Properties

Label 9900.2.a.cb
Level $9900$
Weight $2$
Character orbit 9900.a
Self dual yes
Analytic conductor $79.052$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9900,2,Mod(1,9900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9900.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.0518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{7} - q^{11} + ( - \beta_{2} + \beta_1) q^{13} + (\beta_{2} + \beta_1) q^{17} + 4 q^{19} + (\beta_{2} + 2 \beta_1) q^{23} - 2 \beta_{3} q^{29} + ( - \beta_{3} + 5) q^{31} + (\beta_{2} + 2 \beta_1) q^{37}+ \cdots + 3 \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{11} + 16 q^{19} + 4 q^{29} + 22 q^{31} - 4 q^{41} + 20 q^{49} - 42 q^{59} - 4 q^{61} - 6 q^{71} - 12 q^{79} - 18 q^{89} + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 11x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 3\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 11\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{2} + 11\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.04547
1.31342
−1.31342
3.04547
0 0 0 0 0 −3.46410 0 0 0
1.2 0 0 0 0 0 −3.46410 0 0 0
1.3 0 0 0 0 0 3.46410 0 0 0
1.4 0 0 0 0 0 3.46410 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9900.2.a.cb 4
3.b odd 2 1 1100.2.a.j 4
5.b even 2 1 inner 9900.2.a.cb 4
5.c odd 4 2 1980.2.c.g 4
12.b even 2 1 4400.2.a.cd 4
15.d odd 2 1 1100.2.a.j 4
15.e even 4 2 220.2.b.b 4
60.h even 2 1 4400.2.a.cd 4
60.l odd 4 2 880.2.b.i 4
165.l odd 4 2 2420.2.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.b.b 4 15.e even 4 2
880.2.b.i 4 60.l odd 4 2
1100.2.a.j 4 3.b odd 2 1
1100.2.a.j 4 15.d odd 2 1
1980.2.c.g 4 5.c odd 4 2
2420.2.b.e 4 165.l odd 4 2
4400.2.a.cd 4 12.b even 2 1
4400.2.a.cd 4 60.h even 2 1
9900.2.a.cb 4 1.a even 1 1 trivial
9900.2.a.cb 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9900))\):

\( T_{7}^{2} - 12 \) Copy content Toggle raw display
\( T_{13}^{4} - 44T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{17}^{2} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$17$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$19$ \( (T - 4)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 83T^{2} + 1024 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2 T - 56)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 11 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 83T^{2} + 1024 \) Copy content Toggle raw display
$41$ \( (T^{2} + 2 T - 56)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 21 T + 96)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T - 56)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 123T^{2} + 576 \) Copy content Toggle raw display
$71$ \( (T^{2} + 3 T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 348 T^{2} + 28224 \) Copy content Toggle raw display
$79$ \( (T^{2} + 6 T - 48)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 248T^{2} + 784 \) Copy content Toggle raw display
$89$ \( (T^{2} + 9 T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 99T^{2} + 1296 \) Copy content Toggle raw display
show more
show less