Normalized defining polynomial
\( x^{10} - x^{9} + 2x^{8} - 4x^{7} + 4x^{6} - 5x^{5} + 5x^{4} - 4x^{3} + 3x^{2} - x + 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-233043179\)
\(\medspace = -\,97\cdot 463\cdot 5189\)
|
| |
| Root discriminant: | \(6.87\) |
| |
| Galois root discriminant: | $97^{1/2}463^{1/2}5189^{1/2}\approx 15265.75183212409$ | ||
| Ramified primes: |
\(97\), \(463\), \(5189\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-233043179}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{9}-a^{8}+a^{7}-3a^{6}+2a^{5}-2a^{4}+2a^{3}+1$, $a^{9}-a^{8}+2a^{7}-4a^{6}+3a^{5}-4a^{4}+4a^{3}-2a^{2}+a$, $a^{9}-a^{8}+a^{7}-3a^{6}+2a^{5}-2a^{4}+2a^{3}+a+1$
|
| |
| Regulator: | \( 0.6084964369407401 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 0.6084964369407401 \cdot 1}{2\cdot\sqrt{233043179}}\cr\approx \mathstrut & 0.195168258856374 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.10.0.1}{10} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(97\)
| 97.1.2.1a1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 97.8.1.0a1.1 | $x^{8} + 65 x^{3} + x^{2} + 32 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
|
\(463\)
| $\Q_{463}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
|
\(5189\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |