Properties

Label 990.2.z.a.611.4
Level $990$
Weight $2$
Character 990.611
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 611.4
Character \(\chi\) \(=\) 990.611
Dual form 990.2.z.a.431.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(-0.951057 - 0.309017i) q^{5} +(1.97378 + 2.71668i) q^{7} +(-0.809017 - 0.587785i) q^{8} -1.00000i q^{10} +(3.27288 - 0.536907i) q^{11} +(2.94348 - 0.956394i) q^{13} +(-1.97378 + 2.71668i) q^{14} +(0.309017 - 0.951057i) q^{16} +(-0.169746 + 0.522426i) q^{17} +(-1.98338 + 2.72988i) q^{19} +(0.951057 - 0.309017i) q^{20} +(1.52200 + 2.94678i) q^{22} -3.45661i q^{23} +(0.809017 + 0.587785i) q^{25} +(1.81917 + 2.50387i) q^{26} +(-3.19365 - 1.03768i) q^{28} +(-0.129183 + 0.0938569i) q^{29} +(3.08374 + 9.49078i) q^{31} +1.00000 q^{32} -0.549311 q^{34} +(-1.03768 - 3.19365i) q^{35} +(-3.95771 + 2.87544i) q^{37} +(-3.20917 - 1.04272i) q^{38} +(0.587785 + 0.809017i) q^{40} +(0.817355 + 0.593843i) q^{41} +8.23066i q^{43} +(-2.33223 + 2.35812i) q^{44} +(3.28743 - 1.06815i) q^{46} +(-2.87791 + 3.96110i) q^{47} +(-1.32141 + 4.06689i) q^{49} +(-0.309017 + 0.951057i) q^{50} +(-1.81917 + 2.50387i) q^{52} +(-2.18282 + 0.709241i) q^{53} +(-3.27861 - 0.500746i) q^{55} -3.35800i q^{56} +(-0.129183 - 0.0938569i) q^{58} +(5.88811 + 8.10429i) q^{59} +(8.78757 + 2.85525i) q^{61} +(-8.07334 + 5.86563i) q^{62} +(0.309017 + 0.951057i) q^{64} -3.09496 q^{65} +2.23583 q^{67} +(-0.169746 - 0.522426i) q^{68} +(2.71668 - 1.97378i) q^{70} +(-12.4922 - 4.05895i) q^{71} +(-3.15954 - 4.34873i) q^{73} +(-3.95771 - 2.87544i) q^{74} -3.37432i q^{76} +(7.91856 + 7.83163i) q^{77} +(14.6412 - 4.75721i) q^{79} +(-0.587785 + 0.809017i) q^{80} +(-0.312202 + 0.960859i) q^{82} +(2.13488 - 6.57048i) q^{83} +(0.322877 - 0.444402i) q^{85} +(-7.82782 + 2.54341i) q^{86} +(-2.96340 - 1.48938i) q^{88} +1.34287i q^{89} +(8.40801 + 6.10878i) q^{91} +(2.03174 + 2.79645i) q^{92} +(-4.65656 - 1.51301i) q^{94} +(2.72988 - 1.98338i) q^{95} +(-1.71164 - 5.26787i) q^{97} -4.27619 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.951057 0.309017i −0.425325 0.138197i
\(6\) 0 0
\(7\) 1.97378 + 2.71668i 0.746021 + 1.02681i 0.998250 + 0.0591416i \(0.0188364\pi\)
−0.252229 + 0.967668i \(0.581164\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 3.27288 0.536907i 0.986810 0.161883i
\(12\) 0 0
\(13\) 2.94348 0.956394i 0.816374 0.265256i 0.129079 0.991634i \(-0.458798\pi\)
0.687295 + 0.726378i \(0.258798\pi\)
\(14\) −1.97378 + 2.71668i −0.527516 + 0.726064i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −0.169746 + 0.522426i −0.0411696 + 0.126707i −0.969529 0.244977i \(-0.921220\pi\)
0.928359 + 0.371684i \(0.121220\pi\)
\(18\) 0 0
\(19\) −1.98338 + 2.72988i −0.455018 + 0.626278i −0.973466 0.228831i \(-0.926510\pi\)
0.518448 + 0.855109i \(0.326510\pi\)
\(20\) 0.951057 0.309017i 0.212663 0.0690983i
\(21\) 0 0
\(22\) 1.52200 + 2.94678i 0.324492 + 0.628255i
\(23\) 3.45661i 0.720752i −0.932807 0.360376i \(-0.882648\pi\)
0.932807 0.360376i \(-0.117352\pi\)
\(24\) 0 0
\(25\) 0.809017 + 0.587785i 0.161803 + 0.117557i
\(26\) 1.81917 + 2.50387i 0.356768 + 0.491050i
\(27\) 0 0
\(28\) −3.19365 1.03768i −0.603543 0.196103i
\(29\) −0.129183 + 0.0938569i −0.0239887 + 0.0174288i −0.599715 0.800214i \(-0.704719\pi\)
0.575726 + 0.817642i \(0.304719\pi\)
\(30\) 0 0
\(31\) 3.08374 + 9.49078i 0.553857 + 1.70460i 0.698944 + 0.715176i \(0.253654\pi\)
−0.145088 + 0.989419i \(0.546346\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.549311 −0.0942061
\(35\) −1.03768 3.19365i −0.175400 0.539826i
\(36\) 0 0
\(37\) −3.95771 + 2.87544i −0.650643 + 0.472720i −0.863490 0.504366i \(-0.831726\pi\)
0.212847 + 0.977085i \(0.431726\pi\)
\(38\) −3.20917 1.04272i −0.520596 0.169152i
\(39\) 0 0
\(40\) 0.587785 + 0.809017i 0.0929370 + 0.127917i
\(41\) 0.817355 + 0.593843i 0.127649 + 0.0927427i 0.649778 0.760124i \(-0.274862\pi\)
−0.522129 + 0.852867i \(0.674862\pi\)
\(42\) 0 0
\(43\) 8.23066i 1.25516i 0.778551 + 0.627582i \(0.215955\pi\)
−0.778551 + 0.627582i \(0.784045\pi\)
\(44\) −2.33223 + 2.35812i −0.351597 + 0.355499i
\(45\) 0 0
\(46\) 3.28743 1.06815i 0.484705 0.157490i
\(47\) −2.87791 + 3.96110i −0.419786 + 0.577786i −0.965571 0.260139i \(-0.916232\pi\)
0.545785 + 0.837925i \(0.316232\pi\)
\(48\) 0 0
\(49\) −1.32141 + 4.06689i −0.188773 + 0.580985i
\(50\) −0.309017 + 0.951057i −0.0437016 + 0.134500i
\(51\) 0 0
\(52\) −1.81917 + 2.50387i −0.252273 + 0.347224i
\(53\) −2.18282 + 0.709241i −0.299833 + 0.0974218i −0.455070 0.890455i \(-0.650386\pi\)
0.155237 + 0.987877i \(0.450386\pi\)
\(54\) 0 0
\(55\) −3.27861 0.500746i −0.442087 0.0675206i
\(56\) 3.35800i 0.448732i
\(57\) 0 0
\(58\) −0.129183 0.0938569i −0.0169626 0.0123240i
\(59\) 5.88811 + 8.10429i 0.766566 + 1.05509i 0.996639 + 0.0819148i \(0.0261035\pi\)
−0.230073 + 0.973173i \(0.573896\pi\)
\(60\) 0 0
\(61\) 8.78757 + 2.85525i 1.12513 + 0.365578i 0.811724 0.584041i \(-0.198529\pi\)
0.313408 + 0.949618i \(0.398529\pi\)
\(62\) −8.07334 + 5.86563i −1.02532 + 0.744935i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −3.09496 −0.383882
\(66\) 0 0
\(67\) 2.23583 0.273151 0.136575 0.990630i \(-0.456390\pi\)
0.136575 + 0.990630i \(0.456390\pi\)
\(68\) −0.169746 0.522426i −0.0205848 0.0633534i
\(69\) 0 0
\(70\) 2.71668 1.97378i 0.324706 0.235912i
\(71\) −12.4922 4.05895i −1.48255 0.481709i −0.547674 0.836692i \(-0.684487\pi\)
−0.934873 + 0.354983i \(0.884487\pi\)
\(72\) 0 0
\(73\) −3.15954 4.34873i −0.369796 0.508980i 0.583050 0.812437i \(-0.301859\pi\)
−0.952845 + 0.303456i \(0.901859\pi\)
\(74\) −3.95771 2.87544i −0.460074 0.334263i
\(75\) 0 0
\(76\) 3.37432i 0.387061i
\(77\) 7.91856 + 7.83163i 0.902404 + 0.892497i
\(78\) 0 0
\(79\) 14.6412 4.75721i 1.64726 0.535228i 0.669119 0.743155i \(-0.266672\pi\)
0.978144 + 0.207927i \(0.0666716\pi\)
\(80\) −0.587785 + 0.809017i −0.0657164 + 0.0904508i
\(81\) 0 0
\(82\) −0.312202 + 0.960859i −0.0344769 + 0.106109i
\(83\) 2.13488 6.57048i 0.234333 0.721203i −0.762876 0.646545i \(-0.776213\pi\)
