Properties

Label 9900.2.a.bv.1.2
Level $9900$
Weight $2$
Character 9900.1
Self dual yes
Analytic conductor $79.052$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9900,2,Mod(1,9900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9900.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,2,0,0,0,2,0,2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.0518980011\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1980)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 9900.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{7} +1.00000 q^{11} -4.19615 q^{13} -4.73205 q^{17} -7.46410 q^{19} +6.92820 q^{23} +6.92820 q^{29} -0.535898 q^{31} +0.535898 q^{37} -6.92820 q^{41} +12.1962 q^{43} -9.46410 q^{47} +0.464102 q^{49} +6.00000 q^{53} +0.928203 q^{59} -7.46410 q^{61} +4.00000 q^{67} -6.00000 q^{71} +9.66025 q^{73} +2.73205 q^{77} -7.46410 q^{79} -4.73205 q^{83} -12.9282 q^{89} -11.4641 q^{91} +4.92820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7} + 2 q^{11} + 2 q^{13} - 6 q^{17} - 8 q^{19} - 8 q^{31} + 8 q^{37} + 14 q^{43} - 12 q^{47} - 6 q^{49} + 12 q^{53} - 12 q^{59} - 8 q^{61} + 8 q^{67} - 12 q^{71} + 2 q^{73} + 2 q^{77} - 8 q^{79}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.73205 1.03262 0.516309 0.856402i \(-0.327306\pi\)
0.516309 + 0.856402i \(0.327306\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.19615 −1.16380 −0.581902 0.813259i \(-0.697691\pi\)
−0.581902 + 0.813259i \(0.697691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.73205 −1.14769 −0.573845 0.818964i \(-0.694549\pi\)
−0.573845 + 0.818964i \(0.694549\pi\)
\(18\) 0 0
\(19\) −7.46410 −1.71238 −0.856191 0.516659i \(-0.827175\pi\)
−0.856191 + 0.516659i \(0.827175\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.92820 1.44463 0.722315 0.691564i \(-0.243078\pi\)
0.722315 + 0.691564i \(0.243078\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.92820 1.28654 0.643268 0.765641i \(-0.277578\pi\)
0.643268 + 0.765641i \(0.277578\pi\)
\(30\) 0 0
\(31\) −0.535898 −0.0962502 −0.0481251 0.998841i \(-0.515325\pi\)
−0.0481251 + 0.998841i \(0.515325\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.535898 0.0881012 0.0440506 0.999029i \(-0.485974\pi\)
0.0440506 + 0.999029i \(0.485974\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.92820 −1.08200 −0.541002 0.841021i \(-0.681955\pi\)
−0.541002 + 0.841021i \(0.681955\pi\)
\(42\) 0 0
\(43\) 12.1962 1.85990 0.929948 0.367691i \(-0.119852\pi\)
0.929948 + 0.367691i \(0.119852\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.46410 −1.38048 −0.690241 0.723580i \(-0.742495\pi\)
−0.690241 + 0.723580i \(0.742495\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.928203 0.120842 0.0604209 0.998173i \(-0.480756\pi\)
0.0604209 + 0.998173i \(0.480756\pi\)
\(60\) 0 0
\(61\) −7.46410 −0.955680 −0.477840 0.878447i \(-0.658580\pi\)
−0.477840 + 0.878447i \(0.658580\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 9.66025 1.13065 0.565324 0.824869i \(-0.308751\pi\)
0.565324 + 0.824869i \(0.308751\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.73205 0.311346
\(78\) 0 0
\(79\) −7.46410 −0.839777 −0.419889 0.907576i \(-0.637931\pi\)
−0.419889 + 0.907576i \(0.637931\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.73205 −0.519410 −0.259705 0.965688i \(-0.583625\pi\)
−0.259705 + 0.965688i \(0.583625\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.9282 −1.37039 −0.685193 0.728361i \(-0.740282\pi\)
−0.685193 + 0.728361i \(0.740282\pi\)
\(90\) 0 0
\(91\) −11.4641 −1.20176
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.92820 0.500383 0.250192 0.968196i \(-0.419506\pi\)
0.250192 + 0.968196i \(0.419506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.3923 −1.63110 −0.815548 0.578690i \(-0.803564\pi\)
−0.815548 + 0.578690i \(0.803564\pi\)
\(102\) 0 0
\(103\) 13.4641 1.32666 0.663329 0.748328i \(-0.269143\pi\)
