Properties

Label 990.4.c.b.199.2
Level $990$
Weight $4$
Character 990.199
Analytic conductor $58.412$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,4,Mod(199,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 990.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,20,0,0,0,0,20,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.4118909057\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 990.199
Dual form 990.4.c.b.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(10.0000 - 5.00000i) q^{5} +5.00000i q^{7} -8.00000i q^{8} +(10.0000 + 20.0000i) q^{10} -11.0000 q^{11} -36.0000i q^{13} -10.0000 q^{14} +16.0000 q^{16} +17.0000i q^{17} -41.0000 q^{19} +(-40.0000 + 20.0000i) q^{20} -22.0000i q^{22} -44.0000i q^{23} +(75.0000 - 100.000i) q^{25} +72.0000 q^{26} -20.0000i q^{28} +285.000 q^{29} -323.000 q^{31} +32.0000i q^{32} -34.0000 q^{34} +(25.0000 + 50.0000i) q^{35} +29.0000i q^{37} -82.0000i q^{38} +(-40.0000 - 80.0000i) q^{40} -208.000 q^{41} -430.000i q^{43} +44.0000 q^{44} +88.0000 q^{46} -336.000i q^{47} +318.000 q^{49} +(200.000 + 150.000i) q^{50} +144.000i q^{52} +725.000i q^{53} +(-110.000 + 55.0000i) q^{55} +40.0000 q^{56} +570.000i q^{58} -648.000 q^{59} -565.000 q^{61} -646.000i q^{62} -64.0000 q^{64} +(-180.000 - 360.000i) q^{65} -748.000i q^{67} -68.0000i q^{68} +(-100.000 + 50.0000i) q^{70} +265.000 q^{71} -602.000i q^{73} -58.0000 q^{74} +164.000 q^{76} -55.0000i q^{77} -8.00000 q^{79} +(160.000 - 80.0000i) q^{80} -416.000i q^{82} -708.000i q^{83} +(85.0000 + 170.000i) q^{85} +860.000 q^{86} +88.0000i q^{88} +137.000 q^{89} +180.000 q^{91} +176.000i q^{92} +672.000 q^{94} +(-410.000 + 205.000i) q^{95} +44.0000i q^{97} +636.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 20 q^{5} + 20 q^{10} - 22 q^{11} - 20 q^{14} + 32 q^{16} - 82 q^{19} - 80 q^{20} + 150 q^{25} + 144 q^{26} + 570 q^{29} - 646 q^{31} - 68 q^{34} + 50 q^{35} - 80 q^{40} - 416 q^{41} + 88 q^{44}+ \cdots - 820 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 10.0000 5.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 5.00000i 0.269975i 0.990847 + 0.134987i \(0.0430994\pi\)
−0.990847 + 0.134987i \(0.956901\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 10.0000 + 20.0000i 0.316228 + 0.632456i
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 36.0000i 0.768046i −0.923323 0.384023i \(-0.874538\pi\)
0.923323 0.384023i \(-0.125462\pi\)
\(14\) −10.0000 −0.190901
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 17.0000i 0.242536i 0.992620 + 0.121268i \(0.0386960\pi\)
−0.992620 + 0.121268i \(0.961304\pi\)
\(18\) 0 0
\(19\) −41.0000 −0.495055 −0.247528 0.968881i \(-0.579618\pi\)
−0.247528 + 0.968881i \(0.579618\pi\)
\(20\) −40.0000 + 20.0000i −0.447214 + 0.223607i
\(21\) 0 0
\(22\) 22.0000i 0.213201i
\(23\) 44.0000i 0.398897i −0.979908 0.199449i \(-0.936085\pi\)
0.979908 0.199449i \(-0.0639151\pi\)
\(24\) 0 0
\(25\) 75.0000 100.000i 0.600000 0.800000i
\(26\) 72.0000 0.543091
\(27\) 0 0
\(28\) 20.0000i 0.134987i
\(29\) 285.000 1.82494 0.912468 0.409147i \(-0.134174\pi\)
0.912468 + 0.409147i \(0.134174\pi\)
\(30\) 0 0
\(31\) −323.000 −1.87137 −0.935686 0.352835i \(-0.885218\pi\)
−0.935686 + 0.352835i \(0.885218\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −34.0000 −0.171499
\(35\) 25.0000 + 50.0000i 0.120736 + 0.241473i
\(36\) 0 0
\(37\) 29.0000i 0.128853i 0.997922 + 0.0644266i \(0.0205218\pi\)
−0.997922 + 0.0644266i \(0.979478\pi\)
\(38\) 82.0000i 0.350057i
\(39\) 0 0
\(40\) −40.0000 80.0000i −0.158114 0.316228i
\(41\) −208.000 −0.792296 −0.396148 0.918187i \(-0.629653\pi\)
−0.396148 + 0.918187i \(0.629653\pi\)
\(42\) 0 0
\(43\) 430.000i 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 44.0000 0.150756
\(45\) 0 0
\(46\) 88.0000 0.282063
\(47\) 336.000i 1.04278i −0.853319 0.521390i \(-0.825414\pi\)
0.853319 0.521390i \(-0.174586\pi\)
\(48\) 0 0
\(49\) 318.000 0.927114
\(50\) 200.000 + 150.000i 0.565685 + 0.424264i
\(51\) 0 0
\(52\) 144.000i 0.384023i
\(53\) 725.000i 1.87899i 0.342564 + 0.939494i \(0.388705\pi\)
−0.342564 + 0.939494i \(0.611295\pi\)
\(54\) 0 0
\(55\) −110.000 + 55.0000i −0.269680 + 0.134840i
\(56\) 40.0000 0.0954504
\(57\) 0 0
\(58\) 570.000i 1.29043i
\(59\) −648.000 −1.42987 −0.714936 0.699190i \(-0.753544\pi\)
−0.714936 + 0.699190i \(0.753544\pi\)
\(60\) 0 0
\(61\) −565.000 −1.18592 −0.592958 0.805234i \(-0.702040\pi\)
−0.592958 + 0.805234i \(0.702040\pi\)
\(62\) 646.000i 1.32326i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −180.000 360.000i −0.343481 0.686962i
\(66\) 0 0
\(67\) 748.000i 1.36392i −0.731389 0.681961i \(-0.761127\pi\)
0.731389 0.681961i \(-0.238873\pi\)
\(68\) 68.0000i 0.121268i
\(69\) 0 0
\(70\) −100.000 + 50.0000i −0.170747 + 0.0853735i
\(71\) 265.000 0.442954 0.221477 0.975166i \(-0.428912\pi\)
0.221477 + 0.975166i \(0.428912\pi\)
\(72\) 0 0
\(73\) 602.000i 0.965189i −0.875844 0.482594i \(-0.839695\pi\)
0.875844 0.482594i \(-0.160305\pi\)
\(74\) −58.0000 −0.0911130
\(75\) 0 0
\(76\) 164.000 0.247528
\(77\) 55.0000i 0.0814004i
\(78\) 0 0
\(79\) −8.00000 −0.0113933 −0.00569665 0.999984i \(-0.501813\pi\)
−0.00569665 + 0.999984i \(0.501813\pi\)
\(80\) 160.000 80.0000i 0.223607 0.111803i
\(81\) 0 0
\(82\) 416.000i 0.560238i
\(83\) 708.000i 0.936302i −0.883648 0.468151i \(-0.844920\pi\)
0.883648 0.468151i \(-0.155080\pi\)
\(84\) 0 0
\(85\) 85.0000 + 170.000i 0.108465 + 0.216930i
\(86\) 860.000 1.07833
\(87\) 0 0
\(88\) 88.0000i 0.106600i
\(89\) 137.000 0.163168 0.0815841 0.996666i \(-0.474002\pi\)
0.0815841 + 0.996666i \(0.474002\pi\)
\(90\) 0 0
\(91\) 180.000 0.207353
\(92\) 176.000i 0.199449i
\(93\) 0 0
\(94\) 672.000 0.737356
\(95\) −410.000 + 205.000i −0.442791 + 0.221395i
\(96\) 0 0
\(97\) 44.0000i 0.0460569i 0.999735 + 0.0230285i \(0.00733084\pi\)
−0.999735 + 0.0230285i \(0.992669\pi\)
\(98\) 636.000i 0.655568i
\(99\) 0 0
\(100\) −300.000 + 400.000i −0.300000 + 0.400000i
\(101\) −1722.00 −1.69649 −0.848245 0.529605i \(-0.822340\pi\)
−0.848245 + 0.529605i \(0.822340\pi\)
\(102\) 0 0
\(103\) 1612.00i 1.54209i −0.636782 0.771044i \(-0.719735\pi\)
0.636782 0.771044i \(-0.280265\pi\)
\(104\) −288.000 −0.271545
\(105\) 0 0
\(106\) −1450.00 −1.32865
\(107\) 516.000i 0.466202i −0.972453 0.233101i \(-0.925113\pi\)
0.972453 0.233101i \(-0.0748873\pi\)
\(108\) 0 0
\(109\) 2.00000 0.00175748 0.000878740 1.00000i \(-0.499720\pi\)
0.000878740 1.00000i \(0.499720\pi\)
\(110\) −110.000 220.000i −0.0953463 0.190693i
\(111\) 0 0
\(112\) 80.0000i 0.0674937i
\(113\) 126.000i 0.104895i −0.998624 0.0524473i \(-0.983298\pi\)
0.998624 0.0524473i \(-0.0167021\pi\)
\(114\) 0 0
\(115\) −220.000 440.000i −0.178392 0.356784i
\(116\) −1140.00 −0.912468
\(117\) 0 0
\(118\) 1296.00i 1.01107i
\(119\) −85.0000 −0.0654785
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1130.00i 0.838569i
\(123\) 0 0
\(124\) 1292.00 0.935686
\(125\) 250.000 1375.00i 0.178885 0.983870i
\(126\) 0 0
\(127\) 88.0000i 0.0614861i 0.999527 + 0.0307431i \(0.00978736\pi\)
−0.999527 + 0.0307431i \(0.990213\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 720.000 360.000i 0.485755 0.242878i
\(131\) 1603.00 1.06912 0.534560 0.845130i \(-0.320477\pi\)
0.534560 + 0.845130i \(0.320477\pi\)
\(132\) 0 0
\(133\) 205.000i 0.133652i
\(134\) 1496.00 0.964438
\(135\) 0 0
\(136\) 136.000 0.0857493
\(137\) 204.000i 0.127218i −0.997975 0.0636091i \(-0.979739\pi\)
0.997975 0.0636091i \(-0.0202611\pi\)
\(138\) 0 0
\(139\) 1668.00 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) −100.000 200.000i −0.0603682 0.120736i
\(141\) 0 0
\(142\) 530.000i 0.313216i
\(143\) 396.000i 0.231575i
\(144\) 0 0
\(145\) 2850.00 1425.00i 1.63227 0.816137i
\(146\) 1204.00 0.682491
\(147\) 0 0
\(148\) 116.000i 0.0644266i
\(149\) −701.000 −0.385424 −0.192712 0.981255i \(-0.561728\pi\)
−0.192712 + 0.981255i \(0.561728\pi\)
\(150\) 0 0
\(151\) 1278.00 0.688756 0.344378 0.938831i \(-0.388090\pi\)
0.344378 + 0.938831i \(0.388090\pi\)
\(152\) 328.000i 0.175028i
\(153\) 0 0
\(154\) 110.000 0.0575588
\(155\) −3230.00 + 1615.00i −1.67381 + 0.836903i
\(156\) 0 0
\(157\) 2623.00i 1.33336i −0.745342 0.666682i \(-0.767714\pi\)
0.745342 0.666682i \(-0.232286\pi\)
\(158\) 16.0000i 0.00805628i
\(159\) 0 0
\(160\) 160.000 + 320.000i 0.0790569 + 0.158114i
\(161\) 220.000 0.107692
\(162\) 0 0
\(163\) 2053.00i 0.986524i −0.869881 0.493262i \(-0.835804\pi\)
0.869881 0.493262i \(-0.164196\pi\)
\(164\) 832.000 0.396148
\(165\) 0 0
\(166\) 1416.00 0.662066
\(167\) 3305.00i 1.53143i −0.643181 0.765714i \(-0.722386\pi\)
0.643181 0.765714i \(-0.277614\pi\)
\(168\) 0 0
\(169\) 901.000 0.410105
\(170\) −340.000 + 170.000i −0.153393 + 0.0766965i
\(171\) 0 0
\(172\) 1720.00i 0.762493i
\(173\) 2186.00i 0.960685i −0.877081 0.480342i \(-0.840512\pi\)
0.877081 0.480342i \(-0.159488\pi\)
\(174\) 0 0
\(175\) 500.000 + 375.000i 0.215980 + 0.161985i
\(176\) −176.000 −0.0753778
\(177\) 0 0
\(178\) 274.000i 0.115377i
\(179\) 246.000 0.102720 0.0513601 0.998680i \(-0.483644\pi\)
0.0513601 + 0.998680i \(0.483644\pi\)
\(180\) 0 0
\(181\) 2854.00 1.17202 0.586011 0.810303i \(-0.300697\pi\)
0.586011 + 0.810303i \(0.300697\pi\)
\(182\) 360.000i 0.146621i
\(183\) 0 0
\(184\) −352.000 −0.141031
\(185\) 145.000 + 290.000i 0.0576249 + 0.115250i
\(186\) 0 0
\(187\) 187.000i 0.0731272i
\(188\) 1344.00i 0.521390i
\(189\) 0 0
\(190\) −410.000 820.000i −0.156550 0.313100i
\(191\) 3264.00 1.23652 0.618259 0.785975i \(-0.287838\pi\)
0.618259 + 0.785975i \(0.287838\pi\)
\(192\) 0 0
\(193\) 3925.00i 1.46387i 0.681372 + 0.731937i \(0.261383\pi\)
−0.681372 + 0.731937i \(0.738617\pi\)
\(194\) −88.0000 −0.0325672
\(195\) 0 0
\(196\) −1272.00 −0.463557
\(197\) 3534.00i 1.27811i 0.769162 + 0.639053i \(0.220674\pi\)
−0.769162 + 0.639053i \(0.779326\pi\)
\(198\) 0 0
\(199\) −1043.00 −0.371539 −0.185770 0.982593i \(-0.559478\pi\)
−0.185770 + 0.982593i \(0.559478\pi\)
\(200\) −800.000 600.000i −0.282843 0.212132i
\(201\) 0 0
\(202\) 3444.00i 1.19960i
\(203\) 1425.00i 0.492687i
\(204\) 0 0
\(205\) −2080.00 + 1040.00i −0.708651 + 0.354326i
\(206\) 3224.00 1.09042
\(207\) 0 0
\(208\) 576.000i 0.192012i
\(209\) 451.000 0.149265
\(210\) 0 0
\(211\) −3767.00 −1.22906 −0.614528 0.788895i \(-0.710654\pi\)
−0.614528 + 0.788895i \(0.710654\pi\)
\(212\) 2900.00i 0.939494i
\(213\) 0 0
\(214\) 1032.00 0.329655
\(215\) −2150.00 4300.00i −0.681994 1.36399i
\(216\) 0 0
\(217\) 1615.00i 0.505223i
\(218\) 4.00000i 0.00124273i
\(219\) 0 0
\(220\) 440.000 220.000i 0.134840 0.0674200i
\(221\) 612.000 0.186279
\(222\) 0 0
\(223\) 1462.00i 0.439026i 0.975610 + 0.219513i \(0.0704468\pi\)
−0.975610 + 0.219513i \(0.929553\pi\)
\(224\) −160.000 −0.0477252
\(225\) 0 0
\(226\) 252.000 0.0741716
\(227\) 4572.00i 1.33680i −0.743801 0.668402i \(-0.766979\pi\)
0.743801 0.668402i \(-0.233021\pi\)
\(228\) 0 0
\(229\) 3744.00 1.08040 0.540198 0.841538i \(-0.318350\pi\)
0.540198 + 0.841538i \(0.318350\pi\)
\(230\) 880.000 440.000i 0.252285 0.126142i
\(231\) 0 0
\(232\) 2280.00i 0.645213i
\(233\) 6255.00i 1.75871i 0.476170 + 0.879353i \(0.342025\pi\)
−0.476170 + 0.879353i \(0.657975\pi\)
\(234\) 0 0
\(235\) −1680.00 3360.00i −0.466345 0.932690i
\(236\) 2592.00 0.714936
\(237\) 0 0
\(238\) 170.000i 0.0463003i
\(239\) 5208.00 1.40953 0.704765 0.709441i \(-0.251053\pi\)
0.704765 + 0.709441i \(0.251053\pi\)
\(240\) 0 0
\(241\) −5352.00 −1.43051 −0.715254 0.698864i \(-0.753689\pi\)
−0.715254 + 0.698864i \(0.753689\pi\)
\(242\) 242.000i 0.0642824i
\(243\) 0 0
\(244\) 2260.00 0.592958
\(245\) 3180.00 1590.00i 0.829236 0.414618i
\(246\) 0 0
\(247\) 1476.00i 0.380225i
\(248\) 2584.00i 0.661630i
\(249\) 0 0
\(250\) 2750.00 + 500.000i 0.695701 + 0.126491i
\(251\) −2750.00 −0.691548 −0.345774 0.938318i \(-0.612384\pi\)
−0.345774 + 0.938318i \(0.612384\pi\)
\(252\) 0 0
\(253\) 484.000i 0.120272i
\(254\) −176.000 −0.0434773
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1564.00i 0.379609i 0.981822 + 0.189805i \(0.0607855\pi\)
−0.981822 + 0.189805i \(0.939215\pi\)
\(258\) 0 0
\(259\) −145.000 −0.0347871
\(260\) 720.000 + 1440.00i 0.171740 + 0.343481i
\(261\) 0 0
\(262\) 3206.00i 0.755982i
\(263\) 3649.00i 0.855540i −0.903888 0.427770i \(-0.859299\pi\)
0.903888 0.427770i \(-0.140701\pi\)
\(264\) 0 0
\(265\) 3625.00 + 7250.00i 0.840309 + 1.68062i
\(266\) 410.000 0.0945064
\(267\) 0 0
\(268\) 2992.00i 0.681961i
\(269\) −4728.00 −1.07164 −0.535820 0.844332i \(-0.679997\pi\)
−0.535820 + 0.844332i \(0.679997\pi\)
\(270\) 0 0
\(271\) −7198.00 −1.61346 −0.806729 0.590921i \(-0.798764\pi\)
−0.806729 + 0.590921i \(0.798764\pi\)
\(272\) 272.000i 0.0606339i
\(273\) 0 0
\(274\) 408.000 0.0899569
\(275\) −825.000 + 1100.00i −0.180907 + 0.241209i
\(276\) 0 0
\(277\) 5644.00i 1.22424i −0.790764 0.612121i \(-0.790316\pi\)
0.790764 0.612121i \(-0.209684\pi\)
\(278\) 3336.00i 0.719712i
\(279\) 0 0
\(280\) 400.000 200.000i 0.0853735 0.0426867i
\(281\) 2738.00 0.581265 0.290632 0.956835i \(-0.406134\pi\)
0.290632 + 0.956835i \(0.406134\pi\)
\(282\) 0 0
\(283\) 4736.00i 0.994791i 0.867524 + 0.497396i \(0.165710\pi\)
−0.867524 + 0.497396i \(0.834290\pi\)
\(284\) −1060.00 −0.221477
\(285\) 0 0
\(286\) −792.000 −0.163748
\(287\) 1040.00i 0.213900i
\(288\) 0 0
\(289\) 4624.00 0.941176
\(290\) 2850.00 + 5700.00i 0.577096 + 1.15419i
\(291\) 0 0
\(292\) 2408.00i 0.482594i
\(293\) 992.000i 0.197793i −0.995098 0.0988963i \(-0.968469\pi\)
0.995098 0.0988963i \(-0.0315312\pi\)
\(294\) 0 0
\(295\) −6480.00 + 3240.00i −1.27892 + 0.639458i
\(296\) 232.000 0.0455565
\(297\) 0 0
\(298\) 1402.00i 0.272536i
\(299\) −1584.00 −0.306372
\(300\) 0 0
\(301\) 2150.00 0.411707
\(302\) 2556.00i 0.487024i
\(303\) 0 0
\(304\) −656.000 −0.123764
\(305\) −5650.00 + 2825.00i −1.06071 + 0.530357i
\(306\) 0 0
\(307\) 3272.00i 0.608283i −0.952627 0.304142i \(-0.901630\pi\)
0.952627 0.304142i \(-0.0983696\pi\)
\(308\) 220.000i 0.0407002i
\(309\) 0 0
\(310\) −3230.00 6460.00i −0.591780 1.18356i
\(311\) 743.000 0.135472 0.0677358 0.997703i \(-0.478423\pi\)
0.0677358 + 0.997703i \(0.478423\pi\)
\(312\) 0 0
\(313\) 4998.00i 0.902568i −0.892380 0.451284i \(-0.850966\pi\)
0.892380 0.451284i \(-0.149034\pi\)
\(314\) 5246.00 0.942831
\(315\) 0 0
\(316\) 32.0000 0.00569665
\(317\) 4669.00i 0.827247i 0.910448 + 0.413623i \(0.135737\pi\)
−0.910448 + 0.413623i \(0.864263\pi\)
\(318\) 0 0
\(319\) −3135.00 −0.550239
\(320\) −640.000 + 320.000i −0.111803 + 0.0559017i
\(321\) 0 0
\(322\) 440.000i 0.0761498i
\(323\) 697.000i 0.120068i
\(324\) 0 0
\(325\) −3600.00 2700.00i −0.614437 0.460828i
\(326\) 4106.00 0.697578
\(327\) 0 0
\(328\) 1664.00i 0.280119i
\(329\) 1680.00 0.281524
\(330\) 0 0
\(331\) −3998.00 −0.663897 −0.331949 0.943297i \(-0.607706\pi\)
−0.331949 + 0.943297i \(0.607706\pi\)
\(332\) 2832.00i 0.468151i
\(333\) 0 0
