Properties

Label 44.2.a.a
Level 44
Weight 2
Character orbit 44.a
Self dual yes
Analytic conductor 0.351
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - 3q^{5} + 2q^{7} - 2q^{9} + O(q^{10}) \) \( q + q^{3} - 3q^{5} + 2q^{7} - 2q^{9} - q^{11} - 4q^{13} - 3q^{15} + 6q^{17} + 8q^{19} + 2q^{21} - 3q^{23} + 4q^{25} - 5q^{27} + 5q^{31} - q^{33} - 6q^{35} - q^{37} - 4q^{39} - 10q^{43} + 6q^{45} - 3q^{49} + 6q^{51} - 6q^{53} + 3q^{55} + 8q^{57} + 3q^{59} - 4q^{61} - 4q^{63} + 12q^{65} - q^{67} - 3q^{69} + 15q^{71} - 4q^{73} + 4q^{75} - 2q^{77} + 2q^{79} + q^{81} + 6q^{83} - 18q^{85} - 9q^{89} - 8q^{91} + 5q^{93} - 24q^{95} - 7q^{97} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −3.00000 0 2.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 44.2.a.a 1
3.b odd 2 1 396.2.a.c 1
4.b odd 2 1 176.2.a.a 1
5.b even 2 1 1100.2.a.b 1
5.c odd 4 2 1100.2.b.c 2
7.b odd 2 1 2156.2.a.a 1
7.c even 3 2 2156.2.i.b 2
7.d odd 6 2 2156.2.i.c 2
8.b even 2 1 704.2.a.f 1
8.d odd 2 1 704.2.a.i 1
9.c even 3 2 3564.2.i.j 2
9.d odd 6 2 3564.2.i.a 2
11.b odd 2 1 484.2.a.a 1
11.c even 5 4 484.2.e.a 4
11.d odd 10 4 484.2.e.b 4
12.b even 2 1 1584.2.a.p 1
13.b even 2 1 7436.2.a.d 1
15.d odd 2 1 9900.2.a.h 1
15.e even 4 2 9900.2.c.g 2
16.e even 4 2 2816.2.c.e 2
16.f odd 4 2 2816.2.c.k 2
20.d odd 2 1 4400.2.a.v 1
20.e even 4 2 4400.2.b.k 2
24.f even 2 1 6336.2.a.i 1
24.h odd 2 1 6336.2.a.j 1
28.d even 2 1 8624.2.a.w 1
33.d even 2 1 4356.2.a.j 1
44.c even 2 1 1936.2.a.c 1
88.b odd 2 1 7744.2.a.m 1
88.g even 2 1 7744.2.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.2.a.a 1 1.a even 1 1 trivial
176.2.a.a 1 4.b odd 2 1
396.2.a.c 1 3.b odd 2 1
484.2.a.a 1 11.b odd 2 1
484.2.e.a 4 11.c even 5 4
484.2.e.b 4 11.d odd 10 4
704.2.a.f 1 8.b even 2 1
704.2.a.i 1 8.d odd 2 1
1100.2.a.b 1 5.b even 2 1
1100.2.b.c 2 5.c odd 4 2
1584.2.a.p 1 12.b even 2 1
1936.2.a.c 1 44.c even 2 1
2156.2.a.a 1 7.b odd 2 1
2156.2.i.b 2 7.c even 3 2
2156.2.i.c 2 7.d odd 6 2
2816.2.c.e 2 16.e even 4 2
2816.2.c.k 2 16.f odd 4 2
3564.2.i.a 2 9.d odd 6 2
3564.2.i.j 2 9.c even 3 2
4356.2.a.j 1 33.d even 2 1
4400.2.a.v 1 20.d odd 2 1
4400.2.b.k 2 20.e even 4 2
6336.2.a.i 1 24.f even 2 1
6336.2.a.j 1 24.h odd 2 1
7436.2.a.d 1 13.b even 2 1
7744.2.a.m 1 88.b odd 2 1
7744.2.a.bc 1 88.g even 2 1
8624.2.a.w 1 28.d even 2 1
9900.2.a.h 1 15.d odd 2 1
9900.2.c.g 2 15.e even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(\Gamma_0(44))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - T + 3 T^{2} \)
$5$ \( 1 + 3 T + 5 T^{2} \)
$7$ \( 1 - 2 T + 7 T^{2} \)
$11$ \( 1 + T \)
$13$ \( 1 + 4 T + 13 T^{2} \)
$17$ \( 1 - 6 T + 17 T^{2} \)
$19$ \( 1 - 8 T + 19 T^{2} \)
$23$ \( 1 + 3 T + 23 T^{2} \)
$29$ \( 1 + 29 T^{2} \)
$31$ \( 1 - 5 T + 31 T^{2} \)
$37$ \( 1 + T + 37 T^{2} \)
$41$ \( 1 + 41 T^{2} \)
$43$ \( 1 + 10 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 + 6 T + 53 T^{2} \)
$59$ \( 1 - 3 T + 59 T^{2} \)
$61$ \( 1 + 4 T + 61 T^{2} \)
$67$ \( 1 + T + 67 T^{2} \)
$71$ \( 1 - 15 T + 71 T^{2} \)
$73$ \( 1 + 4 T + 73 T^{2} \)
$79$ \( 1 - 2 T + 79 T^{2} \)
$83$ \( 1 - 6 T + 83 T^{2} \)
$89$ \( 1 + 9 T + 89 T^{2} \)
$97$ \( 1 + 7 T + 97 T^{2} \)
show more
show less