0.997209 0.0746585i \(-0.0237867\pi\)
\(84\) 0 0
\(85\) 0.322877 0.444402i 0.0350209 0.0482022i
\(86\) −7.82782 + 2.54341i −0.844096 + 0.274263i
\(87\) 0 0
\(88\) −2.96340 1.48938i −0.315899 0.158769i
\(89\) 1.34287i 0.142344i 0.997464 + 0.0711721i \(0.0226740\pi\)
−0.997464 + 0.0711721i \(0.977326\pi\)
\(90\) 0 0
\(91\) 8.40801 + 6.10878i 0.881399 + 0.640374i
\(92\) 2.03174 + 2.79645i 0.211824 + 0.291550i
\(93\) 0 0
\(94\) −4.65656 1.51301i −0.480287 0.156055i
\(95\) 2.72988 1.98338i 0.280080 0.203490i
\(96\) 0 0
\(97\) −1.71164 5.26787i −0.173790 0.534871i 0.825786 0.563984i \(-0.190732\pi\)
−0.999576 + 0.0291124i \(0.990732\pi\)
\(98\) −4.27619 −0.431960
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −5.07506 15.6194i −0.504987 1.55419i −0.800792 0.598942i \(-0.795588\pi\)
0.295805 0.955248i \(-0.404412\pi\)
\(102\) 0 0
\(103\) 1.50443 1.09303i 0.148236 0.107700i −0.511195 0.859465i \(-0.670797\pi\)
0.659431 + 0.751765i \(0.270797\pi\)
\(104\) −2.94348 0.956394i −0.288632 0.0937821i
\(105\) 0 0
\(106\) −1.34906 1.85682i −0.131032 0.180350i
\(107\) 6.29636 + 4.57457i 0.608692 + 0.442241i 0.848954 0.528468i \(-0.177233\pi\)
−0.240261 + 0.970708i \(0.577233\pi\)
\(108\) 0 0
\(109\) 1.45551i 0.139413i 0.997568 + 0.0697065i \(0.0222063\pi\)
−0.997568 + 0.0697065i \(0.977794\pi\)
\(110\) −0.536907 3.27288i −0.0511921 0.312057i
\(111\) 0 0
\(112\) 3.19365 1.03768i 0.301772 0.0980516i
\(113\) 3.77631 5.19764i 0.355245 0.488953i −0.593571 0.804782i \(-0.702282\pi\)
0.948816 + 0.315828i \(0.102282\pi\)
\(114\) 0 0
\(115\) −1.06815 + 3.28743i −0.0996055 + 0.306554i
\(116\) 0.0493435 0.151864i 0.00458143 0.0141002i
\(117\) 0 0
\(118\) −5.88811 + 8.10429i −0.542044 + 0.746060i
\(119\) −1.75431 + 0.570009i −0.160817 + 0.0522527i
\(120\) 0 0
\(121\) 10.4235 3.51446i 0.947587 0.319496i
\(122\) 9.23980i 0.836532i
\(123\) 0 0
\(124\) −8.07334 5.86563i −0.725008 0.526749i
\(125\) −0.587785 0.809017i −0.0525731 0.0723607i
\(126\) 0 0
\(127\) −16.4469 5.34391i −1.45942 0.474195i −0.531530 0.847040i \(-0.678383\pi\)
−0.927894 + 0.372844i \(0.878383\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 0 0
\(130\) −0.956394 2.94348i −0.0838813 0.258160i
\(131\) 2.63421 0.230152 0.115076 0.993357i \(-0.463289\pi\)
0.115076 + 0.993357i \(0.463289\pi\)
\(132\) 0 0
\(133\) −11.3310 −0.982521
\(134\) 0.690911 + 2.12641i 0.0596856 + 0.183693i
\(135\) 0 0
\(136\) 0.444402 0.322877i 0.0381072 0.0276865i
\(137\) −10.5401 3.42468i −0.900501 0.292591i −0.178057 0.984020i \(-0.556981\pi\)
−0.722444 + 0.691430i \(0.756981\pi\)
\(138\) 0 0
\(139\) −10.9908 15.1276i −0.932229 1.28310i −0.958984 0.283460i \(-0.908518\pi\)
0.0267554 0.999642i \(-0.491482\pi\)
\(140\) 2.71668 + 1.97378i 0.229602 + 0.166815i
\(141\) 0 0
\(142\) 13.1350i 1.10227i
\(143\) 9.12015 4.71053i 0.762665 0.393915i
\(144\) 0 0
\(145\) 0.151864 0.0493435i 0.0126116 0.00409776i
\(146\) 3.15954 4.34873i 0.261485 0.359903i
\(147\) 0 0
\(148\) 1.51171 4.65256i 0.124262 0.382438i
\(149\) −5.65044 + 17.3903i −0.462902 + 1.42467i 0.398700 + 0.917082i \(0.369462\pi\)
−0.861602 + 0.507585i \(0.830538\pi\)
\(150\) 0 0
\(151\) 8.54451 11.7605i 0.695342 0.957056i −0.304648 0.952465i \(-0.598539\pi\)
0.999989 0.00459093i \(-0.00146134\pi\)
\(152\) 3.20917 1.04272i 0.260298 0.0845760i
\(153\) 0 0
\(154\) −5.00135 + 9.95111i −0.403020 + 0.801883i
\(155\) 9.97920i 0.801549i
\(156\) 0 0
\(157\) 1.33771 + 0.971902i 0.106761 + 0.0775662i 0.639885 0.768471i \(-0.278982\pi\)
−0.533124 + 0.846037i \(0.678982\pi\)
\(158\) 9.04876 + 12.4545i 0.719881 + 0.990831i
\(159\) 0 0
\(160\) −0.951057 0.309017i −0.0751876 0.0244299i
\(161\) 9.39050 6.82260i 0.740075 0.537696i
\(162\) 0 0
\(163\) −1.37434 4.22980i −0.107647 0.331303i 0.882696 0.469945i \(-0.155726\pi\)
−0.990343 + 0.138642i \(0.955726\pi\)
\(164\) −1.01031 −0.0788917
\(165\) 0 0
\(166\) 6.90861 0.536212
\(167\) −2.07344 6.38139i −0.160447 0.493807i 0.838225 0.545325i \(-0.183594\pi\)
−0.998672 + 0.0515186i \(0.983594\pi\)
\(168\) 0 0
\(169\) −2.76785 + 2.01096i −0.212912 + 0.154689i
\(170\) 0.522426 + 0.169746i 0.0400682 + 0.0130190i
\(171\) 0 0
\(172\) −4.83786 6.65874i −0.368883 0.507724i
\(173\) 12.6840 + 9.21550i 0.964350 + 0.700641i 0.954157 0.299307i \(-0.0967554\pi\)
0.0101931 + 0.999948i \(0.496755\pi\)
\(174\) 0 0
\(175\) 3.35800i 0.253841i
\(176\) 0.500746 3.27861i 0.0377452 0.247134i
\(177\) 0 0
\(178\) −1.27715 + 0.414971i −0.0957263 + 0.0311034i
\(179\) 11.2192 15.4419i 0.838561 1.15418i −0.147708 0.989031i \(-0.547190\pi\)
0.986269 0.165149i \(-0.0528105\pi\)
\(180\) 0 0
\(181\) 1.02360 3.15031i 0.0760835 0.234161i −0.905781 0.423747i \(-0.860715\pi\)
0.981864 + 0.189586i \(0.0607146\pi\)
\(182\) −3.21157 + 9.88421i −0.238058 + 0.732666i
\(183\) 0 0
\(184\) −2.03174 + 2.79645i −0.149782 + 0.206157i
\(185\) 4.65256 1.51171i 0.342063 0.111143i
\(186\) 0 0
\(187\) −0.275065 + 1.80097i −0.0201148 + 0.131700i
\(188\) 4.89619i 0.357092i
\(189\) 0 0
\(190\) 2.72988 + 1.98338i 0.198047 + 0.143889i
\(191\) −10.6722 14.6890i −0.772212 1.06286i −0.996099 0.0882433i \(-0.971875\pi\)
0.223887 0.974615i \(-0.428125\pi\)
\(192\) 0 0
\(193\) −24.3515 7.91228i −1.75286 0.569538i −0.756437 0.654067i \(-0.773062\pi\)
−0.996421 + 0.0845285i \(0.973062\pi\)
\(194\) 4.48112 3.25572i 0.321726 0.233747i
\(195\) 0 0
\(196\) −1.32141 4.06689i −0.0943867 0.290492i
\(197\) 2.09997 0.149617 0.0748084 0.997198i \(-0.476165\pi\)
0.0748084 + 0.997198i \(0.476165\pi\)
\(198\) 0 0
\(199\) 16.7840 1.18978 0.594892 0.803805i \(-0.297195\pi\)
0.594892 + 0.803805i \(0.297195\pi\)
\(200\) −0.309017 0.951057i −0.0218508 0.0672499i
\(201\) 0 0
\(202\) 13.2867 9.65333i 0.934847 0.679206i
\(203\) −0.509959 0.165696i −0.0357921 0.0116296i
\(204\) 0 0
\(205\) −0.593843 0.817355i −0.0414758 0.0570866i
\(206\) 1.50443 + 1.09303i 0.104819 + 0.0761552i
\(207\) 0 0
\(208\) 3.09496i 0.214597i
\(209\) −5.02566 + 9.99947i −0.347632 + 0.691677i
\(210\) 0 0
