Properties

Label 10.0.17496000000000000.19
Degree $10$
Signature $[0, 5]$
Discriminant $-1.750\times 10^{16}$
Root discriminant \(42.10\)
Ramified primes $2,3,5$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $S_5^2 \wr C_2$ (as 10T43)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486)
 
gp: K = bnfinit(y^10 + 5*y^8 + 15*y^6 - 12*y^5 + 45*y^4 + 180*y^3 + 486, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486)
 

\( x^{10} + 5x^{8} + 15x^{6} - 12x^{5} + 45x^{4} + 180x^{3} + 486 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-17496000000000000\) \(\medspace = -\,2^{15}\cdot 3^{7}\cdot 5^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(42.10\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}3^{11/6}5^{271/200}\approx 446.33315037681194$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-6}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{3}$, $\frac{1}{6}a^{6}-\frac{1}{6}a^{4}$, $\frac{1}{18}a^{7}-\frac{1}{18}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{108}a^{8}-\frac{1}{27}a^{6}+\frac{17}{36}a^{4}-\frac{1}{9}a^{3}+\frac{1}{6}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{237168}a^{9}-\frac{283}{79056}a^{8}-\frac{1937}{118584}a^{7}+\frac{1367}{39528}a^{6}+\frac{2207}{79056}a^{5}+\frac{10421}{79056}a^{4}+\frac{127}{1464}a^{3}+\frac{235}{13176}a^{2}-\frac{625}{4392}a-\frac{269}{1464}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1465}{4392}a^{9}-\frac{4255}{13176}a^{8}+\frac{4163}{2196}a^{7}-\frac{12829}{6588}a^{6}+\frac{22237}{4392}a^{5}-\frac{44621}{4392}a^{4}+\frac{28343}{2196}a^{3}+\frac{33157}{732}a^{2}-\frac{60037}{732}a+\frac{24907}{244}$, $\frac{9467}{237168}a^{9}-\frac{12485}{79056}a^{8}-\frac{200815}{118584}a^{7}+\frac{31837}{39528}a^{6}+\frac{79981}{79056}a^{5}+\frac{465859}{79056}a^{4}-\frac{153113}{4392}a^{3}-\frac{17371}{13176}a^{2}+\frac{164581}{4392}a-\frac{142003}{1464}$, $\frac{7813}{26352}a^{9}+\frac{19667}{26352}a^{8}+\frac{41311}{13176}a^{7}+\frac{80285}{13176}a^{6}+\frac{11691}{976}a^{5}+\frac{21923}{2928}a^{4}+\frac{5921}{4392}a^{3}+\frac{31919}{1464}a^{2}+\frac{14537}{1464}a-\frac{19163}{488}$, $\frac{979}{13176}a^{9}-\frac{2303}{13176}a^{8}-\frac{1907}{6588}a^{7}-\frac{3557}{6588}a^{6}+\frac{7597}{4392}a^{5}-\frac{2165}{4392}a^{4}-\frac{15089}{2196}a^{3}+\frac{723}{244}a^{2}+\frac{3403}{732}a-\frac{3885}{244}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 183259.277733 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 183259.277733 \cdot 2}{2\cdot\sqrt{17496000000000000}}\cr\approx \mathstrut & 13.5673780728 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 + 5*x^8 + 15*x^6 - 12*x^5 + 45*x^4 + 180*x^3 + 486);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5\wr C_2$ (as 10T43):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 28800
The 35 conjugacy class representatives for $S_5^2 \wr C_2$
Character table for $S_5^2 \wr C_2$

Intermediate fields

\(\Q(\sqrt{-5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 25 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.10.0.1}{10} }$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.10.0.1}{10} }$ ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.4.9.5$x^{4} + 10 x^{2} + 8 x + 6$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
\(5\) Copy content Toggle raw display 5.10.12.15$x^{10} + 5 x^{3} + 5$$10$$1$$12$$(C_5^2 : C_8):C_2$$[11/8, 11/8]_{8}^{2}$