Defining parameters
Level: | \( N \) | \(=\) | \( 9900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9900.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 54 \) | ||
Sturm bound: | \(4320\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9900))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2232 | 79 | 2153 |
Cusp forms | 2089 | 79 | 2010 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(132\) | \(0\) | \(132\) | \(121\) | \(0\) | \(121\) | \(11\) | \(0\) | \(11\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(150\) | \(0\) | \(150\) | \(138\) | \(0\) | \(138\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(144\) | \(0\) | \(144\) | \(132\) | \(0\) | \(132\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(138\) | \(0\) | \(138\) | \(126\) | \(0\) | \(126\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(141\) | \(0\) | \(141\) | \(129\) | \(0\) | \(129\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(141\) | \(0\) | \(141\) | \(129\) | \(0\) | \(129\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(141\) | \(0\) | \(141\) | \(129\) | \(0\) | \(129\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(141\) | \(0\) | \(141\) | \(129\) | \(0\) | \(129\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(138\) | \(7\) | \(131\) | \(132\) | \(7\) | \(125\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(138\) | \(7\) | \(131\) | \(132\) | \(7\) | \(125\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(138\) | \(9\) | \(129\) | \(132\) | \(9\) | \(123\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(138\) | \(9\) | \(129\) | \(132\) | \(9\) | \(123\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(138\) | \(11\) | \(127\) | \(132\) | \(11\) | \(121\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(138\) | \(12\) | \(126\) | \(132\) | \(12\) | \(120\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(138\) | \(13\) | \(125\) | \(132\) | \(13\) | \(119\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(138\) | \(11\) | \(127\) | \(132\) | \(11\) | \(121\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(1104\) | \(38\) | \(1066\) | \(1033\) | \(38\) | \(995\) | \(71\) | \(0\) | \(71\) | ||||||
Minus space | \(-\) | \(1128\) | \(41\) | \(1087\) | \(1056\) | \(41\) | \(1015\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9900))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 27}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(495))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(660))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(825))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(990))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1650))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1980))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2475))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4950))\)\(^{\oplus 2}\)