Normalized defining polynomial
\( x^{10} + 52x^{4} + 208 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-173744117727232\)
\(\medspace = -\,2^{14}\cdot 13^{9}\)
|
| |
| Root discriminant: | \(26.55\) |
| |
| Galois root discriminant: | $2^{55/24}13^{9/10}\approx 49.25036163819202$ | ||
| Ramified primes: |
\(2\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-13}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}$, $\frac{1}{4}a^{7}$, $\frac{1}{992}a^{8}-\frac{1}{8}a^{7}-\frac{53}{496}a^{6}-\frac{43}{248}a^{4}+\frac{107}{248}a^{2}-\frac{1}{2}a+\frac{33}{124}$, $\frac{1}{1984}a^{9}-\frac{53}{992}a^{7}-\frac{1}{8}a^{6}-\frac{43}{496}a^{5}+\frac{107}{496}a^{3}+\frac{33}{248}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19}{496}a^{8}-\frac{15}{248}a^{6}-\frac{11}{124}a^{4}+\frac{297}{124}a^{2}-\frac{179}{62}$, $\frac{1}{8}a^{9}-\frac{1}{4}a^{7}+\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{15}{2}a^{3}-2a^{2}-11a+25$, $\frac{15}{992}a^{9}-\frac{11}{124}a^{8}+\frac{73}{496}a^{7}-\frac{43}{124}a^{6}+\frac{99}{248}a^{5}-\frac{15}{62}a^{4}+\frac{117}{248}a^{3}-\frac{30}{31}a^{2}+\frac{123}{124}a+\frac{18}{31}$, $\frac{7}{124}a^{9}+\frac{75}{992}a^{8}+\frac{35}{248}a^{7}+\frac{117}{496}a^{6}+\frac{5}{124}a^{5}-\frac{125}{248}a^{4}+\frac{36}{31}a^{3}-\frac{35}{248}a^{2}-\frac{37}{62}a-\frac{253}{124}$
|
| |
| Regulator: | \( 6537.47155015 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 6537.47155015 \cdot 2}{2\cdot\sqrt{173744117727232}}\cr\approx \mathstrut & 4.85684337766 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr S_5$ (as 10T39):
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for $C_2 \wr S_5$ |
| Character table for $C_2 \wr S_5$ |
Intermediate fields
| 5.1.913952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.5.0.1}{5} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.6.8a1.4 | $x^{6} + 2 x^{5} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $$[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$$ | |
|
\(13\)
| 13.1.10.9a1.1 | $x^{10} + 13$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $$[\ ]_{10}^{4}$$ |