Properties

Label 990.2.z.a.611.1
Level $990$
Weight $2$
Character 990.611
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 611.1
Character \(\chi\) \(=\) 990.611
Dual form 990.2.z.a.431.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(-0.951057 - 0.309017i) q^{5} +(-1.27614 - 1.75646i) q^{7} +(-0.809017 - 0.587785i) q^{8} -1.00000i q^{10} +(-1.89530 + 2.72174i) q^{11} +(2.81073 - 0.913261i) q^{13} +(1.27614 - 1.75646i) q^{14} +(0.309017 - 0.951057i) q^{16} +(0.909547 - 2.79930i) q^{17} +(0.958278 - 1.31896i) q^{19} +(0.951057 - 0.309017i) q^{20} +(-3.17420 - 0.961471i) q^{22} -3.41555i q^{23} +(0.809017 + 0.587785i) q^{25} +(1.73712 + 2.39095i) q^{26} +(2.06484 + 0.670908i) q^{28} +(3.04327 - 2.21107i) q^{29} +(-3.14112 - 9.66737i) q^{31} +1.00000 q^{32} +2.94336 q^{34} +(0.670908 + 2.06484i) q^{35} +(9.51376 - 6.91215i) q^{37} +(1.55053 + 0.503797i) q^{38} +(0.587785 + 0.809017i) q^{40} +(3.73949 + 2.71690i) q^{41} -7.21249i q^{43} +(-0.0664698 - 3.31596i) q^{44} +(3.24838 - 1.05546i) q^{46} +(0.256076 - 0.352459i) q^{47} +(0.706510 - 2.17441i) q^{49} +(-0.309017 + 0.951057i) q^{50} +(-1.73712 + 2.39095i) q^{52} +(-9.58109 + 3.11308i) q^{53} +(2.64360 - 2.00285i) q^{55} +2.17110i q^{56} +(3.04327 + 2.21107i) q^{58} +(4.23873 + 5.83411i) q^{59} +(-12.6549 - 4.11183i) q^{61} +(8.22356 - 5.97476i) q^{62} +(0.309017 + 0.951057i) q^{64} -2.95537 q^{65} +5.20687 q^{67} +(0.909547 + 2.79930i) q^{68} +(-1.75646 + 1.27614i) q^{70} +(-8.20611 - 2.66633i) q^{71} +(4.04789 + 5.57145i) q^{73} +(9.51376 + 6.91215i) q^{74} +1.63032i q^{76} +(7.19929 - 0.144313i) q^{77} +(1.93416 - 0.628447i) q^{79} +(-0.587785 + 0.809017i) q^{80} +(-1.42836 + 4.39603i) q^{82} +(-3.19368 + 9.82914i) q^{83} +(-1.73006 + 2.38122i) q^{85} +(6.85948 - 2.22878i) q^{86} +(3.13312 - 1.08790i) q^{88} -7.02630i q^{89} +(-5.19099 - 3.77148i) q^{91} +(2.00761 + 2.76324i) q^{92} +(0.414340 + 0.134627i) q^{94} +(-1.31896 + 0.958278i) q^{95} +(1.99921 + 6.15293i) q^{97} +2.28631 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.951057 0.309017i −0.425325 0.138197i
\(6\) 0 0
\(7\) −1.27614 1.75646i −0.482336 0.663879i 0.496615 0.867971i \(-0.334576\pi\)
−0.978952 + 0.204092i \(0.934576\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −1.89530 + 2.72174i −0.571453 + 0.820635i
\(12\) 0 0
\(13\) 2.81073 0.913261i 0.779555 0.253293i 0.107905 0.994161i \(-0.465586\pi\)
0.671650 + 0.740868i \(0.265586\pi\)
\(14\) 1.27614 1.75646i 0.341063 0.469433i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 0.909547 2.79930i 0.220598 0.678929i −0.778111 0.628127i \(-0.783822\pi\)
0.998709 0.0508028i \(-0.0161780\pi\)
\(18\) 0 0
\(19\) 0.958278 1.31896i 0.219844 0.302589i −0.684822 0.728710i \(-0.740120\pi\)
0.904666 + 0.426121i \(0.140120\pi\)
\(20\) 0.951057 0.309017i 0.212663 0.0690983i
\(21\) 0 0
\(22\) −3.17420 0.961471i −0.676743 0.204986i
\(23\) 3.41555i 0.712192i −0.934449 0.356096i \(-0.884108\pi\)
0.934449 0.356096i \(-0.115892\pi\)
\(24\) 0 0
\(25\) 0.809017 + 0.587785i 0.161803 + 0.117557i
\(26\) 1.73712 + 2.39095i 0.340678 + 0.468903i
\(27\) 0 0
\(28\) 2.06484 + 0.670908i 0.390218 + 0.126790i
\(29\) 3.04327 2.21107i 0.565121 0.410585i −0.268209 0.963361i \(-0.586432\pi\)
0.833330 + 0.552776i \(0.186432\pi\)
\(30\) 0 0
\(31\) −3.14112 9.66737i −0.564162 1.73631i −0.670430 0.741973i \(-0.733890\pi\)
0.106268 0.994338i \(-0.466110\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.94336 0.504781
\(35\) 0.670908 + 2.06484i 0.113404 + 0.349022i
\(36\) 0 0
\(37\) 9.51376 6.91215i 1.56405 1.13635i 0.631467 0.775403i \(-0.282453\pi\)
0.932586 0.360948i \(-0.117547\pi\)
\(38\) 1.55053 + 0.503797i 0.251529 + 0.0817266i
\(39\) 0 0
\(40\) 0.587785 + 0.809017i 0.0929370 + 0.127917i
\(41\) 3.73949 + 2.71690i 0.584010 + 0.424308i 0.840168 0.542327i \(-0.182457\pi\)
−0.256158 + 0.966635i \(0.582457\pi\)
\(42\) 0 0
\(43\) 7.21249i 1.09989i −0.835199 0.549947i \(-0.814648\pi\)
0.835199 0.549947i \(-0.185352\pi\)
\(44\) −0.0664698 3.31596i −0.0100207 0.499900i
\(45\) 0 0
\(46\) 3.24838 1.05546i 0.478948 0.155620i
\(47\) 0.256076 0.352459i 0.0373526 0.0514114i −0.789932 0.613194i \(-0.789884\pi\)
0.827285 + 0.561783i \(0.189884\pi\)
\(48\) 0 0
\(49\) 0.706510 2.17441i 0.100930 0.310631i
\(50\) −0.309017 + 0.951057i −0.0437016 + 0.134500i
\(51\) 0 0
\(52\) −1.73712 + 2.39095i −0.240896 + 0.331565i
\(53\) −9.58109 + 3.11308i −1.31606 + 0.427615i −0.881141 0.472853i \(-0.843224\pi\)
−0.434922 + 0.900468i \(0.643224\pi\)
\(54\) 0 0
\(55\) 2.64360 2.00285i 0.356463 0.270064i
\(56\) 2.17110i 0.290126i
\(57\) 0 0
\(58\) 3.04327 + 2.21107i 0.399601 + 0.290327i
\(59\) 4.23873 + 5.83411i 0.551836 + 0.759537i 0.990260 0.139231i \(-0.0444631\pi\)
−0.438424 + 0.898768i \(0.644463\pi\)
\(60\) 0 0
\(61\) −12.6549 4.11183i −1.62029 0.526465i −0.648282 0.761400i \(-0.724512\pi\)
−0.972011 + 0.234935i \(0.924512\pi\)
\(62\) 8.22356 5.97476i 1.04439 0.758796i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −2.95537 −0.366569
\(66\) 0 0
\(67\) 5.20687 0.636121 0.318060 0.948070i \(-0.396968\pi\)
0.318060 + 0.948070i \(0.396968\pi\)
\(68\) 0.909547 + 2.79930i 0.110299 + 0.339465i
\(69\) 0 0
\(70\) −1.75646 + 1.27614i −0.209937 + 0.152528i
\(71\) −8.20611 2.66633i −0.973887 0.316435i −0.221503 0.975160i \(-0.571096\pi\)
−0.752384 + 0.658725i \(0.771096\pi\)
\(72\) 0 0
\(73\) 4.04789 + 5.57145i 0.473770 + 0.652089i 0.977293 0.211893i \(-0.0679629\pi\)
