Properties

Label 990.4.c.b
Level $990$
Weight $4$
Character orbit 990.c
Analytic conductor $58.412$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,4,Mod(199,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 990.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,20,0,0,0,0,20,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.4118909057\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 4 q^{4} + ( - 5 i + 10) q^{5} + 5 i q^{7} - 8 i q^{8} + (20 i + 10) q^{10} - 11 q^{11} - 36 i q^{13} - 10 q^{14} + 16 q^{16} + 17 i q^{17} - 41 q^{19} + (20 i - 40) q^{20} - 22 i q^{22} + \cdots + 636 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 20 q^{5} + 20 q^{10} - 22 q^{11} - 20 q^{14} + 32 q^{16} - 82 q^{19} - 80 q^{20} + 150 q^{25} + 144 q^{26} + 570 q^{29} - 646 q^{31} - 68 q^{34} + 50 q^{35} - 80 q^{40} - 416 q^{41} + 88 q^{44}+ \cdots - 820 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
2.00000i 0 −4.00000 10.0000 + 5.00000i 0 5.00000i 8.00000i 0 10.0000 20.0000i
199.2 2.00000i 0 −4.00000 10.0000 5.00000i 0 5.00000i 8.00000i 0 10.0000 + 20.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.4.c.b 2
3.b odd 2 1 110.4.b.a 2
5.b even 2 1 inner 990.4.c.b 2
12.b even 2 1 880.4.b.a 2
15.d odd 2 1 110.4.b.a 2
15.e even 4 1 550.4.a.h 1
15.e even 4 1 550.4.a.i 1
60.h even 2 1 880.4.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.b.a 2 3.b odd 2 1
110.4.b.a 2 15.d odd 2 1
550.4.a.h 1 15.e even 4 1
550.4.a.i 1 15.e even 4 1
880.4.b.a 2 12.b even 2 1
880.4.b.a 2 60.h even 2 1
990.4.c.b 2 1.a even 1 1 trivial
990.4.c.b 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(990, [\chi])\):

\( T_{7}^{2} + 25 \) Copy content Toggle raw display
\( T_{29} - 285 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 20T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 25 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1296 \) Copy content Toggle raw display
$17$ \( T^{2} + 289 \) Copy content Toggle raw display
$19$ \( (T + 41)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1936 \) Copy content Toggle raw display
$29$ \( (T - 285)^{2} \) Copy content Toggle raw display
$31$ \( (T + 323)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 841 \) Copy content Toggle raw display
$41$ \( (T + 208)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 184900 \) Copy content Toggle raw display
$47$ \( T^{2} + 112896 \) Copy content Toggle raw display
$53$ \( T^{2} + 525625 \) Copy content Toggle raw display
$59$ \( (T + 648)^{2} \) Copy content Toggle raw display
$61$ \( (T + 565)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 559504 \) Copy content Toggle raw display
$71$ \( (T - 265)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 362404 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 501264 \) Copy content Toggle raw display
$89$ \( (T - 137)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1936 \) Copy content Toggle raw display
show more
show less