^{8}\)
|
| |
| Root discriminant: | \(34.88\) |
| |
| Galois root discriminant: | $5^{1/2}31^{4/5}\approx 34.87982981267706$ | ||
| Ramified primes: |
\(5\), \(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(155=5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{155}(64,·)$, $\chi_{155}(1,·)$, $\chi_{155}(66,·)$, $\chi_{155}(4,·)$, $\chi_{155}(101,·)$, $\chi_{155}(39,·)$, $\chi_{155}(109,·)$, $\chi_{155}(16,·)$, $\chi_{155}(94,·)$, $\chi_{155}(126,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{5}a^{2}$, $\frac{1}{125573275}a^{9}+\frac{6490312}{125573275}a^{8}-\frac{38751527}{125573275}a^{7}+\frac{40721029}{125573275}a^{6}+\frac{41697023}{125573275}a^{5}-\frac{18777263}{125573275}a^{4}-\frac{56785644}{125573275}a^{3}+\frac{8283617}{25114655}a^{2}+\frac{10197496}{25114655}a+\frac{1910785}{5022931}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{193122}{25114655}a^{9}-\frac{167676}{25114655}a^{8}-\frac{7041774}{25114655}a^{7}-\frac{242957}{25114655}a^{6}+\frac{75528501}{25114655}a^{5}+\frac{27565019}{25114655}a^{4}-\frac{268149473}{25114655}a^{3}-\frac{19680709}{5022931}a^{2}+\frac{40357066}{5022931}a+\frac{9905482}{5022931}$, $\frac{4342372}{125573275}a^{9}-\frac{15365076}{125573275}a^{8}-\frac{108339149}{125573275}a^{7}+\frac{250784018}{125573275}a^{6}+\frac{834292946}{125573275}a^{5}-\frac{1099343281}{125573275}a^{4}-\frac{2077448648}{125573275}a^{3}+\frac{192400256}{25114655}a^{2}+\frac{316678642}{25114655}a+\frac{9792430}{5022931}$, $\frac{2631066}{25114655}a^{9}-\frac{9242246}{25114655}a^{8}-\frac{66174453}{25114655}a^{7}+\frac{29923211}{5022931}a^{6}+\frac{517766906}{25114655}a^{5}-\frac{622856517}{25114655}a^{4}-\frac{261396471}{5022931}a^{3}+\frac{383331202}{25114655}a^{2}+\frac{178523892}{5022931}a+\frac{30328686}{5022931}$, $\frac{216381}{25114655}a^{9}-\frac{1169142}{25114655}a^{8}-\frac{804753}{5022931}a^{7}+\frac{21369987}{25114655}a^{6}+\frac{23816737}{25114655}a^{5}-\frac{20912757}{5022931}a^{4}-\frac{54773717}{25114655}a^{3}+\frac{77724496}{25114655}a^{2}+\frac{5954193}{5022931}a+\frac{133755}{5022931}$, $\frac{416507}{25114655}a^{9}-\frac{143424}{5022931}a^{8}-\frac{12684062}{25114655}a^{7}+\frac{4077311}{25114655}a^{6}+\frac{22417198}{5022931}a^{5}+\frac{58072692}{25114655}a^{4}-\frac{283667876}{25114655}a^{3}-\frac{304052819}{25114655}a^{2}+\frac{8333906}{5022931}a+\frac{20289017}{5022931}$, $\frac{19815374}{125573275}a^{9}-\frac{69794892}{125573275}a^{8}-\frac{497111408}{125573275}a^{7}+\frac{1127857381}{125573275}a^{6}+\frac{3885830507}{125573275}a^{5}-\frac{4699413777}{125573275}a^{4}-\frac{9778278491}{125573275}a^{3}+\frac{585813572}{25114655}a^{2}+\frac{1313242424}{25114655}a+\frac{40415935}{5022931}$, $\frac{5156686}{125573275}a^{9}-\frac{16551963}{125573275}a^{8}-\frac{133384812}{125573275}a^{7}+\frac{247013009}{125573275}a^{6}+\frac{1068874473}{125573275}a^{5}-\frac{830706353}{125573275}a^{4}-\frac{2746519999}{125573275}a^{3}-\frac{43203317}{25114655}a^{2}+\frac{370907186}{25114655}a+\frac{40455981}{5022931}$, $\frac{3175356}{125573275}a^{9}-\frac{9627273}{125573275}a^{8}-\frac{89073702}{125573275}a^{7}+\frac{158824864}{125573275}a^{6}+\frac{791782758}{125573275}a^{5}-\frac{721537363}{125573275}a^{4}-\frac{2412708154}{125573275}a^{3}+\frac{156573743}{25114655}a^{2}+\frac{380531731}{25114655}a+\frac{18319389}{5022931}$, $\frac{193122}{25114655}a^{9}-\frac{167676}{25114655}a^{8}-\frac{7041774}{25114655}a^{7}-\frac{242957}{25114655}a^{6}+\frac{75528501}{25114655}a^{5}+\frac{27565019}{25114655}a^{4}-\frac{268149473}{25114655}a^{3}-\frac{19680709}{5022931}a^{2}+\frac{45379997}{5022931}a+\frac{19951344}{5022931}$
|
| |
| Regulator: | \( 47214.2711571 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 47214.2711571 \cdot 1}{2\cdot\sqrt{2665284492003125}}\cr\approx \mathstrut & 0.468243184469 \end{aligned}\]
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.10.0.1}{10} }$ | R | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.5.0.1}{5} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/37.2.0.1}{2} }^{5}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.10.0.1}{10} }$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(31\)
| 31.1.5.4a1.1 | $x^{5} + 31$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |
| 31.1.5.4a1.1 | $x^{5} + 31$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |