Properties

Label 4-546e2-1.1-c1e2-0-0
Degree $4$
Conductor $298116$
Sign $1$
Analytic cond. $19.0081$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 3·4-s + 6·6-s − 5·7-s − 4·8-s + 6·9-s − 9·12-s + 2·13-s + 10·14-s + 5·16-s − 6·17-s − 12·18-s + 4·19-s + 15·21-s + 12·24-s + 7·25-s − 4·26-s − 9·27-s − 15·28-s − 16·31-s − 6·32-s + 12·34-s + 18·36-s − 8·38-s − 6·39-s − 30·42-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 3/2·4-s + 2.44·6-s − 1.88·7-s − 1.41·8-s + 2·9-s − 2.59·12-s + 0.554·13-s + 2.67·14-s + 5/4·16-s − 1.45·17-s − 2.82·18-s + 0.917·19-s + 3.27·21-s + 2.44·24-s + 7/5·25-s − 0.784·26-s − 1.73·27-s − 2.83·28-s − 2.87·31-s − 1.06·32-s + 2.05·34-s + 3·36-s − 1.29·38-s − 0.960·39-s − 4.62·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(298116\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.0081\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 298116,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1134861854\)
\(L(\frac12)\) \(\approx\) \(0.1134861854\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_2$ \( 1 + p T + p T^{2} \)
7$C_2$ \( 1 + 5 T + p T^{2} \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 71 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 154 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 166 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98744514629988858298932280200, −10.47940537339231293610537384530, −10.16811071041008149835523994473, −9.902753679929592513909221530771, −9.184848695926766363294939809326, −8.967462412349409188519111699868, −8.726364576074737566685452204941, −7.69830171852438734904832294612, −7.33273285142611350748768584801, −6.77010883631986819751188178852, −6.62202373195864845150671672461, −6.26677459256349196366371373804, −5.63466075184820213684113710937, −5.21843143127830986396278176720, −4.53724676716970795690871960480, −3.42246719177726680751014629698, −3.41251745273826628381294344249, −2.21039341179798672450867367705, −1.34458609380992478097970620333, −0.28739572070691110036812848507, 0.28739572070691110036812848507, 1.34458609380992478097970620333, 2.21039341179798672450867367705, 3.41251745273826628381294344249, 3.42246719177726680751014629698, 4.53724676716970795690871960480, 5.21843143127830986396278176720, 5.63466075184820213684113710937, 6.26677459256349196366371373804, 6.62202373195864845150671672461, 6.77010883631986819751188178852, 7.33273285142611350748768584801, 7.69830171852438734904832294612, 8.726364576074737566685452204941, 8.967462412349409188519111699868, 9.184848695926766363294939809326, 9.902753679929592513909221530771, 10.16811071041008149835523994473, 10.47940537339231293610537384530, 10.98744514629988858298932280200

Graph of the $Z$-function along the critical line