\(334\) 6610.00 1.08288
\(335\) −3740.00 7480.00i −0.609964 1.21993i
\(336\) 0 0
\(337\) 4835.00i 0.781541i −0.920488 0.390770i \(-0.872209\pi\)
0.920488 0.390770i \(-0.127791\pi\)
\(338\) 1802.00i 0.289988i
\(339\) 0 0
\(340\) −340.000 680.000i −0.0542326 0.108465i
\(341\) 3553.00 0.564240
\(342\) 0 0
\(343\) 3305.00i 0.520272i
\(344\) −3440.00 −0.539164
\(345\) 0 0
\(346\) 4372.00 0.679307
\(347\) 2506.00i 0.387692i 0.981032 + 0.193846i \(0.0620962\pi\)
−0.981032 + 0.193846i \(0.937904\pi\)
\(348\) 0 0
\(349\) −6254.00 −0.959223 −0.479612 0.877481i \(-0.659222\pi\)
−0.479612 + 0.877481i \(0.659222\pi\)
\(350\) −750.000 + 1000.00i −0.114541 + 0.152721i
\(351\) 0 0
\(352\) 352.000i 0.0533002i
\(353\) 3526.00i 0.531643i 0.964022 + 0.265822i \(0.0856432\pi\)
−0.964022 + 0.265822i \(0.914357\pi\)
\(354\) 0 0
\(355\) 2650.00 1325.00i 0.396190 0.198095i
\(356\) −548.000 −0.0815841
\(357\) 0 0
\(358\) 492.000i 0.0726341i
\(359\) −9352.00 −1.37487 −0.687437 0.726244i \(-0.741264\pi\)
−0.687437 + 0.726244i \(0.741264\pi\)
\(360\) 0 0
\(361\) −5178.00 −0.754921
\(362\) 5708.00i 0.828745i
\(363\) 0 0
\(364\) −720.000 −0.103677
\(365\) −3010.00 6020.00i −0.431645 0.863291i
\(366\) 0 0
\(367\) 2288.00i 0.325430i 0.986673 + 0.162715i \(0.0520250\pi\)
−0.986673 + 0.162715i \(0.947975\pi\)
\(368\) 704.000i 0.0997243i
\(369\) 0 0
\(370\) −580.000 + 290.000i −0.0814940 + 0.0407470i
\(371\) −3625.00 −0.507279
\(372\) 0 0
\(373\) 3892.00i 0.540268i −0.962823 0.270134i \(-0.912932\pi\)
0.962823 0.270134i \(-0.0870681\pi\)
\(374\) 374.000 0.0517088
\(375\) 0 0
\(376\) −2688.00 −0.368678
\(377\) 10260.0i 1.40164i
\(378\) 0 0
\(379\) 12526.0 1.69767 0.848836 0.528657i \(-0.177304\pi\)
0.848836 + 0.528657i \(0.177304\pi\)
\(380\) 1640.00 820.000i 0.221395 0.110698i
\(381\) 0 0
\(382\) 6528.00i 0.874350i
\(383\) 2566.00i 0.342341i 0.985241 + 0.171170i \(0.0547548\pi\)
−0.985241 + 0.171170i \(0.945245\pi\)
\(384\) 0 0
\(385\) −275.000 550.000i −0.0364034 0.0728067i
\(386\) −7850.00 −1.03512
\(387\) 0 0
\(388\) 176.000i 0.0230285i
\(389\) 5906.00 0.769784 0.384892 0.922962i \(-0.374239\pi\)
0.384892 + 0.922962i \(0.374239\pi\)
\(390\) 0 0
\(391\) 748.000 0.0967468
\(392\) 2544.00i 0.327784i
\(393\) 0 0
\(394\) −7068.00 −0.903758
\(395\) −80.0000 + 40.0000i −0.0101905 + 0.00509524i
\(396\) 0 0
\(397\) 7346.00i 0.928678i 0.885658 + 0.464339i \(0.153708\pi\)
−0.885658 + 0.464339i \(0.846292\pi\)
\(398\) 2086.00i 0.262718i
\(399\) 0 0
\(400\) 1200.00 1600.00i 0.150000 0.200000i
\(401\) −7475.00 −0.930882 −0.465441 0.885079i \(-0.654104\pi\)
−0.465441 + 0.885079i \(0.654104\pi\)
\(402\) 0 0
\(403\) 11628.0i 1.43730i
\(404\) 6888.00 0.848245
\(405\) 0 0
\(406\) −2850.00 −0.348382
\(407\) 319.000i 0.0388507i
\(408\) 0 0
\(409\) −8788.00 −1.06244 −0.531221 0.847233i \(-0.678267\pi\)
−0.531221 + 0.847233i \(0.678267\pi\)
\(410\) −2080.00 4160.00i −0.250546 0.501092i
\(411\) 0 0
\(412\) 6448.00i 0.771044i
\(413\) 3240.00i 0.386029i
\(414\) 0 0
\(415\) −3540.00 7080.00i −0.418727 0.837454i
\(416\) 1152.00 0.135773
\(417\) 0 0
\(418\) 902.000i 0.105546i
\(419\) 2700.00 0.314806 0.157403 0.987534i \(-0.449688\pi\)
0.157403 + 0.987534i \(0.449688\pi\)
\(420\) 0 0
\(421\) 2052.00 0.237550 0.118775 0.992921i \(-0.462103\pi\)
0.118775 + 0.992921i \(0.462103\pi\)
\(422\) 7534.00i 0.869074i
\(423\) 0 0
\(424\) 5800.00 0.664323
\(425\) 1700.00 + 1275.00i 0.194029 + 0.145521i
\(426\) 0 0
\(427\) 2825.00i 0.320167i
\(428\) 2064.00i 0.233101i
\(429\) 0 0
\(430\) 8600.00 4300.00i 0.964486 0.482243i
\(431\) −2632.00 −0.294151 −0.147075 0.989125i \(-0.546986\pi\)
−0.147075 + 0.989125i \(0.546986\pi\)
\(432\) 0 0
\(433\) 4658.00i 0.516973i 0.966015 + 0.258486i \(0.0832237\pi\)
−0.966015 + 0.258486i \(0.916776\pi\)
\(434\) 3230.00 0.357246
\(435\) 0 0
\(436\) −8.00000 −0.000878740
\(437\) 1804.00i 0.197476i
\(438\) 0 0
\(439\) −7894.00 −0.858223 −0.429112 0.903251i \(-0.641173\pi\)
−0.429112 + 0.903251i \(0.641173\pi\)
\(440\) 440.000 + 880.000i 0.0476731 + 0.0953463i
\(441\) 0 0
\(442\) 1224.00i 0.131719i
\(443\) 3548.00i 0.380520i −0.981734 0.190260i \(-0.939067\pi\)
0.981734 0.190260i \(-0.0609332\pi\)
\(444\) 0 0
\(445\) 1370.00 685.000i 0.145942 0.0729710i
\(446\) −2924.00 −0.310438
\(447\) 0 0
\(448\) 320.000i 0.0337468i
\(449\) −8258.00 −0.867971 −0.433986 0.900920i \(-0.642893\pi\)
−0.433986 + 0.900920i \(0.642893\pi\)
\(450\) 0 0
\(451\) 2288.00 0.238886
\(452\) 504.000i 0.0524473i
\(453\) 0 0
\(454\) 9144.00 0.945263
\(455\) 1800.00 900.000i 0.185462 0.0927311i
\(456\) 0 0
\(457\) 9969.00i 1.02042i 0.860051 + 0.510208i \(0.170432\pi\)
−0.860051 + 0.510208i \(0.829568\pi\)
\(458\) 7488.00i 0.763955i
\(459\) 0 0
\(460\) 880.000 + 1760.00i 0.0891961 + 0.178392i
\(461\) −8147.00 −0.823088 −0.411544 0.911390i \(-0.635010\pi\)
−0.411544 + 0.911390i \(0.635010\pi\)
\(462\) 0 0
\(463\) 13488.0i 1.35387i 0.736044 + 0.676934i \(0.236692\pi\)