−0.503523 + 0.863982i \(0.667963\pi\)
\(74\) 9.51376 + 6.91215i 1.10595 + 0.803521i
\(75\) 0 0
\(76\) 1.63032i 0.187011i
\(77\) 7.19929 0.144313i 0.820435 0.0164460i
\(78\) 0 0
\(79\) 1.93416 0.628447i 0.217610 0.0707058i −0.198183 0.980165i \(-0.563504\pi\)
0.415793 + 0.909459i \(0.363504\pi\)
\(80\) −0.587785 + 0.809017i −0.0657164 + 0.0904508i
\(81\) 0 0
\(82\) −1.42836 + 4.39603i −0.157736 + 0.485461i
\(83\) −3.19368 + 9.82914i −0.350552 + 1.07889i 0.607992 + 0.793943i \(0.291975\pi\)
−0.958544 + 0.284945i \(0.908025\pi\)
\(84\) 0 0
\(85\) −1.73006 + 2.38122i −0.187651 + 0.258280i
\(86\) 6.85948 2.22878i 0.739677 0.240336i
\(87\) 0 0
\(88\) 3.13312 1.08790i 0.333992 0.115971i
\(89\) 7.02630i 0.744786i −0.928075 0.372393i \(-0.878537\pi\)
0.928075 0.372393i \(-0.121463\pi\)
\(90\) 0 0
\(91\) −5.19099 3.77148i −0.544164 0.395358i
\(92\) 2.00761 + 2.76324i 0.209308 + 0.288088i
\(93\) 0 0
\(94\) 0.414340 + 0.134627i 0.0427359 + 0.0138858i
\(95\) −1.31896 + 0.958278i −0.135322 + 0.0983173i
\(96\) 0 0
\(97\) 1.99921 + 6.15293i 0.202989 + 0.624735i 0.999790 + 0.0204937i \(0.00652380\pi\)
−0.796801 + 0.604242i \(0.793476\pi\)
\(98\) 2.28631 0.230953
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 1.50262 + 4.62459i 0.149516 + 0.460164i 0.997564 0.0697559i \(-0.0222220\pi\)
−0.848048 + 0.529920i \(0.822222\pi\)
\(102\) 0 0
\(103\) −3.34205 + 2.42814i −0.329302 + 0.239252i −0.740134 0.672459i \(-0.765238\pi\)
0.410832 + 0.911711i \(0.365238\pi\)
\(104\) −2.81073 0.913261i −0.275614 0.0895526i
\(105\) 0 0
\(106\) −5.92144 8.15016i −0.575141 0.791614i
\(107\) 5.50274 + 3.99797i 0.531970 + 0.386498i 0.821094 0.570793i \(-0.193364\pi\)
−0.289124 + 0.957292i \(0.593364\pi\)
\(108\) 0 0
\(109\) 5.34567i 0.512022i 0.966674 + 0.256011i \(0.0824083\pi\)
−0.966674 + 0.256011i \(0.917592\pi\)
\(110\) 2.72174 + 1.89530i 0.259507 + 0.180709i
\(111\) 0 0
\(112\) −2.06484 + 0.670908i −0.195109 + 0.0633948i
\(113\) 7.62808 10.4991i 0.717589 0.987677i −0.282011 0.959411i \(-0.591002\pi\)
0.999600 0.0282656i \(-0.00899842\pi\)
\(114\) 0 0
\(115\) −1.05546 + 3.24838i −0.0984225 + 0.302913i
\(116\) −1.16243 + 3.57758i −0.107929 + 0.332170i
\(117\) 0 0
\(118\) −4.23873 + 5.83411i −0.390207 + 0.537074i
\(119\) −6.07756 + 1.97472i −0.557129 + 0.181022i
\(120\) 0 0
\(121\) −3.81570 10.3170i −0.346882 0.937909i
\(122\) 13.3061i 1.20468i
\(123\) 0 0
\(124\) 8.22356 + 5.97476i 0.738497 + 0.536550i
\(125\) −0.587785 0.809017i −0.0525731 0.0723607i
\(126\) 0 0
\(127\) −3.18868 1.03607i −0.282950 0.0919360i 0.164104 0.986443i \(-0.447527\pi\)
−0.447054 + 0.894507i \(0.647527\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 0 0
\(130\) −0.913261 2.81073i −0.0800983 0.246517i