0.663329 + 0.748328i \(0.269143\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.80385 −0.947774 −0.473887 0.880586i \(-0.657149\pi\)
−0.473887 + 0.880586i \(0.657149\pi\)
\(108\) 0 0
\(109\) −3.07180 −0.294225 −0.147112 0.989120i \(-0.546998\pi\)
−0.147112 + 0.989120i \(0.546998\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.3205 −1.62938 −0.814688 0.579899i \(-0.803092\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.9282 −1.18513
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.80385 0.692479 0.346240 0.938146i \(-0.387458\pi\)
0.346240 + 0.938146i \(0.387458\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.39230 0.383757 0.191879 0.981419i \(-0.438542\pi\)
0.191879 + 0.981419i \(0.438542\pi\)
\(132\) 0 0
\(133\) −20.3923 −1.76824
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −19.8564 −1.69645 −0.848224 0.529638i \(-0.822328\pi\)
−0.848224 + 0.529638i \(0.822328\pi\)
\(138\) 0 0
\(139\) 22.7846 1.93257 0.966283 0.257484i \(-0.0828933\pi\)
0.966283 + 0.257484i \(0.0828933\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.19615 −0.350900
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.46410 −0.775329 −0.387665 0.921800i \(-0.626718\pi\)
−0.387665 + 0.921800i \(0.626718\pi\)
\(150\) 0 0
\(151\) 6.39230 0.520198 0.260099 0.965582i \(-0.416245\pi\)
0.260099 + 0.965582i \(0.416245\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.4641 −0.914935 −0.457467 0.889226i \(-0.651243\pi\)
−0.457467 + 0.889226i \(0.651243\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.9282 1.49175
\(162\) 0 0
\(163\) −0.392305 −0.0307277 −0.0153638 0.999882i \(-0.504891\pi\)
−0.0153638 + 0.999882i \(0.504891\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.6603 0.902298 0.451149 0.892449i \(-0.351014\pi\)
0.451149 + 0.892449i \(0.351014\pi\)
\(168\) 0 0
\(169\) 4.60770 0.354438
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.19615 0.166970 0.0834852 0.996509i \(-0.473395\pi\)
0.0834852 + 0.996509i \(0.473395\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.7846 −1.55351 −0.776757 0.629800i \(-0.783137\pi\)
−0.776757 + 0.629800i \(0.783137\pi\)
\(180\) 0 0
\(181\) −20.3923 −1.51575 −0.757874 0.652401i \(-0.773762\pi\)
−0.757874 + 0.652401i \(0.773762\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.73205 −0.346042
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.9282 −1.36960 −0.684798 0.728733i \(-0.740110\pi\)
−0.684798 + 0.728733i \(0.740110\pi\)
\(192\) 0 0
\(193\) −6.73205 −0.484584 −0.242292 0.970203i \(-0.577899\pi\)
−0.242292 + 0.970203i \(0.577899\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.7321 −1.19211 −0.596055 0.802944i \(-0.703266\pi\)
−0.596055 + 0.802944i \(0.703266\pi\)
\(198\) 0 0
\(199\) −24.7846 −1.75693 −0.878467 0.477803i \(-0.841433\pi\)
−0.878467 + 0.477803i \(0.841433\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.9282 1.32850
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.46410 −0.516303
\(210\) 0 0
\(211\) −14.3923 −0.990807 −0.495404 0.868663i \(-0.664980\pi\)
−0.495404 + 0.868663i \(0.664980\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.46410 −0.0993897
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 19.8564 1.33569
\(222\) 0 0
\(223\) −5.46410 −0.365903 −0.182952 0.983122i \(-0.558565\pi\)
−0.182952 + 0.983122i \(0.558565\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.7321 −1.11055 −0.555273 0.831668i \(-0.687386\pi\)
−0.555273 + 0.831668i \(0.687386\pi\)
\(228\) 0 0
\(229\) −18.7846 −1.24132 −0.620661 0.784079i \(-0.713136\pi\)
−0.620661 + 0.784079i \(0.713136\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.2679 1.26229 0.631143 0.775667i \(-0.282586\pi\)
0.631143 + 0.775667i \(0.282586\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.3205 1.50848 0.754239 0.656600i \(-0.228006\pi\)
0.754239 + 0.656600i \(0.228006\pi\)
\(240\) 0 0
\(241\) 30.3923 1.95774 0.978870 0.204482i \(-0.0655511\pi\)
0.978870 + 0.204482i \(0.0655511\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 31.3205 1.99288
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.8564 1.25333 0.626663 0.779291i \(-0.284420\pi\)
0.626663 + 0.779291i \(0.284420\pi\)
\(252\) 0 0
\(253\) 6.92820 0.435572
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.60770 −0.100285 −0.0501426 0.998742i \(-0.515968\pi\)
−0.0501426 + 0.998742i \(0.515968\pi\)
\(258\) 0 0
\(259\) 1.46410 0.0909748
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.12436 −0.562632 −0.281316 0.959615i \(-0.590771\pi\)
−0.281316 + 0.959615i \(0.590771\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.0718 −1.04089 −0.520443 0.853896i \(-0.674233\pi\)
−0.520443 + 0.853896i \(0.674233\pi\)
\(270\) 0 0
\(271\) −2.39230 −0.145322 −0.0726611 0.997357i \(-0.523149\pi\)
−0.0726611 + 0.997357i \(0.523149\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −13.6603 −0.820765 −0.410383 0.911913i \(-0.634605\pi\)
−0.410383 + 0.911913i \(0.634605\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 2.73205 0.162404 0.0812018 0.996698i \(-0.474124\pi\)
0.0812018 + 0.996698i \(0.474124\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.9282 −1.11730
\(288\) 0 0
\(289\) 5.39230 0.317194
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.0526 0.937801 0.468900 0.883251i \(-0.344650\pi\)
0.468900 + 0.883251i \(0.344650\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −29.0718 −1.68127
\(300\) 0 0
\(301\) 33.3205 1.92056
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −9.26795 −0.528950 −0.264475 0.964393i \(-0.585199\pi\)
−0.264475 + 0.964393i \(0.585199\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.8564 −1.12595 −0.562977 0.826473i \(-0.690344\pi\)
−0.562977 + 0.826473i \(0.690344\pi\)
\(312\) 0 0
\(313\) −9.60770 −0.543059 −0.271530 0.962430i \(-0.587529\pi\)
−0.271530 + 0.962430i \(0.587529\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.3923 0.583690 0.291845 0.956466i \(-0.405731\pi\)
0.291845 + 0.956466i \(0.405731\pi\)
\(318\) 0 0
\(319\) 6.92820 0.387905
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 35.3205 1.96529
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −25.8564 −1.42551
\(330\) 0 0
\(331\) 25.3205 1.39174 0.695870 0.718167i \(-0.255019\pi\)
0.695870 + 0.718167i \(0.255019\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.196152 0.0106851 0.00534255 0.999986i \(-0.498299\pi\)
0.00534255 + 0.999986i \(0.498299\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.535898 −0.0290205
\(342\) 0 0
\(343\) −17.8564 −0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.58846 0.353687 0.176843 0.984239i \(-0.443411\pi\)
0.176843 + 0.984239i \(0.443411\pi\)
\(348\) 0 0
\(349\) 23.4641 1.25600 0.628002 0.778211i \(-0.283873\pi\)
0.628002 + 0.778211i \(0.283873\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.928203 −0.0494033 −0.0247016 0.999695i \(-0.507864\pi\)
−0.0247016 + 0.999695i \(0.507864\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.39230 0.231817 0.115908 0.993260i \(-0.463022\pi\)
0.115908 + 0.993260i \(0.463022\pi\)
\(360\) 0 0
\(361\) 36.7128 1.93225
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −12.3923 −0.646873 −0.323437 0.946250i \(-0.604838\pi\)
−0.323437 + 0.946250i \(0.604838\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.3923 0.851046
\(372\) 0 0
\(373\) 35.5167 1.83898 0.919491 0.393110i \(-0.128601\pi\)
0.919491 + 0.393110i \(0.128601\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −29.0718 −1.49727
\(378\) 0 0
\(379\) 16.7846 0.862167 0.431084 0.902312i \(-0.358131\pi\)
0.431084 + 0.902312i \(0.358131\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.39230 0.224436 0.112218 0.993684i \(-0.464204\pi\)
0.112218 + 0.993684i \(0.464204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −32.7846 −1.65799
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.8564 0.595056 0.297528 0.954713i \(-0.403838\pi\)
0.297528 + 0.954713i \(0.403838\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.0718 −1.15215 −0.576075 0.817397i \(-0.695416\pi\)
−0.576075 + 0.817397i \(0.695416\pi\)
\(402\) 0 0
\(403\) 2.24871 0.112016
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.535898 0.0265635
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.53590 0.124783
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.7846 1.01539 0.507697 0.861536i \(-0.330497\pi\)
0.507697 + 0.861536i \(0.330497\pi\)
\(420\) 0 0
\(421\) −29.1769 −1.42200 −0.710998 0.703194i \(-0.751756\pi\)
−0.710998 + 0.703194i \(0.751756\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.3923 −0.986853
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.07180 −0.244300 −0.122150 0.992512i \(-0.538979\pi\)
−0.122150 + 0.992512i \(0.538979\pi\)
\(432\) 0 0
\(433\) −27.8564 −1.33869 −0.669347 0.742950i \(-0.733426\pi\)
−0.669347 + 0.742950i \(0.733426\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −51.7128 −2.47376
\(438\) 0 0
\(439\) 8.92820 0.426120 0.213060 0.977039i \(-0.431657\pi\)
0.213060 + 0.977039i \(0.431657\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.5359 −0.690621 −0.345311 0.938488i \(-0.612226\pi\)
−0.345311 + 0.938488i \(0.612226\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.9282 −1.74275 −0.871375 0.490618i \(-0.836771\pi\)
−0.871375 + 0.490618i \(0.836771\pi\)
\(450\) 0 0
\(451\) −6.92820 −0.326236
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.8038 −1.11350 −0.556749 0.830681i \(-0.687951\pi\)
−0.556749 + 0.830681i \(0.687951\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.60770 0.354326 0.177163 0.984182i \(-0.443308\pi\)
0.177163 + 0.984182i \(0.443308\pi\)
\(462\) 0 0
\(463\) −0.392305 −0.0182320 −0.00911598 0.999958i \(-0.502902\pi\)
−0.00911598 + 0.999958i \(0.502902\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.7128 1.83769 0.918845 0.394619i \(-0.129123\pi\)
0.918845 + 0.394619i \(0.129123\pi\)
\(468\) 0 0
\(469\) 10.9282 0.504618
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.1962 0.560780
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.53590 0.115868 0.0579341 0.998320i \(-0.481549\pi\)
0.0579341 + 0.998320i \(0.481549\pi\)
\(480\) 0 0
\(481\) −2.24871 −0.102532
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −27.7128 −1.25066 −0.625331 0.780360i \(-0.715036\pi\)
−0.625331 + 0.780360i \(0.715036\pi\)
\(492\) 0 0
\(493\) −32.7846 −1.47654
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.3923 −0.735295
\(498\) 0 0
\(499\) −17.8564 −0.799363 −0.399681 0.916654i \(-0.630879\pi\)
−0.399681 + 0.916654i \(0.630879\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.7321 −1.28110 −0.640549 0.767917i \(-0.721293\pi\)
−0.640549 + 0.767917i \(0.721293\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 32.7846 1.45315 0.726576 0.687086i \(-0.241110\pi\)
0.726576 + 0.687086i \(0.241110\pi\)
\(510\) 0 0
\(511\) 26.3923 1.16753
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.46410 −0.416231
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.9282 −0.566395 −0.283197 0.959062i \(-0.591395\pi\)
−0.283197 + 0.959062i \(0.591395\pi\)
\(522\) 0 0
\(523\) −6.73205 −0.294372 −0.147186 0.989109i \(-0.547022\pi\)
−0.147186 + 0.989109i \(0.547022\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.53590 0.110465
\(528\) 0 0
\(529\) 25.0000 1.08696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 29.0718 1.25924
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.464102 0.0199903
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.1962 0.521470 0.260735 0.965410i \(-0.416035\pi\)
0.260735 + 0.965410i \(0.416035\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −51.7128 −2.20304
\(552\) 0 0
\(553\) −20.3923 −0.867169
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.51666 0.0642630 0.0321315 0.999484i \(-0.489770\pi\)
0.0321315 + 0.999484i \(0.489770\pi\)