−0.736044 + 0.676934i \(0.763308\pi\)
\(464\) 4560.00 0.456234
\(465\) 0 0
\(466\) −12510.0 −1.24359
\(467\) 4883.00i 0.483851i 0.970295 + 0.241925i \(0.0777789\pi\)
−0.970295 + 0.241925i \(0.922221\pi\)
\(468\) 0 0
\(469\) 3740.00 0.368224
\(470\) 6720.00 3360.00i 0.659512 0.329756i
\(471\) 0 0
\(472\) 5184.00i 0.505536i
\(473\) 4730.00i 0.459800i
\(474\) 0 0
\(475\) −3075.00 + 4100.00i −0.297033 + 0.396044i
\(476\) 340.000 0.0327392
\(477\) 0 0
\(478\) 10416.0i 0.996688i
\(479\) −15006.0 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(480\) 0 0
\(481\) 1044.00 0.0989653
\(482\) 10704.0i 1.01152i
\(483\) 0 0
\(484\) −484.000 −0.0454545
\(485\) 220.000 + 440.000i 0.0205973 + 0.0411946i
\(486\) 0 0
\(487\) 7074.00i 0.658221i −0.944291 0.329110i \(-0.893251\pi\)
0.944291 0.329110i \(-0.106749\pi\)
\(488\) 4520.00i 0.419284i
\(489\) 0 0
\(490\) 3180.00 + 6360.00i 0.293179 + 0.586358i
\(491\) 4099.00 0.376752 0.188376 0.982097i \(-0.439678\pi\)
0.188376 + 0.982097i \(0.439678\pi\)
\(492\) 0 0
\(493\) 4845.00i 0.442612i
\(494\) −2952.00 −0.268860
\(495\) 0 0
\(496\) −5168.00 −0.467843
\(497\) 1325.00i 0.119586i
\(498\) 0 0
\(499\) 10520.0 0.943767 0.471884 0.881661i \(-0.343574\pi\)
0.471884 + 0.881661i \(0.343574\pi\)
\(500\) −1000.00 + 5500.00i −0.0894427 + 0.491935i
\(501\) 0 0
\(502\) 5500.00i 0.488998i
\(503\) 14040.0i 1.24456i 0.782796 + 0.622279i \(0.213793\pi\)
−0.782796 + 0.622279i \(0.786207\pi\)
\(504\) 0 0
\(505\) −17220.0 + 8610.00i −1.51739 + 0.758693i
\(506\) −968.000 −0.0850452
\(507\) 0 0
\(508\) 352.000i 0.0307431i
\(509\) −4836.00 −0.421124 −0.210562 0.977581i \(-0.567529\pi\)
−0.210562 + 0.977581i \(0.567529\pi\)
\(510\) 0 0
\(511\) 3010.00 0.260576
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −3128.00 −0.268424
\(515\) −8060.00 16120.0i −0.689643 1.37929i
\(516\) 0 0
\(517\) 3696.00i 0.314410i
\(518\) 290.000i 0.0245982i
\(519\) 0 0
\(520\) −2880.00 + 1440.00i −0.242878 + 0.121439i
\(521\) 15498.0 1.30322 0.651612 0.758552i \(-0.274093\pi\)
0.651612 + 0.758552i \(0.274093\pi\)
\(522\) 0 0
\(523\) 16288.0i 1.36181i 0.732374 + 0.680903i \(0.238412\pi\)
−0.732374 + 0.680903i \(0.761588\pi\)
\(524\) −6412.00 −0.534560
\(525\) 0 0
\(526\) 7298.00 0.604958
\(527\) 5491.00i 0.453874i
\(528\) 0 0
\(529\) 10231.0 0.840881
\(530\) −14500.0 + 7250.00i −1.18838 + 0.594188i
\(531\) 0 0
\(532\) 820.000i 0.0668261i
\(533\) 7488.00i 0.608520i
\(534\) 0 0
\(535\) −2580.00 5160.00i −0.208492 0.416984i
\(536\) −5984.00 −0.482219
\(537\) 0 0
\(538\) 9456.00i 0.757764i
\(539\) −3498.00 −0.279535
\(540\) 0 0
\(541\) 8313.00 0.660635 0.330318 0.943870i \(-0.392844\pi\)
0.330318 + 0.943870i \(0.392844\pi\)
\(542\) 14396.0i 1.14089i
\(543\) 0 0
\(544\) −544.000 −0.0428746
\(545\) 20.0000 10.0000i 0.00157194 0.000785969i
\(546\) 0 0
\(547\) 5888.00i 0.460243i −0.973162 0.230121i \(-0.926088\pi\)
0.973162 0.230121i \(-0.0739123\pi\)
\(548\) 816.000i 0.0636091i
\(549\) 0 0
\(550\) −2200.00 1650.00i −0.170561 0.127920i
\(551\) −11685.0 −0.903444
\(552\) 0 0
\(553\) 40.0000i 0.00307590i
\(554\) 11288.0 0.865670
\(555\) 0 0
\(556\) −6672.00 −0.508913
\(557\) 16844.0i 1.28133i 0.767819 + 0.640667i \(0.221342\pi\)
−0.767819 + 0.640667i \(0.778658\pi\)
\(558\) 0 0
\(559\) −15480.0 −1.17126
\(560\) 400.000 + 800.000i 0.0301841 + 0.0603682i
\(561\) 0 0
\(562\) 5476.00i 0.411016i
\(563\) 9132.00i 0.683602i −0.939772 0.341801i \(-0.888963\pi\)
0.939772 0.341801i \(-0.111037\pi\)
\(564\) 0 0
\(565\) −630.000 1260.00i −0.0469103 0.0938205i
\(566\) −9472.00 −0.703424
\(567\) 0 0
\(568\) 2120.00i 0.156608i
\(569\) 6444.00 0.474774 0.237387 0.971415i \(-0.423709\pi\)
0.237387 + 0.971415i \(0.423709\pi\)
\(570\) 0 0
\(571\) −17713.0 −1.29819 −0.649095 0.760708i \(-0.724852\pi\)
−0.649095 + 0.760708i \(0.724852\pi\)
\(572\) 1584.00i 0.115787i
\(573\) 0 0
\(574\) 2080.00 0.151250
\(575\) −4400.00 3300.00i −0.319118 0.239338i
\(576\) 0 0
\(577\) 7352.00i 0.530447i −0.964187 0.265223i \(-0.914554\pi\)
0.964187 0.265223i \(-0.0854457\pi\)
\(578\) 9248.00i 0.665512i
\(579\) 0 0
\(580\) −11400.0 + 5700.00i −0.816137 + 0.408068i
\(581\) 3540.00 0.252778
\(582\) 0 0
\(583\) 7975.00i 0.566536i
\(584\) −4816.00 −0.341246
\(585\) 0 0
\(586\) 1984.00 0.139861
\(587\) 4521.00i 0.317890i 0.987287 + 0.158945i \(0.0508093\pi\)
−0.987287 + 0.158945i \(0.949191\pi\)
\(588\) 0 0
\(589\) 13243.0 0.926432
\(590\) −6480.00 12960.0i −0.452165 0.904330i
\(591\) 0 0
\(592\) 464.000i 0.0322133i
\(593\) 27514.0i 1.90534i 0.304012 + 0.952668i \(0.401674\pi\)
−0.304012 + 0.952668i \(0.598326\pi\)
\(594\) 0 0
\(595\) −850.000 + 425.000i −0.0585657 + 0.0292829i
\(596\) 2804.00 0.192712
\(597\) 0 0
\(598\) 3168.00i 0.216637i
\(599\) −5047.00 −0.344265 −0.172133 0.985074i \(-0.555066\pi\)
−0.172133 + 0.985074i \(0.555066\pi\)
\(600\) 0 0
\(601\) 8026.00 0.544738 0.272369 0.962193i \(-0.412193\pi\)
0.272369 + 0.962193i \(0.412193\pi\)