\(211\) 18.5494 6.02706i 1.27699 0.414920i 0.409472 0.912323i \(-0.365713\pi\)
0.867520 + 0.497403i \(0.165713\pi\)
\(212\) 1.34906 1.85682i 0.0926536 0.127527i
\(213\) 0 0
\(214\) −2.40500 + 7.40182i −0.164402 + 0.505978i
\(215\) 2.54341 7.82782i 0.173459 0.533853i
\(216\) 0 0
\(217\) −19.6968 + 27.1103i −1.33711 + 1.84037i
\(218\) −1.38428 + 0.449779i −0.0937550 + 0.0304629i
\(219\) 0 0
\(220\) 2.94678 1.52200i 0.198672 0.102613i
\(221\) 1.70009i 0.114361i
\(222\) 0 0
\(223\) 19.1299 + 13.8987i 1.28104 + 0.930726i 0.999584 0.0288491i \(-0.00918422\pi\)
0.281451 + 0.959576i \(0.409184\pi\)
\(224\) 1.97378 + 2.71668i 0.131879 + 0.181516i
\(225\) 0 0
\(226\) 6.11020 + 1.98532i 0.406444 + 0.132062i
\(227\) 7.39873 5.37549i 0.491071 0.356784i −0.314525 0.949249i \(-0.601845\pi\)
0.805596 + 0.592465i \(0.201845\pi\)
\(228\) 0 0
\(229\) 0.407956 + 1.25556i 0.0269585 + 0.0829698i 0.963631 0.267238i \(-0.0861110\pi\)
−0.936672 + 0.350208i \(0.886111\pi\)
\(230\) −3.45661 −0.227922
\(231\) 0 0
\(232\) 0.159679 0.0104834
\(233\) 8.96716 + 27.5981i 0.587458 + 1.80801i 0.589166 + 0.808012i \(0.299456\pi\)
−0.00170824 + 0.999999i \(0.500544\pi\)
\(234\) 0 0
\(235\) 3.96110 2.87791i 0.258394 0.187734i
\(236\) −9.52716 3.09556i −0.620165 0.201504i
\(237\) 0 0
\(238\) −1.08422 1.49230i −0.0702797 0.0967317i
\(239\) 11.8944 + 8.64180i 0.769386 + 0.558991i 0.901775 0.432206i \(-0.142265\pi\)
−0.132389 + 0.991198i \(0.542265\pi\)
\(240\) 0 0
\(241\) 18.6117i 1.19888i −0.800418 0.599442i \(-0.795389\pi\)
0.800418 0.599442i \(-0.204611\pi\)
\(242\) 6.56348 + 8.82727i 0.421916 + 0.567439i
\(243\) 0 0
\(244\) −8.78757 + 2.85525i −0.562566 + 0.182789i
\(245\) 2.51348 3.45951i 0.160580 0.221020i
\(246\) 0 0
\(247\) −3.22718 + 9.93224i −0.205341 + 0.631973i
\(248\) 3.08374 9.49078i 0.195818 0.602665i
\(249\) 0 0
\(250\) 0.587785 0.809017i 0.0371748 0.0511667i
\(251\) 12.5734 4.08536i 0.793629 0.257866i 0.115980 0.993252i \(-0.462999\pi\)
0.677648 + 0.735386i \(0.262999\pi\)
\(252\) 0 0
\(253\) −1.85588 11.3130i −0.116678 0.711245i
\(254\) 17.2933i 1.08508i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 14.2124 + 19.5617i 0.886547 + 1.22023i 0.974564 + 0.224108i \(0.0719469\pi\)
−0.0880173 + 0.996119i \(0.528053\pi\)
\(258\) 0 0
\(259\) −15.6233 5.07632i −0.970786 0.315427i
\(260\) 2.50387 1.81917i 0.155284 0.112820i
\(261\) 0 0
\(262\) 0.814017 + 2.50529i 0.0502901 + 0.154777i
\(263\) −22.7988 −1.40583 −0.702916 0.711273i \(-0.748119\pi\)
−0.702916 + 0.711273i \(0.748119\pi\)
\(264\) 0 0
\(265\) 2.29515 0.140990
\(266\) −3.50147 10.7764i −0.214689 0.660744i
\(267\) 0 0
\(268\) −1.80883 + 1.31419i −0.110492 + 0.0802770i
\(269\) 11.8408 + 3.84730i 0.721945 + 0.234574i 0.646866 0.762604i \(-0.276079\pi\)
0.0750785 + 0.997178i \(0.476079\pi\)
\(270\) 0 0
\(271\) −15.7854 21.7267i −0.958895 1.31981i −0.947461 0.319871i \(-0.896361\pi\)
−0.0114334 0.999935i \(-0.503639\pi\)
\(272\) 0.444402 + 0.322877i 0.0269458 + 0.0195773i
\(273\) 0 0
\(274\) 11.0825i 0.669519i
\(275\) 2.96340 + 1.48938i 0.178700 + 0.0898132i
\(276\) 0 0
\(277\) −26.9192 + 8.74659i −1.61742 + 0.525532i −0.971331 0.237731i \(-0.923596\pi\)
−0.646089 + 0.763262i \(0.723596\pi\)
\(278\) 10.9908 15.1276i 0.659185 0.907290i
\(279\) 0 0
\(280\) −1.03768 + 3.19365i −0.0620132 + 0.190857i
\(281\) 1.44479 4.44659i 0.0861887 0.265261i −0.898669 0.438628i \(-0.855465\pi\)
0.984857 + 0.173367i \(0.0554646\pi\)
\(282\) 0 0
\(283\) −8.06170 + 11.0960i −0.479218 + 0.659587i −0.978354 0.206936i \(-0.933651\pi\)
0.499136 + 0.866524i \(0.333651\pi\)
\(284\) 12.4922 4.05895i 0.741274 0.240854i
\(285\) 0 0
\(286\) 7.29826 + 7.21814i 0.431555 + 0.426818i
\(287\) 3.39261i 0.200260i
\(288\) 0 0
\(289\) 13.5092 + 9.81499i 0.794657 + 0.577352i
\(290\) 0.0938569 + 0.129183i 0.00551147 + 0.00758589i
\(291\) 0 0
\(292\) 5.11224 + 1.66107i 0.299171 + 0.0972066i
\(293\) −3.47554 + 2.52513i −0.203043 + 0.147520i −0.684661 0.728862i \(-0.740050\pi\)
0.481617 + 0.876382i \(0.340050\pi\)
\(294\) 0 0
\(295\) −3.09556 9.52716i −0.180231 0.554693i
\(296\) 4.89199 0.284341
\(297\) 0 0
\(298\) −18.2852 −1.05923
\(299\) −3.30588 10.1744i −0.191184 0.588403i
\(300\) 0 0
\(301\) −22.3601 + 16.2456i −1.28881 + 0.936378i
\(302\) 13.8253 + 4.49211i 0.795557 + 0.258492i
\(303\) 0 0
\(304\) 1.98338 + 2.72988i 0.113754 + 0.156570i
\(305\) −7.47515 5.43102i −0.428026 0.310979i
\(306\) 0 0
\(307\) 21.2828i 1.21467i −0.794444 0.607337i \(-0.792238\pi\)
0.794444 0.607337i \(-0.207762\pi\)
\(308\) −11.0096 1.68151i −0.627328 0.0958128i
\(309\) 0 0
\(310\) 9.49078 3.08374i 0.539040 0.175145i
\(311\) 18.3415 25.2449i 1.04005 1.43151i 0.142926 0.989733i \(-0.454349\pi\)
0.897126 0.441775i \(-0.145651\pi\)
\(312\) 0 0
\(313\) 9.66847 29.7565i 0.546494 1.68194i −0.170916 0.985286i \(-0.554673\pi\)
0.717410 0.696651i \(-0.245327\pi\)
\(314\) −0.510959 + 1.57257i −0.0288351 + 0.0887453i
\(315\) 0 0
\(316\) −9.04876 + 12.4545i −0.509032 + 0.700623i
\(317\) −32.3173 + 10.5005i −1.81512 + 0.589769i −0.815178 + 0.579211i \(0.803361\pi\)
−0.999944 + 0.0105576i \(0.996639\pi\)
\(318\) 0 0
\(319\) −0.372408 + 0.376542i −0.0208508 + 0.0210823i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 9.39050 + 6.82260i 0.523312 + 0.380208i
\(323\) −1.08949 1.49956i −0.0606209 0.0834375i
\(324\) 0 0
\(325\) 2.94348 + 0.956394i 0.163275 + 0.0530512i
\(326\) 3.59808 2.61416i 0.199279 0.144785i
\(327\) 0 0
\(328\) −0.312202 0.960859i −0.0172385 0.0530545i
\(329\) −16.4414 −0.906445
\(330\) 0 0
\(331\) 18.0703 0.993235 0.496618 0.867969i \(-0.334575\pi\)
0.496618 + 0.867969i \(0.334575\pi\)
\(332\) 2.13488 + 6.57048i 0.117167 + 0.360602i
\(333\) 0 0
\(334\) 5.42833 3.94391i 0.297025 0.215801i
\(335\) −2.12641 0.690911i −0.116178 0.0377485i
\(336\) 0 0
\(337\) −9.56336 13.1628i −0.520949 0.717025i 0.464768 0.885432i \(-0.346138\pi\)
−0.985718 + 0.168407i \(0.946138\pi\)
\(338\) −2.76785 2.01096i −0.150551 0.109382i
\(339\) 0 0
\(340\) 0.549311i 0.0297906i
\(341\) 15.1884 + 29.4065i 0.822497 + 1.59245i