\(558\) 0 0
\(559\) −51.1769 −2.16455
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.19615 −0.0925568 −0.0462784 0.998929i \(-0.514736\pi\)
−0.0462784 + 0.998929i \(0.514736\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.3205 −0.474580 −0.237290 0.971439i \(-0.576259\pi\)
−0.237290 + 0.971439i \(0.576259\pi\)
\(570\) 0 0
\(571\) 3.85641 0.161386 0.0806928 0.996739i \(-0.474287\pi\)
0.0806928 + 0.996739i \(0.474287\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.3205 −1.05411 −0.527053 0.849832i \(-0.676703\pi\)
−0.527053 + 0.849832i \(0.676703\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.9282 −0.536352
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −34.6410 −1.42979 −0.714894 0.699233i \(-0.753525\pi\)
−0.714894 + 0.699233i \(0.753525\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.6603 0.971610 0.485805 0.874067i \(-0.338526\pi\)
0.485805 + 0.874067i \(0.338526\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −42.9282 −1.75400 −0.876999 0.480491i \(-0.840458\pi\)
−0.876999 + 0.480491i \(0.840458\pi\)
\(600\) 0 0
\(601\) 11.4641 0.467630 0.233815 0.972281i \(-0.424879\pi\)
0.233815 + 0.972281i \(0.424879\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −24.9808 −1.01394 −0.506969 0.861964i \(-0.669234\pi\)
−0.506969 + 0.861964i \(0.669234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 39.7128 1.60661
\(612\) 0 0
\(613\) 17.2679 0.697446 0.348723 0.937226i \(-0.386615\pi\)
0.348723 + 0.937226i \(0.386615\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.6077 −1.03093 −0.515463 0.856912i \(-0.672380\pi\)
−0.515463 + 0.856912i \(0.672380\pi\)
\(618\) 0 0
\(619\) −26.3923 −1.06080 −0.530398 0.847749i \(-0.677958\pi\)
−0.530398 + 0.847749i \(0.677958\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −35.3205 −1.41509
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.53590 −0.101113
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.94744 −0.0771604
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.7128 1.80555 0.902774 0.430116i \(-0.141527\pi\)
0.902774 + 0.430116i \(0.141527\pi\)
\(642\) 0 0
\(643\) 8.39230 0.330960 0.165480 0.986213i \(-0.447083\pi\)
0.165480 + 0.986213i \(0.447083\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −42.2487 −1.66097 −0.830484 0.557042i \(-0.811936\pi\)
−0.830484 + 0.557042i \(0.811936\pi\)
\(648\) 0 0
\(649\) 0.928203 0.0364352
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.2487 −0.479329 −0.239665 0.970856i \(-0.577037\pi\)
−0.239665 + 0.970856i \(0.577037\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.9282 −1.20479 −0.602396 0.798197i \(-0.705787\pi\)
−0.602396 + 0.798197i \(0.705787\pi\)
\(660\) 0 0
\(661\) −3.07180 −0.119479 −0.0597395 0.998214i \(-0.519027\pi\)
−0.0597395 + 0.998214i \(0.519027\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48.0000 1.85857
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.46410 −0.288148
\(672\) 0 0
\(673\) −2.33975 −0.0901906 −0.0450953 0.998983i \(-0.514359\pi\)
−0.0450953 + 0.998983i \(0.514359\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.7321 −1.10426 −0.552131 0.833757i \(-0.686185\pi\)
−0.552131 + 0.833757i \(0.686185\pi\)
\(678\) 0 0
\(679\) 13.4641 0.516705
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.3205 −0.433167 −0.216584 0.976264i \(-0.569491\pi\)
−0.216584 + 0.976264i \(0.569491\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −25.1769 −0.959164
\(690\) 0 0
\(691\) −0.784610 −0.0298480 −0.0149240 0.999889i \(-0.504751\pi\)
−0.0149240 + 0.999889i \(0.504751\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 32.7846 1.24181
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.0718 1.09803 0.549013 0.835814i \(-0.315004\pi\)
0.549013 + 0.835814i \(0.315004\pi\)
\(702\) 0 0
\(703\) −4.00000 −0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −44.7846 −1.68430
\(708\) 0 0
\(709\) 12.3923 0.465403 0.232701 0.972548i \(-0.425244\pi\)