\(602\) 4300.00i 0.291121i
\(603\) 0 0
\(604\) −5112.00 −0.344378
\(605\) 1210.00 605.000i 0.0813116 0.0406558i
\(606\) 0 0
\(607\) 27231.0i 1.82088i 0.413645 + 0.910438i \(0.364256\pi\)
−0.413645 + 0.910438i \(0.635744\pi\)
\(608\) 1312.00i 0.0875142i
\(609\) 0 0
\(610\) −5650.00 11300.0i −0.375019 0.750039i
\(611\) −12096.0 −0.800903
\(612\) 0 0
\(613\) 1258.00i 0.0828877i −0.999141 0.0414438i \(-0.986804\pi\)
0.999141 0.0414438i \(-0.0131958\pi\)
\(614\) 6544.00 0.430121
\(615\) 0 0
\(616\) −440.000 −0.0287794
\(617\) 24572.0i 1.60329i 0.597799 + 0.801646i \(0.296042\pi\)
−0.597799 + 0.801646i \(0.703958\pi\)
\(618\) 0 0
\(619\) −14604.0 −0.948278 −0.474139 0.880450i \(-0.657241\pi\)
−0.474139 + 0.880450i \(0.657241\pi\)
\(620\) 12920.0 6460.00i 0.836903 0.418451i
\(621\) 0 0
\(622\) 1486.00i 0.0957929i
\(623\) 685.000i 0.0440513i
\(624\) 0 0
\(625\) −4375.00 15000.0i −0.280000 0.960000i
\(626\) 9996.00 0.638212
\(627\) 0 0
\(628\) 10492.0i 0.666682i
\(629\) −493.000 −0.0312515
\(630\) 0 0
\(631\) 11535.0 0.727735 0.363868 0.931451i \(-0.381456\pi\)
0.363868 + 0.931451i \(0.381456\pi\)
\(632\) 64.0000i 0.00402814i
\(633\) 0 0
\(634\) −9338.00 −0.584952
\(635\) 440.000 + 880.000i 0.0274974 + 0.0549949i
\(636\) 0 0
\(637\) 11448.0i 0.712066i
\(638\) 6270.00i 0.389078i
\(639\) 0 0
\(640\) −640.000 1280.00i −0.0395285 0.0790569i
\(641\) 1073.00 0.0661169 0.0330585 0.999453i \(-0.489475\pi\)
0.0330585 + 0.999453i \(0.489475\pi\)
\(642\) 0 0
\(643\) 9943.00i 0.609819i 0.952381 + 0.304910i \(0.0986262\pi\)
−0.952381 + 0.304910i \(0.901374\pi\)
\(644\) −880.000 −0.0538461
\(645\) 0 0
\(646\) 1394.00 0.0849012
\(647\) 3540.00i 0.215103i 0.994200 + 0.107552i \(0.0343011\pi\)
−0.994200 + 0.107552i \(0.965699\pi\)
\(648\) 0 0
\(649\) 7128.00 0.431122
\(650\) 5400.00 7200.00i 0.325855 0.434473i
\(651\) 0 0
\(652\) 8212.00i 0.493262i
\(653\) 8503.00i 0.509568i 0.966998 + 0.254784i \(0.0820044\pi\)
−0.966998 + 0.254784i \(0.917996\pi\)
\(654\) 0 0
\(655\) 16030.0 8015.00i 0.956250 0.478125i
\(656\) −3328.00 −0.198074
\(657\) 0 0
\(658\) 3360.00i 0.199068i
\(659\) 27847.0 1.64608 0.823039 0.567985i \(-0.192277\pi\)
0.823039 + 0.567985i \(0.192277\pi\)
\(660\) 0 0
\(661\) 9748.00 0.573606 0.286803 0.957990i \(-0.407408\pi\)
0.286803 + 0.957990i \(0.407408\pi\)
\(662\) 7996.00i 0.469446i
\(663\) 0 0
\(664\) −5664.00 −0.331033
\(665\) −1025.00 2050.00i −0.0597711 0.119542i
\(666\) 0 0
\(667\) 12540.0i 0.727962i
\(668\) 13220.0i 0.765714i
\(669\) 0 0
\(670\) 14960.0 7480.00i 0.862620 0.431310i
\(671\) 6215.00 0.357567
\(672\) 0 0
\(673\) 12595.0i 0.721399i −0.932682 0.360700i \(-0.882538\pi\)
0.932682 0.360700i \(-0.117462\pi\)
\(674\) 9670.00 0.552633
\(675\) 0 0
\(676\) −3604.00 −0.205052
\(677\) 27312.0i 1.55050i −0.631657 0.775248i \(-0.717625\pi\)
0.631657 0.775248i \(-0.282375\pi\)
\(678\) 0 0
\(679\) −220.000 −0.0124342
\(680\) 1360.00 680.000i 0.0766965 0.0383482i
\(681\) 0 0
\(682\) 7106.00i 0.398978i
\(683\) 21503.0i 1.20467i 0.798244 + 0.602335i \(0.205763\pi\)
−0.798244 + 0.602335i \(0.794237\pi\)
\(684\) 0 0
\(685\) −1020.00 2040.00i −0.0568937 0.113787i
\(686\) −6610.00 −0.367888
\(687\) 0 0
\(688\) 6880.00i 0.381246i
\(689\) 26100.0 1.44315
\(690\) 0 0
\(691\) 8920.00 0.491075 0.245537 0.969387i \(-0.421036\pi\)
0.245537 + 0.969387i \(0.421036\pi\)
\(692\) 8744.00i 0.480342i
\(693\) 0 0
\(694\) −5012.00 −0.274140
\(695\) 16680.0 8340.00i 0.910372 0.455186i
\(696\) 0 0
\(697\) 3536.00i 0.192160i
\(698\) 12508.0i 0.678273i
\(699\) 0 0
\(700\) −2000.00 1500.00i −0.107990 0.0809924i
\(701\) −7651.00 −0.412232 −0.206116 0.978528i \(-0.566082\pi\)
−0.206116 + 0.978528i \(0.566082\pi\)
\(702\) 0 0
\(703\) 1189.00i 0.0637895i
\(704\) 704.000 0.0376889
\(705\) 0 0
\(706\) −7052.00 −0.375929
\(707\) 8610.00i 0.458009i
\(708\) 0 0
\(709\) 4374.00 0.231691 0.115846 0.993267i \(-0.463042\pi\)
0.115846 + 0.993267i \(0.463042\pi\)
\(710\) 2650.00 + 5300.00i 0.140074 + 0.280149i
\(711\) 0 0
\(712\) 1096.00i 0.0576887i
\(713\) 14212.0i 0.746485i
\(714\) 0 0
\(715\) 1980.00 + 3960.00i 0.103563 + 0.207127i
\(716\) −984.000 −0.0513601
\(717\) 0 0
\(718\) 18704.0i 0.972183i
\(719\) 34509.0 1.78994 0.894971 0.446124i \(-0.147196\pi\)
0.894971 + 0.446124i \(0.147196\pi\)
\(720\) 0 0
\(721\) 8060.00 0.416325
\(722\) 10356.0i 0.533809i
\(723\) 0 0
\(724\) −11416.0 −0.586011
\(725\) 21375.0 28500.0i 1.09496 1.45995i
\(726\) 0 0
\(727\) 10770.0i 0.549432i −0.961525 0.274716i \(-0.911416\pi\)
0.961525 0.274716i \(-0.0885839\pi\)
\(728\) 1440.00i 0.0733104i
\(729\) 0 0
\(730\) 12040.0 6020.00i 0.610439 0.305219i
\(731\) 7310.00 0.369863
\(732\) 0 0
\(733\) 7950.00i 0.400600i −0.979735 0.200300i \(-0.935808\pi\)
0.979735 0.200300i \(-0.0641917\pi\)
\(734\) −4576.00 −0.230113
\(735\) 0 0
\(736\) 1408.00 0.0705157
\(737\) 8228.00i 0.411238i
\(738\) 0 0
\(739\) −8792.00 −0.437644 −0.218822 0.975765i \(-0.570221\pi\)