\(342\) 0 0
\(343\) 8.69891 2.82645i 0.469697 0.152614i
\(344\) 4.83786 6.65874i 0.260840 0.359015i
\(345\) 0 0
\(346\) −4.84487 + 14.9110i −0.260462 + 0.801620i
\(347\) 1.31675 4.05253i 0.0706867 0.217551i −0.909472 0.415765i \(-0.863514\pi\)
0.980159 + 0.198214i \(0.0635140\pi\)
\(348\) 0 0
\(349\) 5.48459 7.54889i 0.293583 0.404083i −0.636591 0.771202i \(-0.719656\pi\)
0.930174 + 0.367119i \(0.119656\pi\)
\(350\) −3.19365 + 1.03768i −0.170708 + 0.0554663i
\(351\) 0 0
\(352\) 3.27288 0.536907i 0.174445 0.0286172i
\(353\) 31.1139i 1.65603i −0.560708 0.828013i \(-0.689471\pi\)
0.560708 0.828013i \(-0.310529\pi\)
\(354\) 0 0
\(355\) 10.6265 + 7.72058i 0.563994 + 0.409766i
\(356\) −0.789321 1.08641i −0.0418339 0.0575795i
\(357\) 0 0
\(358\) 18.1530 + 5.89827i 0.959417 + 0.311733i
\(359\) 5.66731 4.11754i 0.299109 0.217315i −0.428100 0.903731i \(-0.640817\pi\)
0.727209 + 0.686416i \(0.240817\pi\)
\(360\) 0 0
\(361\) 2.35284 + 7.24130i 0.123834 + 0.381121i
\(362\) 3.31244 0.174098
\(363\) 0 0
\(364\) −10.3929 −0.544734
\(365\) 1.66107 + 5.11224i 0.0869442 + 0.267587i
\(366\) 0 0
\(367\) −10.3012 + 7.48424i −0.537717 + 0.390674i −0.823236 0.567699i \(-0.807834\pi\)
0.285520 + 0.958373i \(0.407834\pi\)
\(368\) −3.28743 1.06815i −0.171369 0.0556812i
\(369\) 0 0
\(370\) 2.87544 + 3.95771i 0.149487 + 0.205751i
\(371\) −6.23520 4.53014i −0.323716 0.235193i
\(372\) 0 0
\(373\) 3.89853i 0.201858i −0.994894 0.100929i \(-0.967818\pi\)
0.994894 0.100929i \(-0.0321815\pi\)
\(374\) −1.79783 + 0.294929i −0.0929635 + 0.0152504i
\(375\) 0 0
\(376\) 4.65656 1.51301i 0.240144 0.0780274i
\(377\) −0.290483 + 0.399816i −0.0149606 + 0.0205915i
\(378\) 0 0
\(379\) 3.76119 11.5758i 0.193200 0.594607i −0.806793 0.590834i \(-0.798799\pi\)
0.999993 0.00377326i \(-0.00120107\pi\)
\(380\) −1.04272 + 3.20917i −0.0534906 + 0.164627i
\(381\) 0 0
\(382\) 10.6722 14.6890i 0.546036 0.751554i
\(383\) −26.9883 + 8.76903i −1.37904 + 0.448077i −0.902353 0.430998i \(-0.858162\pi\)
−0.476685 + 0.879074i \(0.658162\pi\)
\(384\) 0 0
\(385\) −5.11089 9.89529i −0.260475 0.504311i
\(386\) 25.6047i 1.30324i
\(387\) 0 0
\(388\) 4.48112 + 3.25572i 0.227494 + 0.165284i
\(389\) 15.3126 + 21.0759i 0.776377 + 1.06859i 0.995672 + 0.0929330i \(0.0296242\pi\)
−0.219295 + 0.975659i \(0.570376\pi\)
\(390\) 0 0
\(391\) 1.80582 + 0.586747i 0.0913243 + 0.0296731i
\(392\) 3.45951 2.51348i 0.174731 0.126950i
\(393\) 0 0
\(394\) 0.648927 + 1.99719i 0.0326925 + 0.100617i
\(395\) −15.3947 −0.774590
\(396\) 0 0
\(397\) −15.9672 −0.801371 −0.400686 0.916216i \(-0.631228\pi\)
−0.400686 + 0.916216i \(0.631228\pi\)
\(398\) 5.18653 + 15.9625i 0.259977 + 0.800128i
\(399\) 0 0
\(400\) 0.809017 0.587785i 0.0404508 0.0293893i
\(401\) −15.3675 4.99321i −0.767418 0.249349i −0.100958 0.994891i \(-0.532191\pi\)
−0.666459 + 0.745542i \(0.732191\pi\)
\(402\) 0 0
\(403\) 18.1539 + 24.9866i 0.904308 + 1.24467i
\(404\) 13.2867 + 9.65333i 0.661037 + 0.480271i
\(405\) 0 0
\(406\) 0.536202i 0.0266113i
\(407\) −11.4092 + 11.5359i −0.565535 + 0.571813i
\(408\) 0 0
\(409\) −12.1861 + 3.95950i −0.602563 + 0.195785i −0.594383 0.804182i \(-0.702604\pi\)
−0.00817997 + 0.999967i \(0.502604\pi\)
\(410\) 0.593843 0.817355i 0.0293278 0.0403663i
\(411\) 0 0
\(412\) −0.574641 + 1.76856i −0.0283105 + 0.0871309i
\(413\) −10.3949 + 31.9922i −0.511500 + 1.57423i
\(414\) 0 0
\(415\) −4.06078 + 5.58918i −0.199336 + 0.274362i
\(416\) 2.94348 0.956394i 0.144316 0.0468911i
\(417\) 0 0
\(418\) −11.0631 1.68968i −0.541112 0.0826449i
\(419\) 17.1588i 0.838260i 0.907926 + 0.419130i \(0.137665\pi\)
−0.907926 + 0.419130i \(0.862335\pi\)
\(420\) 0 0
\(421\) 14.0557 + 10.2121i 0.685033 + 0.497706i 0.875024 0.484080i \(-0.160846\pi\)
−0.189991 + 0.981786i \(0.560846\pi\)
\(422\) 11.4641 + 15.7790i 0.558066 + 0.768112i
\(423\) 0 0
\(424\) 2.18282 + 0.709241i 0.106007 + 0.0344438i
\(425\) −0.444402 + 0.322877i −0.0215567 + 0.0156618i
\(426\) 0 0
\(427\) 9.58795 + 29.5087i 0.463993 + 1.42803i
\(428\) −7.78273 −0.376192
\(429\) 0 0
\(430\) 8.23066 0.396918
\(431\) 2.40515 + 7.40230i 0.115852 + 0.356556i 0.992124 0.125261i \(-0.0399768\pi\)
−0.876272 + 0.481817i \(0.839977\pi\)
\(432\) 0 0
\(433\) 29.6830 21.5659i 1.42647 1.03639i 0.435812 0.900038i \(-0.356461\pi\)
0.990660 0.136354i \(-0.0435386\pi\)
\(434\) −31.8701 10.3552i −1.52981 0.497066i
\(435\) 0 0
\(436\) −0.855530 1.17754i −0.0409725 0.0563937i
\(437\) 9.43613 + 6.85575i 0.451391 + 0.327955i
\(438\) 0 0
\(439\) 7.96864i 0.380322i −0.981753 0.190161i \(-0.939099\pi\)
0.981753 0.190161i \(-0.0609010\pi\)
\(440\) 2.35812 + 2.33223i 0.112419 + 0.111185i
\(441\) 0 0
\(442\) −1.61688 + 0.525358i −0.0769074 + 0.0249887i
\(443\) 4.64628 6.39505i 0.220751 0.303838i −0.684250 0.729248i \(-0.739870\pi\)
0.905001 + 0.425410i \(0.139870\pi\)
\(444\) 0 0
\(445\) 0.414971 1.27715i 0.0196715 0.0605426i
\(446\) −7.30698 + 22.4886i −0.345996 + 1.06487i
\(447\) 0 0
\(448\) −1.97378 + 2.71668i −0.0932526 + 0.128351i
\(449\) −16.6643 + 5.41455i −0.786435 + 0.255528i −0.674585 0.738197i \(-0.735678\pi\)
−0.111850 + 0.993725i \(0.535678\pi\)
\(450\) 0 0
\(451\) 2.99394 + 1.50473i 0.140979 + 0.0708551i
\(452\) 6.42464i 0.302190i
\(453\) 0 0
\(454\) 7.39873 + 5.37549i 0.347240 + 0.252284i
\(455\) −6.10878 8.40801i −0.286384 0.394174i
\(456\) 0 0
\(457\) −8.23587 2.67599i −0.385258 0.125178i 0.109983 0.993933i \(-0.464920\pi\)
−0.495241 + 0.868756i \(0.664920\pi\)
\(458\) −1.06804 + 0.775979i −0.0499064 + 0.0362591i
\(459\) 0 0
\(460\) −1.06815 3.28743i −0.0498027 0.153277i
\(461\) −31.4941 −1.46683 −0.733413 0.679783i \(-0.762074\pi\)
−0.733413 + 0.679783i \(0.762074\pi\)
\(462\) 0 0
\(463\) −0.397627 −0.0184793 −0.00923965 0.999957i \(-0.502941\pi\)
−0.00923965 + 0.999957i \(0.502941\pi\)
\(464\) 0.0493435 + 0.151864i 0.00229071 + 0.00705010i
\(465\) 0 0
\(466\) −23.4763 + 17.0566i −1.08752 + 0.790129i
\(467\) −11.0418 3.58771i −0.510956 0.166020i 0.0421811 0.999110i \(-0.486569\pi\)
−0.553137 + 0.833090i \(0.686569\pi\)
