Properties

Label 2.2.273.1-4.1-d
Base field \(\Q(\sqrt{273}) \)
Weight $[2, 2]$
Level norm $4$
Level $[4, 2, 2]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{273}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 68\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[4, 2, 2]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $40$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
2 $[2, 2, w + 1]$ $-1$
3 $[3, 3, -4w + 35]$ $-3$
7 $[7, 7, w + 3]$ $-5$
11 $[11, 11, w + 1]$ $\phantom{-}0$
11 $[11, 11, w + 9]$ $\phantom{-}0$
13 $[13, 13, w + 6]$ $\phantom{-}2$
17 $[17, 17, -2w + 17]$ $-3$
17 $[17, 17, -2w - 15]$ $-3$
19 $[19, 19, w + 5]$ $\phantom{-}2$
19 $[19, 19, w + 13]$ $\phantom{-}2$
25 $[25, 5, -5]$ $\phantom{-}7$
31 $[31, 31, w + 2]$ $-8$
31 $[31, 31, w + 28]$ $-8$
43 $[43, 43, -38w + 333]$ $-11$
43 $[43, 43, 6w - 53]$ $-11$
71 $[71, 71, w + 14]$ $-9$
71 $[71, 71, w + 56]$ $-9$
73 $[73, 73, w + 22]$ $-2$
73 $[73, 73, w + 50]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $1$
$2$ $[2, 2, w + 1]$ $1$