−0.218822 + 0.975765i \(0.570221\pi\)
\(740\) −580.000 1160.00i −0.0288125 0.0576249i
\(741\) 0 0
\(742\) 7250.00i 0.358701i
\(743\) 1791.00i 0.0884326i −0.999022 0.0442163i \(-0.985921\pi\)
0.999022 0.0442163i \(-0.0140791\pi\)
\(744\) 0 0
\(745\) −7010.00 + 3505.00i −0.344734 + 0.172367i
\(746\) 7784.00 0.382027
\(747\) 0 0
\(748\) 748.000i 0.0365636i
\(749\) 2580.00 0.125863
\(750\) 0 0
\(751\) 37745.0 1.83400 0.917000 0.398886i \(-0.130603\pi\)
0.917000 + 0.398886i \(0.130603\pi\)
\(752\) 5376.00i 0.260695i
\(753\) 0 0
\(754\) 20520.0 0.991107
\(755\) 12780.0 6390.00i 0.616042 0.308021i
\(756\) 0 0
\(757\) 15686.0i 0.753127i −0.926391 0.376564i \(-0.877106\pi\)
0.926391 0.376564i \(-0.122894\pi\)
\(758\) 25052.0i 1.20043i
\(759\) 0 0
\(760\) 1640.00 + 3280.00i 0.0782751 + 0.156550i
\(761\) −452.000 −0.0215309 −0.0107654 0.999942i \(-0.503427\pi\)
−0.0107654 + 0.999942i \(0.503427\pi\)
\(762\) 0 0
\(763\) 10.0000i 0.000474475i
\(764\) −13056.0 −0.618259
\(765\) 0 0
\(766\) −5132.00 −0.242071
\(767\) 23328.0i 1.09821i
\(768\) 0 0
\(769\) 6610.00 0.309964 0.154982 0.987917i \(-0.450468\pi\)
0.154982 + 0.987917i \(0.450468\pi\)
\(770\) 1100.00 550.000i 0.0514821 0.0257411i
\(771\) 0 0
\(772\) 15700.0i 0.731937i
\(773\) 26601.0i 1.23774i 0.785494 + 0.618869i \(0.212409\pi\)
−0.785494 + 0.618869i \(0.787591\pi\)
\(774\) 0 0
\(775\) −24225.0 + 32300.0i −1.12282 + 1.49710i
\(776\) 352.000 0.0162836
\(777\) 0 0
\(778\) 11812.0i 0.544320i
\(779\) 8528.00 0.392230
\(780\) 0 0
\(781\) −2915.00 −0.133556
\(782\) 1496.00i 0.0684103i
\(783\) 0 0
\(784\) 5088.00 0.231778
\(785\) −13115.0 26230.0i −0.596299 1.19260i
\(786\) 0 0
\(787\) 35166.0i 1.59280i −0.604771 0.796399i \(-0.706735\pi\)
0.604771 0.796399i \(-0.293265\pi\)
\(788\) 14136.0i 0.639053i
\(789\) 0 0
\(790\) −80.0000 160.000i −0.00360288 0.00720575i
\(791\) 630.000 0.0283189
\(792\) 0 0
\(793\) 20340.0i 0.910838i
\(794\) −14692.0 −0.656675
\(795\) 0 0
\(796\) 4172.00 0.185770
\(797\) 42026.0i 1.86780i −0.357533 0.933900i \(-0.616382\pi\)
0.357533 0.933900i \(-0.383618\pi\)
\(798\) 0 0
\(799\) 5712.00 0.252911
\(800\) 3200.00 + 2400.00i 0.141421 + 0.106066i
\(801\) 0 0
\(802\) 14950.0i 0.658233i
\(803\) 6622.00i 0.291015i
\(804\) 0 0
\(805\) 2200.00 1100.00i 0.0963227 0.0481614i
\(806\) −23256.0 −1.01632
\(807\) 0 0
\(808\) 13776.0i 0.599799i
\(809\) 31666.0 1.37616 0.688082 0.725633i \(-0.258453\pi\)
0.688082 + 0.725633i \(0.258453\pi\)
\(810\) 0 0
\(811\) 3143.00 0.136086 0.0680429 0.997682i \(-0.478325\pi\)
0.0680429 + 0.997682i \(0.478325\pi\)
\(812\) 5700.00i 0.246343i
\(813\) 0 0
\(814\) 638.000 0.0274716
\(815\) −10265.0 20530.0i −0.441187 0.882374i
\(816\) 0 0
\(817\) 17630.0i 0.754952i
\(818\) 17576.0i 0.751260i
\(819\) 0 0
\(820\) 8320.00 4160.00i 0.354326 0.177163i
\(821\) 1282.00 0.0544971 0.0272485 0.999629i \(-0.491325\pi\)
0.0272485 + 0.999629i \(0.491325\pi\)
\(822\) 0 0
\(823\) 6778.00i 0.287079i −0.989645 0.143540i \(-0.954152\pi\)
0.989645 0.143540i \(-0.0458485\pi\)
\(824\) −12896.0 −0.545210
\(825\) 0 0
\(826\) 6480.00 0.272964
\(827\) 10158.0i 0.427120i −0.976930 0.213560i \(-0.931494\pi\)
0.976930 0.213560i \(-0.0685059\pi\)
\(828\) 0 0
\(829\) −45716.0 −1.91530 −0.957649 0.287938i \(-0.907030\pi\)
−0.957649 + 0.287938i \(0.907030\pi\)
\(830\) 14160.0 7080.00i 0.592170 0.296085i
\(831\) 0 0
\(832\) 2304.00i 0.0960058i
\(833\) 5406.00i 0.224858i
\(834\) 0 0
\(835\) −16525.0 33050.0i −0.684876 1.36975i
\(836\) −1804.00 −0.0746324
\(837\) 0 0
\(838\) 5400.00i 0.222601i
\(839\) 2184.00 0.0898690 0.0449345 0.998990i \(-0.485692\pi\)
0.0449345 + 0.998990i \(0.485692\pi\)
\(840\) 0 0
\(841\) 56836.0 2.33039
\(842\) 4104.00i 0.167973i
\(843\) 0 0
\(844\) 15068.0 0.614528
\(845\) 9010.00 4505.00i 0.366809 0.183404i
\(846\) 0 0
\(847\) 605.000i 0.0245431i
\(848\) 11600.0i 0.469747i
\(849\) 0 0
\(850\) −2550.00 + 3400.00i −0.102899 + 0.137199i
\(851\) 1276.00 0.0513992
\(852\) 0 0
\(853\) 16292.0i 0.653960i −0.945031 0.326980i \(-0.893969\pi\)
0.945031 0.326980i \(-0.106031\pi\)
\(854\) 5650.00 0.226392
\(855\) 0 0
\(856\) −4128.00 −0.164827
\(857\) 20443.0i 0.814842i −0.913240 0.407421i \(-0.866428\pi\)
0.913240 0.407421i \(-0.133572\pi\)
\(858\) 0 0
\(859\) 24350.0 0.967184 0.483592 0.875293i \(-0.339332\pi\)
0.483592 + 0.875293i \(0.339332\pi\)
\(860\) 8600.00 + 17200.0i 0.340997 + 0.681994i
\(861\) 0 0
\(862\) 5264.00i 0.207996i
\(863\) 11988.0i 0.472858i 0.971649 + 0.236429i \(0.0759770\pi\)
−0.971649 + 0.236429i \(0.924023\pi\)
\(864\) 0 0
\(865\) −10930.0 21860.0i −0.429631 0.859263i
\(866\) −9316.00 −0.365555
\(867\) 0 0
\(868\) 6460.00i 0.252611i
\(869\) 88.0000 0.00343521
\(870\) 0 0
\(871\) −26928.0 −1.04756
\(872\) 16.0000i 0.000621363i
\(873\) 0 0
\(874\) −3608.00 −0.139637
\(875\) 6875.00 + 1250.00i 0.265620 + 0.0482945i
\(876\) 0 0
\(877\) 12314.0i 0.474133i −0.971493 0.237066i \(-0.923814\pi\)