\(468\) 0 0
\(469\) 4.41306 + 6.07405i 0.203776 + 0.280474i
\(470\) 3.96110 + 2.87791i 0.182712 + 0.132748i
\(471\) 0 0
\(472\) 10.0174i 0.461090i
\(473\) 4.41910 + 26.9379i 0.203190 + 1.23861i
\(474\) 0 0
\(475\) −3.20917 + 1.04272i −0.147247 + 0.0478434i
\(476\) 1.08422 1.49230i 0.0496952 0.0683996i
\(477\) 0 0
\(478\) −4.54326 + 13.9827i −0.207804 + 0.639555i
\(479\) 3.50361 10.7830i 0.160084 0.492687i −0.838557 0.544814i \(-0.816600\pi\)
0.998640 + 0.0521270i \(0.0166001\pi\)
\(480\) 0 0
\(481\) −8.89936 + 12.2489i −0.405776 + 0.558503i
\(482\) 17.7008 5.75133i 0.806248 0.261966i
\(483\) 0 0
\(484\) −6.36701 + 8.97002i −0.289410 + 0.407728i
\(485\) 5.53897i 0.251512i
\(486\) 0 0
\(487\) −16.3926 11.9099i −0.742820 0.539690i 0.150773 0.988568i \(-0.451824\pi\)
−0.893593 + 0.448878i \(0.851824\pi\)
\(488\) −5.43102 7.47515i −0.245851 0.338384i
\(489\) 0 0
\(490\) 4.06689 + 1.32141i 0.183724 + 0.0596954i
\(491\) −10.0498 + 7.30162i −0.453542 + 0.329518i −0.790993 0.611826i \(-0.790435\pi\)
0.337451 + 0.941343i \(0.390435\pi\)
\(492\) 0 0
\(493\) −0.0271049 0.0834204i −0.00122074 0.00375707i
\(494\) −10.4434 −0.469870
\(495\) 0 0
\(496\) 9.97920 0.448079
\(497\) −13.6300 41.9487i −0.611388 1.88166i
\(498\) 0 0
\(499\) 4.55484 3.30929i 0.203903 0.148144i −0.481148 0.876639i \(-0.659780\pi\)
0.685051 + 0.728495i \(0.259780\pi\)
\(500\) 0.951057 + 0.309017i 0.0425325 + 0.0138197i
\(501\) 0 0
\(502\) 7.77081 + 10.6956i 0.346828 + 0.477368i
\(503\) 5.60339 + 4.07110i 0.249843 + 0.181521i 0.705657 0.708554i \(-0.250652\pi\)
−0.455814 + 0.890075i \(0.650652\pi\)
\(504\) 0 0
\(505\) 16.4232i 0.730824i
\(506\) 10.1859 5.26097i 0.452816 0.233878i
\(507\) 0 0
\(508\) 16.4469 5.34391i 0.729712 0.237098i
\(509\) −9.58532 + 13.1931i −0.424862 + 0.584772i −0.966764 0.255669i \(-0.917704\pi\)
0.541902 + 0.840441i \(0.317704\pi\)
\(510\) 0 0
\(511\) 5.57787 17.1669i 0.246750 0.759419i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 0 0
\(514\) −14.2124 + 19.5617i −0.626883 + 0.862831i
\(515\) −1.76856 + 0.574641i −0.0779323 + 0.0253217i
\(516\) 0 0
\(517\) −7.29230 + 14.5094i −0.320715 + 0.638122i
\(518\) 16.4273i 0.721775i
\(519\) 0 0
\(520\) 2.50387 + 1.81917i 0.109802 + 0.0797758i
\(521\) −19.0794 26.2606i −0.835885 1.15050i −0.986799 0.161950i \(-0.948222\pi\)
0.150914 0.988547i \(-0.451778\pi\)
\(522\) 0 0
\(523\) −8.97577 2.91640i −0.392483 0.127525i 0.106126 0.994353i \(-0.466155\pi\)
−0.498608 + 0.866827i \(0.666155\pi\)
\(524\) −2.13112 + 1.54835i −0.0930986 + 0.0676401i
\(525\) 0 0
\(526\) −7.04520 21.6829i −0.307185 0.945419i
\(527\) −5.48169 −0.238786
\(528\) 0 0
\(529\) 11.0519 0.480516
\(530\) 0.709241 + 2.18282i 0.0308075 + 0.0948157i
\(531\) 0 0
\(532\) 9.16696 6.66019i 0.397438 0.288756i
\(533\) 2.97381 + 0.966251i 0.128810 + 0.0418530i
\(534\) 0 0
\(535\) −4.57457 6.29636i −0.197776 0.272215i
\(536\) −1.80883 1.31419i −0.0781295 0.0567644i
\(537\) 0 0
\(538\) 12.4501i 0.536763i
\(539\) −2.14128 + 14.0199i −0.0922316 + 0.603881i
\(540\) 0 0
\(541\) −17.0526 + 5.54071i −0.733147 + 0.238214i −0.651714 0.758465i \(-0.725950\pi\)
−0.0814331 + 0.996679i \(0.525950\pi\)
\(542\) 15.7854 21.7267i 0.678041 0.933243i
\(543\) 0 0
\(544\) −0.169746 + 0.522426i −0.00727782 + 0.0223988i
\(545\) 0.449779 1.38428i 0.0192664 0.0592959i
\(546\) 0 0
\(547\) −10.7868 + 14.8468i −0.461211 + 0.634802i −0.974759 0.223258i \(-0.928331\pi\)
0.513549 + 0.858061i \(0.328331\pi\)
\(548\) 10.5401 3.42468i 0.450251 0.146295i
\(549\) 0 0
\(550\) −0.500746 + 3.27861i −0.0213519 + 0.139800i
\(551\) 0.538808i 0.0229540i
\(552\) 0 0
\(553\) 41.8224 + 30.3858i 1.77847 + 1.29213i
\(554\) −16.6370 22.8989i −0.706838 0.972880i
\(555\) 0 0
\(556\) 17.7835 + 5.77821i 0.754189 + 0.245051i
\(557\) −35.9279 + 26.1032i −1.52232 + 1.10603i −0.561990 + 0.827144i \(0.689964\pi\)
−0.960325 + 0.278883i \(0.910036\pi\)
\(558\) 0 0
\(559\) 7.87175 + 24.2268i 0.332940 + 1.02468i
\(560\) −3.35800 −0.141902
\(561\) 0 0
\(562\) 4.67542 0.197221
\(563\) 3.23085 + 9.94354i 0.136164 + 0.419070i 0.995769 0.0918887i \(-0.0292904\pi\)
−0.859605 + 0.510959i \(0.829290\pi\)
\(564\) 0 0
\(565\) −5.19764 + 3.77631i −0.218666 + 0.158870i
\(566\) −13.0441 4.23829i −0.548285 0.178148i
\(567\) 0 0
\(568\) 7.72058 + 10.6265i 0.323948 + 0.445877i
\(569\) 0.0789397 + 0.0573530i 0.00330932 + 0.00240436i 0.589439 0.807813i \(-0.299349\pi\)
−0.586129 + 0.810217i \(0.699349\pi\)
\(570\) 0 0
\(571\) 2.09993i 0.0878795i 0.999034 + 0.0439397i \(0.0139910\pi\)
−0.999034 + 0.0439397i \(0.986009\pi\)
\(572\) −4.60957 + 9.17159i −0.192736 + 0.383483i
\(573\) 0 0
\(574\) −3.22657 + 1.04837i −0.134674 + 0.0437583i
\(575\) 2.03174 2.79645i 0.0847295 0.116620i
\(576\) 0 0
\(577\) 11.3441 34.9136i 0.472262 1.45347i −0.377352 0.926070i \(-0.623165\pi\)
0.849614 0.527404i \(-0.176835\pi\)
\(578\) −5.16005 + 15.8810i −0.214630 + 0.660562i
\(579\) 0 0
\(580\) −0.0938569 + 0.129183i −0.00389720 + 0.00536403i
\(581\) 22.0637 7.16892i 0.915356 0.297417i
\(582\) 0 0
\(583\) −6.76331 + 3.49323i −0.280108 + 0.144675i
\(584\) 5.37533i 0.222433i
\(585\) 0 0
\(586\) −3.47554 2.52513i −0.143573 0.104312i
\(587\) −2.79081 3.84122i −0.115189 0.158544i 0.747529 0.664229i \(-0.231240\pi\)
−0.862718 + 0.505685i \(0.831240\pi\)
\(588\) 0 0
\(589\) −32.0250 10.4055i −1.31957 0.428753i
\(590\) 8.10429 5.88811i 0.333648 0.242410i
\(591\) 0 0
\(592\) 1.51171 + 4.65256i 0.0621309 + 0.191219i
\(593\) −25.6824 −1.05465 −0.527326 0.849663i \(-0.676805\pi\)
−0.527326 + 0.849663i \(0.676805\pi\)
\(594\) 0 0
\(595\) 1.84459 0.0756208
\(596\) −5.65044 17.3903i −0.231451 0.712333i
\(597\) 0 0
\(598\) 8.65490 6.28815i 0.353925 0.257142i
\(599\) −22.2810 7.23954i −0.910378 0.295800i −0.183864 0.982952i \(-0.558861\pi\)
−0.726514 + 0.687152i \(0.758861\pi\)
\(600\) 0 0
\(601\) −14.0746 19.3720i −0.574115 0.790202i 0.418919 0.908023i \(-0.362409\pi\)
−0.993035 + 0.117821i \(0.962409\pi\)
\(602\) −22.3601 16.2456i −0.911329 0.662119i