0.232701 + 0.972548i \(0.425244\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.71281 −0.139046
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32.7846 −1.22266 −0.611330 0.791376i \(-0.709365\pi\)
−0.611330 + 0.791376i \(0.709365\pi\)
\(720\) 0 0
\(721\) 36.7846 1.36993
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 24.7846 0.919210 0.459605 0.888123i \(-0.347991\pi\)
0.459605 + 0.888123i \(0.347991\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −57.7128 −2.13459
\(732\) 0 0
\(733\) −4.19615 −0.154988 −0.0774942 0.996993i \(-0.524692\pi\)
−0.0774942 + 0.996993i \(0.524692\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 5.21539 0.191851 0.0959256 0.995389i \(-0.469419\pi\)
0.0959256 + 0.995389i \(0.469419\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.3397 −0.452701 −0.226351 0.974046i \(-0.572680\pi\)
−0.226351 + 0.974046i \(0.572680\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −26.7846 −0.978688
\(750\) 0 0
\(751\) 11.7128 0.427407 0.213703 0.976899i \(-0.431447\pi\)
0.213703 + 0.976899i \(0.431447\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 45.3205 1.64720 0.823601 0.567170i \(-0.191962\pi\)
0.823601 + 0.567170i \(0.191962\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.24871 0.226516 0.113258 0.993566i \(-0.463871\pi\)
0.113258 + 0.993566i \(0.463871\pi\)
\(762\) 0 0
\(763\) −8.39230 −0.303822
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.89488 −0.140636
\(768\) 0 0
\(769\) −38.3923 −1.38446 −0.692231 0.721676i \(-0.743372\pi\)
−0.692231 + 0.721676i \(0.743372\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 50.1051 1.80216 0.901078 0.433657i \(-0.142777\pi\)
0.901078 + 0.433657i \(0.142777\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 51.7128 1.85280
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −20.5885 −0.733899 −0.366950 0.930241i \(-0.619598\pi\)
−0.366950 + 0.930241i \(0.619598\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −47.3205 −1.68252
\(792\) 0 0
\(793\) 31.3205 1.11222
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.4641 1.39789 0.698945 0.715175i \(-0.253653\pi\)
0.698945 + 0.715175i \(0.253653\pi\)
\(798\) 0 0
\(799\) 44.7846 1.58437
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.66025 0.340903
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.7846 1.15265 0.576323 0.817222i \(-0.304487\pi\)
0.576323 + 0.817222i \(0.304487\pi\)
\(810\) 0 0
\(811\) −15.0718 −0.529242 −0.264621 0.964352i \(-0.585247\pi\)
−0.264621 + 0.964352i \(0.585247\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −91.0333 −3.18485
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27.7128 0.967184 0.483592 0.875294i \(-0.339332\pi\)
0.483592 + 0.875294i \(0.339332\pi\)
\(822\) 0 0
\(823\) 20.3923 0.710831 0.355416 0.934708i \(-0.384339\pi\)
0.355416 + 0.934708i \(0.384339\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.94744 0.276360 0.138180 0.990407i \(-0.455875\pi\)
0.138180 + 0.990407i \(0.455875\pi\)
\(828\) 0 0
\(829\) −6.53590 −0.227001 −0.113501 0.993538i \(-0.536206\pi\)
−0.113501 + 0.993538i \(0.536206\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.19615 −0.0760922
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.7128 0.749610 0.374805 0.927104i \(-0.377710\pi\)
0.374805 + 0.927104i \(0.377710\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.73205 0.0938744
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.71281 0.127274
\(852\) 0 0
\(853\) 7.80385 0.267199 0.133599 0.991035i \(-0.457346\pi\)
0.133599 + 0.991035i \(0.457346\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.1962 −0.894844 −0.447422 0.894323i \(-0.647658\pi\)
−0.447422 + 0.894323i \(0.647658\pi\)
\(858\) 0 0
\(859\) −36.5359 −1.24659 −0.623294 0.781987i \(-0.714206\pi\)
−0.623294 + 0.781987i \(0.714206\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.679492 0.0231302 0.0115651 0.999933i \(-0.496319\pi\)