0.971493 0.237066i \(-0.0761859\pi\)
\(878\) 15788.0i 0.606856i
\(879\) 0 0
\(880\) −1760.00 + 880.000i −0.0674200 + 0.0337100i
\(881\) 24882.0 0.951528 0.475764 0.879573i \(-0.342172\pi\)
0.475764 + 0.879573i \(0.342172\pi\)
\(882\) 0 0
\(883\) 15175.0i 0.578346i −0.957277 0.289173i \(-0.906620\pi\)
0.957277 0.289173i \(-0.0933803\pi\)
\(884\) −2448.00 −0.0931393
\(885\) 0 0
\(886\) 7096.00 0.269069
\(887\) 1472.00i 0.0557214i −0.999612 0.0278607i \(-0.991131\pi\)
0.999612 0.0278607i \(-0.00886949\pi\)
\(888\) 0 0
\(889\) −440.000 −0.0165997
\(890\) 1370.00 + 2740.00i 0.0515983 + 0.103197i
\(891\) 0 0
\(892\) 5848.00i 0.219513i
\(893\) 13776.0i 0.516233i
\(894\) 0 0
\(895\) 2460.00 1230.00i 0.0918757 0.0459378i
\(896\) 640.000 0.0238626
\(897\) 0 0
\(898\) 16516.0i 0.613748i
\(899\) −92055.0 −3.41513
\(900\) 0 0
\(901\) −12325.0 −0.455722
\(902\) 4576.00i 0.168918i
\(903\) 0 0
\(904\) −1008.00 −0.0370858
\(905\) 28540.0 14270.0i 1.04829 0.524145i
\(906\) 0 0
\(907\) 9335.00i 0.341746i −0.985293 0.170873i \(-0.945341\pi\)
0.985293 0.170873i \(-0.0546588\pi\)
\(908\) 18288.0i 0.668402i
\(909\) 0 0
\(910\) 1800.00 + 3600.00i 0.0655708 + 0.131142i
\(911\) 16137.0 0.586874 0.293437 0.955978i \(-0.405201\pi\)
0.293437 + 0.955978i \(0.405201\pi\)
\(912\) 0 0
\(913\) 7788.00i 0.282306i
\(914\) −19938.0 −0.721543
\(915\) 0 0
\(916\) −14976.0 −0.540198
\(917\) 8015.00i 0.288635i
\(918\) 0 0
\(919\) 4658.00 0.167196 0.0835981 0.996500i \(-0.473359\pi\)
0.0835981 + 0.996500i \(0.473359\pi\)
\(920\) −3520.00 + 1760.00i −0.126142 + 0.0630712i
\(921\) 0 0
\(922\) 16294.0i 0.582011i
\(923\) 9540.00i 0.340209i
\(924\) 0 0
\(925\) 2900.00 + 2175.00i 0.103083 + 0.0773120i
\(926\) −26976.0 −0.957329
\(927\) 0 0
\(928\) 9120.00i 0.322606i
\(929\) −25105.0 −0.886618 −0.443309 0.896369i \(-0.646196\pi\)
−0.443309 + 0.896369i \(0.646196\pi\)
\(930\) 0 0
\(931\) −13038.0 −0.458972
\(932\) 25020.0i 0.879353i
\(933\) 0 0
\(934\) −9766.00 −0.342134
\(935\) −935.000 1870.00i −0.0327035 0.0654070i
\(936\) 0 0
\(937\) 15094.0i 0.526253i 0.964761 + 0.263127i \(0.0847537\pi\)
−0.964761 + 0.263127i \(0.915246\pi\)
\(938\) 7480.00i 0.260374i
\(939\) 0 0
\(940\) 6720.00 + 13440.0i 0.233173 + 0.466345i
\(941\) 18167.0 0.629359 0.314680 0.949198i \(-0.398103\pi\)
0.314680 + 0.949198i \(0.398103\pi\)
\(942\) 0 0
\(943\) 9152.00i 0.316045i
\(944\) −10368.0 −0.357468
\(945\) 0 0
\(946\) −9460.00 −0.325128
\(947\) 17781.0i 0.610142i 0.952330 + 0.305071i \(0.0986803\pi\)
−0.952330 + 0.305071i \(0.901320\pi\)
\(948\) 0 0
\(949\) −21672.0 −0.741310
\(950\) −8200.00 6150.00i −0.280045 0.210034i
\(951\) 0 0
\(952\) 680.000i 0.0231501i
\(953\) 28327.0i 0.962856i −0.876486 0.481428i \(-0.840118\pi\)
0.876486 0.481428i \(-0.159882\pi\)
\(954\) 0 0
\(955\) 32640.0 16320.0i 1.10597 0.552987i
\(956\) −20832.0 −0.704765
\(957\) 0 0
\(958\) 30012.0i 1.01215i
\(959\) 1020.00 0.0343457
\(960\) 0 0
\(961\) 74538.0 2.50203
\(962\) 2088.00i 0.0699790i
\(963\) 0 0
\(964\) 21408.0 0.715254
\(965\) 19625.0 + 39250.0i 0.654664 + 1.30933i
\(966\) 0 0
\(967\) 34867.0i 1.15951i 0.814791 + 0.579755i \(0.196852\pi\)
−0.814791 + 0.579755i \(0.803148\pi\)
\(968\) 968.000i 0.0321412i
\(969\) 0 0
\(970\) −880.000 + 440.000i −0.0291290 + 0.0145645i
\(971\) −38780.0 −1.28168 −0.640839 0.767675i \(-0.721413\pi\)
−0.640839 + 0.767675i \(0.721413\pi\)
\(972\) 0 0
\(973\) 8340.00i 0.274787i
\(974\) 14148.0 0.465432
\(975\) 0 0
\(976\) −9040.00 −0.296479
\(977\) 33940.0i 1.11140i −0.831383 0.555699i \(-0.812451\pi\)
0.831383 0.555699i \(-0.187549\pi\)
\(978\) 0 0
\(979\) −1507.00 −0.0491971
\(980\) −12720.0 + 6360.00i −0.414618 + 0.207309i
\(981\) 0 0
\(982\) 8198.00i 0.266404i
\(983\) 39254.0i 1.27366i −0.771004 0.636830i \(-0.780245\pi\)
0.771004 0.636830i \(-0.219755\pi\)
\(984\) 0 0
\(985\) 17670.0 + 35340.0i 0.571587 + 1.14317i
\(986\) −9690.00 −0.312974
\(987\) 0 0
\(988\) 5904.00i 0.190113i
\(989\) −18920.0 −0.608312
\(990\) 0 0
\(991\) 21840.0 0.700071 0.350036 0.936736i \(-0.386170\pi\)
0.350036 + 0.936736i \(0.386170\pi\)
\(992\) 10336.0i 0.330815i
\(993\) 0 0
\(994\) −2650.00 −0.0845603
\(995\) −10430.0 + 5215.00i −0.332315 + 0.166157i
\(996\) 0 0
\(997\) 10226.0i 0.324835i −0.986722 0.162418i \(-0.948071\pi\)
0.986722 0.162418i \(-0.0519292\pi\)
\(998\) 21040.0i 0.667344i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.4.c.b.199.2 2
3.2 odd 2 110.4.b.a.89.1 2
5.4 even 2 inner 990.4.c.b.199.1 2
12.11 even 2 880.4.b.a.529.2 2
15.2 even 4 550.4.a.i.1.1 1
15.8 even 4 550.4.a.h.1.1 1
15.14 odd 2 110.4.b.a.89.2 yes 2
60.59 even 2 880.4.b.a.529.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.b.a.89.1 2 3.2 odd 2
110.4.b.a.89.2 yes 2 15.14 odd 2
550.4.a.h.1.1 1 15.8 even 4
550.4.a.i.1.1 1 15.2 even 4
880.4.b.a.529.1 2 60.59 even 2
880.4.b.a.529.2 2 12.11 even 2
990.4.c.b.199.1 2 5.4 even 2 inner
990.4.c.b.199.2 2 1.1 even 1 trivial