\(603\) 0 0
\(604\) 14.5368i 0.591493i
\(605\) −10.9993 + 0.121424i −0.447186 + 0.00493659i
\(606\) 0 0
\(607\) 20.2358 6.57500i 0.821344 0.266871i 0.131949 0.991256i \(-0.457876\pi\)
0.689395 + 0.724385i \(0.257876\pi\)
\(608\) −1.98338 + 2.72988i −0.0804365 + 0.110711i
\(609\) 0 0
\(610\) 2.85525 8.78757i 0.115606 0.355798i
\(611\) −4.68269 + 14.4118i −0.189441 + 0.583040i
\(612\) 0 0
\(613\) −0.755360 + 1.03966i −0.0305087 + 0.0419916i −0.823999 0.566591i \(-0.808262\pi\)
0.793490 + 0.608583i \(0.208262\pi\)
\(614\) 20.2411 6.57675i 0.816866 0.265416i
\(615\) 0 0
\(616\) −1.80293 10.9903i −0.0726423 0.442813i
\(617\) 17.1621i 0.690918i −0.938434 0.345459i \(-0.887723\pi\)
0.938434 0.345459i \(-0.112277\pi\)
\(618\) 0 0
\(619\) 7.85490 + 5.70692i 0.315715 + 0.229381i 0.734345 0.678776i \(-0.237489\pi\)
−0.418630 + 0.908157i \(0.637489\pi\)
\(620\) 5.86563 + 8.07334i 0.235569 + 0.324233i
\(621\) 0 0
\(622\) 29.6772 + 9.64270i 1.18995 + 0.386637i
\(623\) −3.64816 + 2.65054i −0.146160 + 0.106192i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 31.2878 1.25051
\(627\) 0 0
\(628\) −1.65350 −0.0659817
\(629\) −0.830398 2.55570i −0.0331102 0.101903i
\(630\) 0 0
\(631\) −15.7594 + 11.4499i −0.627373 + 0.455813i −0.855489 0.517821i \(-0.826743\pi\)
0.228116 + 0.973634i \(0.426743\pi\)
\(632\) −14.6412 4.75721i −0.582396 0.189232i
\(633\) 0 0
\(634\) −19.9732 27.4908i −0.793237 1.09180i
\(635\) 13.9905 + 10.1647i 0.555198 + 0.403375i
\(636\) 0 0
\(637\) 13.2346i 0.524374i
\(638\) −0.473193 0.237823i −0.0187339 0.00941551i
\(639\) 0 0
\(640\) 0.951057 0.309017i 0.0375938 0.0122150i
\(641\) −19.8968 + 27.3856i −0.785875 + 1.08166i 0.208734 + 0.977972i \(0.433066\pi\)
−0.994609 + 0.103692i \(0.966934\pi\)
\(642\) 0 0
\(643\) −8.02179 + 24.6885i −0.316349 + 0.973621i 0.658847 + 0.752277i \(0.271044\pi\)
−0.975196 + 0.221344i \(0.928956\pi\)
\(644\) −3.58685 + 11.0392i −0.141342 + 0.435005i
\(645\) 0 0
\(646\) 1.08949 1.49956i 0.0428654 0.0589992i
\(647\) 3.08581 1.00264i 0.121316 0.0394178i −0.247730 0.968829i \(-0.579685\pi\)
0.369046 + 0.929411i \(0.379685\pi\)
\(648\) 0 0
\(649\) 23.6223 + 23.3630i 0.927257 + 0.917077i
\(650\) 3.09496i 0.121394i
\(651\) 0 0
\(652\) 3.59808 + 2.61416i 0.140912 + 0.102378i
\(653\) 26.6424 + 36.6701i 1.04260 + 1.43501i 0.895054 + 0.445958i \(0.147137\pi\)
0.147544 + 0.989055i \(0.452863\pi\)
\(654\) 0 0
\(655\) −2.50529 0.814017i −0.0978897 0.0318063i
\(656\) 0.817355 0.593843i 0.0319124 0.0231857i
\(657\) 0 0
\(658\) −5.08068 15.6367i −0.198066 0.609583i
\(659\) −4.94893 −0.192783 −0.0963916 0.995343i \(-0.530730\pi\)
−0.0963916 + 0.995343i \(0.530730\pi\)
\(660\) 0 0
\(661\) −26.4352 −1.02821 −0.514105 0.857727i \(-0.671876\pi\)
−0.514105 + 0.857727i \(0.671876\pi\)
\(662\) 5.58404 + 17.1859i 0.217030 + 0.667949i
\(663\) 0 0
\(664\) −5.58918 + 4.06078i −0.216902 + 0.157589i
\(665\) 10.7764 + 3.50147i 0.417891 + 0.135781i
\(666\) 0 0
\(667\) 0.324426 + 0.446535i 0.0125618 + 0.0172899i
\(668\) 5.42833 + 3.94391i 0.210028 + 0.152595i
\(669\) 0 0
\(670\) 2.23583i 0.0863778i
\(671\) 30.2936 + 4.62679i 1.16947 + 0.178615i
\(672\) 0 0
\(673\) −7.09244 + 2.30447i −0.273393 + 0.0888309i −0.442505 0.896766i \(-0.645910\pi\)
0.169112 + 0.985597i \(0.445910\pi\)
\(674\) 9.56336 13.1628i 0.368367 0.507014i
\(675\) 0 0
\(676\) 1.05723 3.25380i 0.0406625 0.125146i
\(677\) 11.6497 35.8540i 0.447733 1.37798i −0.431725 0.902006i \(-0.642095\pi\)
0.879458 0.475976i \(-0.157905\pi\)
\(678\) 0 0
\(679\) 10.9327 15.0476i 0.419560 0.577474i
\(680\) −0.522426 + 0.169746i −0.0200341 + 0.00650948i
\(681\) 0 0
\(682\) −23.2738 + 23.5321i −0.891199 + 0.901091i
\(683\) 0.633926i 0.0242565i −0.999926 0.0121282i \(-0.996139\pi\)
0.999926 0.0121282i \(-0.00386063\pi\)
\(684\) 0 0
\(685\) 8.96594 + 6.51414i 0.342571 + 0.248892i
\(686\) 5.37622 + 7.39974i 0.205265 + 0.282523i
\(687\) 0 0
\(688\) 7.82782 + 2.54341i 0.298433 + 0.0969667i
\(689\) −5.74677 + 4.17527i −0.218934 + 0.159065i
\(690\) 0 0
\(691\) 7.49393 + 23.0639i 0.285082 + 0.877393i 0.986374 + 0.164519i \(0.0526071\pi\)
−0.701292 + 0.712875i \(0.747393\pi\)
\(692\) −15.6783 −0.596001
\(693\) 0 0
\(694\) 4.26108 0.161748
\(695\) 5.77821 + 17.7835i 0.219180 + 0.674567i
\(696\) 0 0
\(697\) −0.448982 + 0.326205i −0.0170064 + 0.0123559i
\(698\) 8.87425 + 2.88342i 0.335895 + 0.109139i
\(699\) 0 0
\(700\) −1.97378 2.71668i −0.0746021 0.102681i
\(701\) 1.05596 + 0.767198i 0.0398830 + 0.0289767i 0.607548 0.794283i \(-0.292153\pi\)
−0.567665 + 0.823260i \(0.692153\pi\)
\(702\) 0 0
\(703\) 16.5072i 0.622579i
\(704\) 1.52200 + 2.94678i 0.0573627 + 0.111061i
\(705\) 0 0
\(706\) 29.5911 9.61473i 1.11368 0.361855i
\(707\) 32.4159 44.6167i 1.21913 1.67798i
\(708\) 0 0
\(709\) 12.7638 39.2829i 0.479354 1.47530i −0.360640 0.932705i \(-0.617442\pi\)
0.839994 0.542596i \(-0.182558\pi\)
\(710\) −4.05895 + 12.4922i −0.152330 + 0.468823i
\(711\) 0 0
\(712\) 0.789321 1.08641i 0.0295811 0.0407148i
\(713\) 32.8059 10.6593i 1.22859 0.399193i
\(714\) 0 0
\(715\) −10.1294 + 1.66170i −0.378819 + 0.0621442i
\(716\) 19.0872i 0.713322i
\(717\) 0 0
\(718\) 5.66731 + 4.11754i 0.211502 + 0.153665i
\(719\) 21.3225 + 29.3479i 0.795194 + 1.09449i 0.993442 + 0.114339i \(0.0364750\pi\)
−0.198247 + 0.980152i \(0.563525\pi\)
\(720\) 0 0
\(721\) 5.93884 + 1.92965i 0.221174 + 0.0718638i
\(722\) −6.15982 + 4.47537i −0.229245 + 0.166556i
\(723\) 0 0
\(724\) 1.02360 + 3.15031i 0.0380418 + 0.117080i
\(725\) −0.159679 −0.00593033
\(726\) 0 0
\(727\) 24.1321 0.895008 0.447504 0.894282i \(-0.352313\pi\)
0.447504 + 0.894282i \(0.352313\pi\)
\(728\) −3.21157 9.88421i −0.119029 0.366333i
\(729\) 0 0
\(730\) −4.34873 + 3.15954i −0.160954 + 0.116940i
\(731\) −4.29991 1.39713i −0.159038 0.0516745i
\(732\) 0 0
\(733\) 12.1397 + 16.7088i 0.448389 + 0.617155i 0.972051 0.234772i \(-0.0754342\pi\)
−0.523661 + 0.851927i \(0.675434\pi\)
\(734\) −10.3012 7.48424i −0.380223 0.276248i
\(735\) 0 0
\(736\) 3.45661i 0.127412i