0.0115651 + 0.999933i \(0.496319\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.46410 −0.253202
\(870\) 0 0
\(871\) −16.7846 −0.568725
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.48334 0.286462 0.143231 0.989689i \(-0.454251\pi\)
0.143231 + 0.989689i \(0.454251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) 0 0
\(883\) 46.9282 1.57926 0.789630 0.613583i \(-0.210273\pi\)
0.789630 + 0.613583i \(0.210273\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −58.3013 −1.95757 −0.978783 0.204902i \(-0.934312\pi\)
−0.978783 + 0.204902i \(0.934312\pi\)
\(888\) 0 0
\(889\) 21.3205 0.715067
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 70.6410 2.36391
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.71281 −0.123829
\(900\) 0 0
\(901\) −28.3923 −0.945885
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 48.1051 1.59730 0.798652 0.601793i \(-0.205547\pi\)
0.798652 + 0.601793i \(0.205547\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −13.8564 −0.459083 −0.229542 0.973299i \(-0.573723\pi\)
−0.229542 + 0.973299i \(0.573723\pi\)
\(912\) 0 0
\(913\) −4.73205 −0.156608
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) 17.7128 0.584292 0.292146 0.956374i \(-0.405631\pi\)
0.292146 + 0.956374i \(0.405631\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 25.1769 0.828708
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.0000 −0.787414 −0.393707 0.919236i \(-0.628808\pi\)
−0.393707 + 0.919236i \(0.628808\pi\)
\(930\) 0 0
\(931\) −3.46410 −0.113531
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 50.7321 1.65734 0.828672 0.559735i \(-0.189097\pi\)
0.828672 + 0.559735i \(0.189097\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −51.0333 −1.66364 −0.831819 0.555046i \(-0.812700\pi\)
−0.831819 + 0.555046i \(0.812700\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.3205 1.53771 0.768855 0.639423i \(-0.220827\pi\)
0.768855 + 0.639423i \(0.220827\pi\)
\(948\) 0 0
\(949\) −40.5359 −1.31585
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.01924 0.0330164 0.0165082 0.999864i \(-0.494745\pi\)
0.0165082 + 0.999864i \(0.494745\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −54.2487 −1.75178
\(960\) 0 0
\(961\) −30.7128 −0.990736
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.73205 0.0878568 0.0439284 0.999035i \(-0.486013\pi\)
0.0439284 + 0.999035i \(0.486013\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.0718 0.547860 0.273930 0.961750i \(-0.411676\pi\)
0.273930 + 0.961750i \(0.411676\pi\)
\(972\) 0 0
\(973\) 62.2487 1.99560
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.7846 0.856916 0.428458 0.903562i \(-0.359057\pi\)
0.428458 + 0.903562i \(0.359057\pi\)
\(978\) 0 0
\(979\) −12.9282 −0.413187
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −42.2487 −1.34752 −0.673762 0.738948i \(-0.735323\pi\)
−0.673762 + 0.738948i \(0.735323\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 84.4974 2.68686
\(990\) 0 0
\(991\) 39.1769 1.24450 0.622248 0.782820i \(-0.286220\pi\)
0.622248 + 0.782820i \(0.286220\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27.4115 0.868132 0.434066 0.900881i \(-0.357078\pi\)
0.434066 + 0.900881i \(0.357078\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9900.2.a.bv.1.2 2
3.2 odd 2 9900.2.a.bs.1.2 2
5.2 odd 4 9900.2.c.z.5149.4 4
5.3 odd 4 9900.2.c.z.5149.1 4
5.4 even 2 1980.2.a.g.1.1 2
15.2 even 4 9900.2.c.u.5149.4 4
15.8 even 4 9900.2.c.u.5149.1 4
15.14 odd 2 1980.2.a.k.1.1 yes 2
20.19 odd 2 7920.2.a.bv.1.2 2
60.59 even 2 7920.2.a.cd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1980.2.a.g.1.1 2 5.4 even 2
1980.2.a.k.1.1 yes 2 15.14 odd 2
7920.2.a.bv.1.2 2 20.19 odd 2
7920.2.a.cd.1.2 2 60.59 even 2
9900.2.a.bs.1.2 2 3.2 odd 2
9900.2.a.bv.1.2 2 1.1 even 1 trivial
9900.2.c.u.5149.1 4 15.8 even 4
9900.2.c.u.5149.4 4 15.2 even 4
9900.2.c.z.5149.1 4 5.3 odd 4
9900.2.c.z.5149.4 4 5.2 odd 4