\(737\) 7.31761 1.20043i 0.269548 0.0442186i
\(738\) 0 0
\(739\) −1.95695 + 0.635852i −0.0719877 + 0.0233902i −0.344789 0.938680i \(-0.612050\pi\)
0.272802 + 0.962070i \(0.412050\pi\)
\(740\) −2.87544 + 3.95771i −0.105703 + 0.145488i
\(741\) 0 0
\(742\) 2.38164 7.32992i 0.0874326 0.269090i
\(743\) 5.95344 18.3228i 0.218411 0.672199i −0.780483 0.625177i \(-0.785027\pi\)
0.998894 0.0470220i \(-0.0149731\pi\)
\(744\) 0 0
\(745\) 10.7478 14.7930i 0.393768 0.541975i
\(746\) 3.70772 1.20471i 0.135749 0.0441076i
\(747\) 0 0
\(748\) −0.836053 1.61870i −0.0305691 0.0591855i
\(749\) 26.1344i 0.954931i
\(750\) 0 0
\(751\) 4.37428 + 3.17810i 0.159620 + 0.115971i 0.664728 0.747085i \(-0.268547\pi\)
−0.505108 + 0.863056i \(0.668547\pi\)
\(752\) 2.87791 + 3.96110i 0.104947 + 0.144447i
\(753\) 0 0
\(754\) −0.470011 0.152716i −0.0171168 0.00556159i
\(755\) −11.7605 + 8.54451i −0.428009 + 0.310966i
\(756\) 0 0
\(757\) 4.75889 + 14.6464i 0.172965 + 0.532331i 0.999535 0.0305033i \(-0.00971102\pi\)
−0.826570 + 0.562834i \(0.809711\pi\)
\(758\) 12.1715 0.442088
\(759\) 0 0
\(760\) −3.37432 −0.122400
\(761\) −12.3735 38.0818i −0.448540 1.38046i −0.878555 0.477642i \(-0.841492\pi\)
0.430015 0.902822i \(-0.358508\pi\)
\(762\) 0 0
\(763\) −3.95417 + 2.87287i −0.143151 + 0.104005i
\(764\) 17.2679 + 5.61070i 0.624732 + 0.202988i
\(765\) 0 0
\(766\) −16.6797 22.9576i −0.602662 0.829493i
\(767\) 25.0824 + 18.2234i 0.905673 + 0.658010i
\(768\) 0 0
\(769\) 9.10215i 0.328232i 0.986441 + 0.164116i \(0.0524771\pi\)
−0.986441 + 0.164116i \(0.947523\pi\)
\(770\) 7.83163 7.91856i 0.282232 0.285365i
\(771\) 0 0
\(772\) 24.3515 7.91228i 0.876429 0.284769i
\(773\) 22.1852 30.5352i 0.797945 1.09828i −0.195128 0.980778i \(-0.562512\pi\)
0.993073 0.117499i \(-0.0374876\pi\)
\(774\) 0 0
\(775\) −3.08374 + 9.49078i −0.110771 + 0.340919i
\(776\) −1.71164 + 5.26787i −0.0614441 + 0.189106i
\(777\) 0 0
\(778\) −15.3126 + 21.0759i −0.548982 + 0.755608i
\(779\) −3.24225 + 1.05347i −0.116166 + 0.0377445i
\(780\) 0 0
\(781\) −43.0646 6.57732i −1.54097 0.235355i
\(782\) 1.89875i 0.0678992i
\(783\) 0 0
\(784\) 3.45951 + 2.51348i 0.123554 + 0.0897671i
\(785\) −0.971902 1.33771i −0.0346887 0.0477448i
\(786\) 0 0
\(787\) −51.6380 16.7782i −1.84070 0.598078i −0.998239 0.0593128i \(-0.981109\pi\)
−0.842456 0.538765i \(-0.818891\pi\)
\(788\) −1.69891 + 1.23433i −0.0605213 + 0.0439713i
\(789\) 0 0
\(790\) −4.75721 14.6412i −0.169254 0.520910i
\(791\) 21.5740 0.767082
\(792\) 0 0
\(793\) 28.5968 1.01550
\(794\) −4.93414 15.1857i −0.175106 0.538921i
\(795\) 0 0
\(796\) −13.5785 + 9.86538i −0.481278 + 0.349669i
\(797\) 21.5827 + 7.01266i 0.764500 + 0.248401i 0.665209 0.746657i \(-0.268343\pi\)
0.0992910 + 0.995058i \(0.468343\pi\)
\(798\) 0 0
\(799\) −1.58087 2.17588i −0.0559271 0.0769770i
\(800\) 0.809017 + 0.587785i 0.0286031 + 0.0207813i
\(801\) 0 0
\(802\) 16.1584i 0.570572i
\(803\) −12.6756 12.5365i −0.447314 0.442403i
\(804\) 0 0
\(805\) −11.0392 + 3.58685i −0.389080 + 0.126420i
\(806\) −18.1539 + 24.9866i −0.639442 + 0.880117i
\(807\) 0 0
\(808\) −5.07506 + 15.6194i −0.178540 + 0.549489i
\(809\) 13.5233 41.6205i 0.475455 1.46330i −0.369889 0.929076i \(-0.620604\pi\)
0.845344 0.534223i \(-0.179396\pi\)
\(810\) 0 0
\(811\) 30.2027 41.5704i 1.06056 1.45973i 0.181277 0.983432i \(-0.441977\pi\)
0.879282 0.476302i \(-0.158023\pi\)
\(812\) 0.509959 0.165696i 0.0178960 0.00581478i
\(813\) 0 0
\(814\) −14.4969 7.28605i −0.508117 0.255376i
\(815\) 4.44747i 0.155788i
\(816\) 0 0
\(817\) −22.4687 16.3245i −0.786082 0.571122i
\(818\) −7.53142 10.3661i −0.263330 0.362442i
\(819\) 0 0
\(820\) 0.960859 + 0.312202i 0.0335546 + 0.0109026i
\(821\) −15.9529 + 11.5905i −0.556761 + 0.404510i −0.830272 0.557358i \(-0.811815\pi\)
0.273511 + 0.961869i \(0.411815\pi\)
\(822\) 0 0
\(823\) 6.42117 + 19.7623i 0.223828 + 0.688872i 0.998408 + 0.0563962i \(0.0179610\pi\)
−0.774581 + 0.632475i \(0.782039\pi\)
\(824\) −1.85958 −0.0647815
\(825\) 0 0
\(826\) −33.6386 −1.17044
\(827\) −16.7719 51.6187i −0.583218 1.79496i −0.606313 0.795226i \(-0.707352\pi\)
0.0230949 0.999733i \(-0.492648\pi\)
\(828\) 0 0
\(829\) 21.4367 15.5746i 0.744526 0.540930i −0.149599 0.988747i \(-0.547798\pi\)
0.894125 + 0.447817i \(0.147798\pi\)
\(830\) −6.57048 2.13488i −0.228065 0.0741027i
\(831\) 0 0
\(832\) 1.81917 + 2.50387i 0.0630683 + 0.0868061i
\(833\) −1.90035 1.38068i −0.0658431 0.0478378i
\(834\) 0 0
\(835\) 6.70979i 0.232202i
\(836\) −1.81170 11.0437i −0.0626588 0.381956i
\(837\) 0 0
\(838\) −16.3189 + 5.30235i −0.563729 + 0.183167i
\(839\) 22.7118 31.2601i 0.784099 1.07922i −0.210719 0.977547i \(-0.567580\pi\)
0.994818 0.101673i \(-0.0324196\pi\)
\(840\) 0 0
\(841\) −8.95361 + 27.5564i −0.308745 + 0.950220i
\(842\) −5.36880 + 16.5235i −0.185021 + 0.569436i
\(843\) 0 0
\(844\) −11.4641 + 15.7790i −0.394612 + 0.543137i
\(845\) 3.25380 1.05723i 0.111934 0.0363696i
\(846\) 0 0
\(847\) 30.1213 + 21.3804i 1.03498 + 0.734641i
\(848\) 2.29515i 0.0788159i
\(849\) 0 0
\(850\) −0.444402 0.322877i −0.0152429 0.0110746i
\(851\) 9.93927 + 13.6802i 0.340714 + 0.468952i
\(852\) 0 0
\(853\) −0.0479198 0.0155701i −0.00164074 0.000533110i 0.308197 0.951323i \(-0.400275\pi\)
−0.309837 + 0.950790i \(0.600275\pi\)
\(854\) −25.1016 + 18.2374i −0.858958 + 0.624070i
\(855\) 0 0
\(856\) −2.40500 7.40182i −0.0822011 0.252989i
\(857\) −3.06875 −0.104827 −0.0524133 0.998625i \(-0.516691\pi\)
−0.0524133 + 0.998625i \(0.516691\pi\)
\(858\) 0 0
\(859\) 38.5002 1.31361 0.656805 0.754061i \(-0.271908\pi\)
0.656805 + 0.754061i \(0.271908\pi\)
\(860\) 2.54341 + 7.82782i 0.0867297 + 0.266927i
\(861\) 0 0
\(862\) −6.29678 + 4.57488i −0.214469 + 0.155821i
\(863\) 44.4363 + 14.4382i 1.51263 + 0.491483i 0.943672 0.330883i \(-0.107347\pi\)
0.568958 + 0.822367i \(0.307347\pi\)
\(864\) 0 0
\(865\) −9.21550 12.6840i −0.313336 0.431270i
\(866\) 29.6830 + 21.5659i 1.00867 + 0.732840i
\(867\) 0 0
\(868\) 33.5102i 1.13741i
\(869\) 45.3647 23.4307i 1.53889 0.794833i
\(870\) 0 0
\(871\) 6.58113 2.13834i 0.222993 0.0724548i
\(872\) 0.855530 1.17754i 0.0289719 0.0398764i
\(873\) 0 0
\(874\) −3.60428 + 11.0928i −0.121917 + 0.375221i
\(875\) 1.03768 3.19365i 0.0350800 0.107965i
\(876\) 0 0
\(877\) −4.12117 + 5.67230i −0.139162 + 0.191540i −0.872909 0.487882i \(-0.837770\pi\)
0.733748 + 0.679422i \(0.237770\pi\)
\(878\) 7.57862 2.46244i 0.255766 0.0831035i
\(879\) 0 0
\(880\) −1.48938 + 2.96340i −0.0502071 + 0.0998962i
\(881\) 17.4385i 0.587518i 0.955880 + 0.293759i \(0.0949062\pi\)
−0.955880 + 0.293759i \(0.905094\pi\)
\(882\) 0 0
\(883\) −42.8737 31.1496i −1.44282 1.04827i −0.987445 0.157966i \(-0.949507\pi\)
−0.455371 0.890302i \(-0.650493\pi\)
\(884\) −0.999290 1.37540i −0.0336098 0.0462599i
\(885\) 0 0
\(886\) 7.51783 + 2.44269i 0.252567 + 0.0820638i
\(887\) −12.2717 + 8.91595i −0.412045 + 0.299368i −0.774429 0.632661i \(-0.781963\pi\)
0.362384 + 0.932029i \(0.381963\pi\)
\(888\) 0 0
\(889\) −17.9449 55.2286i −0.601852 1.85231i
\(890\) 1.34287 0.0450132
\(891\) 0 0
\(892\) −23.6459 −0.791723
\(893\) −5.10537 15.7127i −0.170845 0.525806i
\(894\) 0 0
\(895\) −15.4419 + 11.2192i −0.516165 + 0.375016i
\(896\) −3.19365 1.03768i −0.106692 0.0346665i
\(897\) 0 0
\(898\) −10.2991 14.1755i −0.343685 0.473042i
\(899\) −1.28914 0.936617i −0.0429953 0.0312379i
\(900\) 0 0
\(901\) 1.26075i 0.0420018i
\(902\) −0.505907 + 3.31240i −0.0168449 + 0.110291i
\(903\) 0 0
\(904\) −6.11020 + 1.98532i −0.203222 + 0.0660309i
\(905\) −1.94700 + 2.67982i −0.0647205 + 0.0890801i
\(906\) 0 0
\(907\) 15.2231 46.8519i 0.505475 1.55569i −0.294496 0.955653i \(-0.595152\pi\)
0.799971 0.600039i \(-0.204848\pi\)
\(908\) −2.82606 + 8.69773i −0.0937862 + 0.288644i
\(909\) 0 0
\(910\) 6.10878 8.40801i 0.202504 0.278723i
\(911\) 34.1551 11.0977i 1.13161 0.367682i 0.317422 0.948284i \(-0.397183\pi\)
0.814188 + 0.580602i \(0.197183\pi\)
\(912\) 0 0
\(913\) 3.45946 22.6506i 0.114491 0.749625i
\(914\) 8.65970i 0.286437i
\(915\) 0 0
\(916\) −1.06804 0.775979i −0.0352892 0.0256391i
\(917\) 5.19937 + 7.15632i 0.171698 + 0.236323i
\(918\) 0 0
\(919\) −4.16272 1.35255i −0.137316 0.0446165i 0.239553 0.970883i \(-0.422999\pi\)
−0.376868 + 0.926267i \(0.622999\pi\)
\(920\) 2.79645 2.03174i 0.0921963 0.0669845i
\(921\) 0 0
\(922\) −9.73221 29.9527i −0.320513 0.986438i
\(923\) −40.6524 −1.33809
\(924\) 0 0
\(925\) −4.89199 −0.160848
\(926\) −0.122874 0.378166i −0.00403787 0.0124273i
\(927\) 0 0
\(928\) −0.129183 + 0.0938569i −0.00424064 + 0.00308100i
\(929\) −14.7720 4.79971i −0.484653 0.157473i 0.0564913 0.998403i \(-0.482009\pi\)
−0.541144 + 0.840930i \(0.682009\pi\)
\(930\) 0 0
\(931\) −8.48129 11.6735i −0.277963 0.382583i
\(932\) −23.4763 17.0566i −0.768993 0.558706i
\(933\) 0 0
\(934\) 11.6101i 0.379894i
\(935\) 0.818134 1.62783i 0.0267559 0.0532357i
\(936\) 0 0
\(937\) 32.4805 10.5536i 1.06109 0.344770i 0.274080 0.961707i \(-0.411627\pi\)
0.787013 + 0.616937i \(0.211627\pi\)
\(938\) −4.41306 + 6.07405i −0.144091 + 0.198325i
\(939\) 0 0
\(940\) −1.51301 + 4.65656i −0.0493488 + 0.151880i
\(941\) −11.9543 + 36.7916i −0.389700 + 1.19937i 0.543313 + 0.839530i \(0.317170\pi\)
−0.933013 + 0.359843i \(0.882830\pi\)
\(942\) 0 0
\(943\) 2.05268 2.82527i 0.0668445 0.0920036i
\(944\) 9.52716 3.09556i 0.310083 0.100752i
\(945\) 0 0
\(946\) −24.2539 + 12.5271i −0.788563 + 0.407291i
\(947\) 39.6726i 1.28918i −0.764526 0.644592i \(-0.777027\pi\)
0.764526 0.644592i \(-0.222973\pi\)
\(948\) 0 0
\(949\) −13.4591 9.77863i −0.436902 0.317428i
\(950\) −1.98338 2.72988i −0.0643492 0.0885691i
\(951\) 0 0
\(952\) 1.75431 + 0.570009i 0.0568574 + 0.0184741i
\(953\) 22.4624 16.3199i 0.727628 0.528653i −0.161184 0.986924i \(-0.551531\pi\)
0.888812 + 0.458271i \(0.151531\pi\)
\(954\) 0 0
\(955\) 5.61070 + 17.2679i 0.181558 + 0.558778i
\(956\) −14.7023 −0.475506
\(957\) 0 0
\(958\) 11.3379 0.366311
\(959\) −11.5001 35.3937i −0.371358 1.14292i
\(960\) 0 0
\(961\) −55.4860 + 40.3129i −1.78987 + 1.30042i
\(962\) −14.3995 4.67867i −0.464258 0.150846i
\(963\) 0 0
\(964\) 10.9397 + 15.0572i 0.352343 + 0.484959i
\(965\) 20.7146 + 15.0500i 0.666827 + 0.484478i
\(966\) 0 0
\(967\) 7.18678i 0.231111i 0.993301 + 0.115556i \(0.0368649\pi\)
−0.993301 + 0.115556i \(0.963135\pi\)
\(968\) −10.4985 3.28350i −0.337435 0.105536i
\(969\) 0 0
\(970\) −5.26787 + 1.71164i −0.169141 + 0.0549573i
\(971\) −16.5408 + 22.7664i −0.530818 + 0.730609i −0.987255 0.159147i \(-0.949126\pi\)
0.456437 + 0.889756i \(0.349126\pi\)
\(972\) 0 0
\(973\) 19.4033 59.7171i 0.622040 1.91444i
\(974\) 6.26142 19.2707i 0.200629 0.617472i
\(975\) 0 0
\(976\) 5.43102 7.47515i 0.173843 0.239274i
\(977\) 28.1915 9.15999i 0.901927 0.293054i 0.178895 0.983868i \(-0.442748\pi\)
0.723032 + 0.690814i \(0.242748\pi\)
\(978\) 0 0
\(979\) 0.720998 + 4.39506i 0.0230432 + 0.140467i
\(980\) 4.27619i 0.136598i
\(981\) 0 0
\(982\) −10.0498 7.30162i −0.320703 0.233004i
\(983\) −27.3665 37.6667i −0.872855 1.20138i −0.978349 0.206962i \(-0.933642\pi\)
0.105494 0.994420i \(-0.466358\pi\)
\(984\) 0 0
\(985\) −1.99719 0.648927i −0.0636359 0.0206765i
\(986\) 0.0709616 0.0515567i 0.00225988 0.00164190i
\(987\) 0 0
\(988\) −3.22718 9.93224i −0.102670 0.315987i
\(989\) 28.4501 0.904662
\(990\) 0 0
\(991\) −29.6860 −0.943007 −0.471503 0.881864i \(-0.656288\pi\)
−0.471503 + 0.881864i \(0.656288\pi\)
\(992\) 3.08374 + 9.49078i 0.0979089 + 0.301333i
\(993\) 0 0
\(994\) 35.6837 25.9257i 1.13182 0.822315i
\(995\) −15.9625 5.18653i −0.506046 0.164424i
\(996\) 0 0
\(997\) 26.9056 + 37.0323i 0.852108 + 1.17283i 0.983394 + 0.181481i \(0.0580891\pi\)
−0.131287 + 0.991344i \(0.541911\pi\)
\(998\) 4.55484 + 3.30929i 0.144181 + 0.104754i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.611.4 yes 32
3.2 odd 2 990.2.z.b.611.8 yes 32
11.2 odd 10 990.2.z.b.431.8 yes 32
33.2 even 10 inner 990.2.z.a.431.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.431.4 32 33.2 even 10 inner
990.2.z.a.611.4 yes 32 1.1 even 1 trivial
990.2.z.b.431.8 yes 32 11.2 odd 10
990.2.z.b.611.8 yes 32 3.2 odd 2