\(131\) −14.9487 −1.30608 −0.653039 0.757324i \(-0.726506\pi\)
−0.653039 + 0.757324i \(0.726506\pi\)
\(132\) 0 0
\(133\) −3.53959 −0.306922
\(134\) 1.60901 + 4.95203i 0.138998 + 0.427790i
\(135\) 0 0
\(136\) −2.38122 + 1.73006i −0.204188 + 0.148352i
\(137\) −1.75553 0.570407i −0.149985 0.0487332i 0.233062 0.972462i \(-0.425125\pi\)
−0.383047 + 0.923729i \(0.625125\pi\)
\(138\) 0 0
\(139\) −8.77734 12.0810i −0.744485 1.02470i −0.998348 0.0574552i \(-0.981701\pi\)
0.253863 0.967240i \(-0.418299\pi\)
\(140\) −1.75646 1.27614i −0.148448 0.107854i
\(141\) 0 0
\(142\) 8.62842i 0.724081i
\(143\) −2.84151 + 9.38096i −0.237619 + 0.784475i
\(144\) 0 0
\(145\) −3.57758 + 1.16243i −0.297102 + 0.0965342i
\(146\) −4.04789 + 5.57145i −0.335006 + 0.461096i
\(147\) 0 0
\(148\) −3.63393 + 11.1841i −0.298707 + 0.919327i
\(149\) 5.22853 16.0918i 0.428338 1.31829i −0.471423 0.881907i \(-0.656260\pi\)
0.899761 0.436382i \(-0.143740\pi\)
\(150\) 0 0
\(151\) −6.53099 + 8.98913i −0.531484 + 0.731525i −0.987356 0.158520i \(-0.949328\pi\)
0.455872 + 0.890046i \(0.349328\pi\)
\(152\) −1.55053 + 0.503797i −0.125764 + 0.0408633i
\(153\) 0 0
\(154\) 2.36195 + 6.80233i 0.190331 + 0.548148i
\(155\) 10.1649i 0.816462i
\(156\) 0 0
\(157\) 16.6676 + 12.1098i 1.33022 + 0.966464i 0.999743 + 0.0226504i \(0.00721045\pi\)
0.330479 + 0.943813i \(0.392790\pi\)
\(158\) 1.19538 + 1.64530i 0.0950991 + 0.130893i
\(159\) 0 0
\(160\) −0.951057 0.309017i −0.0751876 0.0244299i
\(161\) −5.99928 + 4.35873i −0.472809 + 0.343516i
\(162\) 0 0
\(163\) 5.06088 + 15.5758i 0.396399 + 1.21999i 0.927867 + 0.372912i \(0.121641\pi\)
−0.531468 + 0.847079i \(0.678359\pi\)
\(164\) −4.62226 −0.360938
\(165\) 0 0
\(166\) −10.3350 −0.802149
\(167\) −7.23494 22.2669i −0.559857 1.72306i −0.682760 0.730643i \(-0.739221\pi\)
0.122903 0.992419i \(-0.460779\pi\)
\(168\) 0 0
\(169\) −3.45108 + 2.50736i −0.265468 + 0.192874i
\(170\) −2.79930 0.909547i −0.214696 0.0697591i
\(171\) 0 0
\(172\) 4.23939 + 5.83503i 0.323251 + 0.444917i
\(173\) 0.757949 + 0.550682i 0.0576258 + 0.0418676i 0.616225 0.787570i \(-0.288661\pi\)
−0.558599 + 0.829438i \(0.688661\pi\)
\(174\) 0 0
\(175\) 2.17110i 0.164120i
\(176\) 2.00285 + 2.64360i 0.150970 + 0.199269i
\(177\) 0 0
\(178\) 6.68241 2.17125i 0.500868 0.162742i
\(179\) 11.7077 16.1143i 0.875077 1.20444i −0.102684 0.994714i \(-0.532743\pi\)
0.977760 0.209725i \(-0.0672570\pi\)
\(180\) 0 0
\(181\) 0.833100 2.56402i 0.0619238 0.190582i −0.915309 0.402753i \(-0.868053\pi\)
0.977233 + 0.212171i \(0.0680534\pi\)
\(182\) 1.98278 6.10238i 0.146974 0.452338i
\(183\) 0 0
\(184\) −2.00761 + 2.76324i −0.148003 + 0.203709i
\(185\) −11.1841 + 3.63393i −0.822271 + 0.267172i
\(186\) 0 0
\(187\) 5.89509 + 7.78105i 0.431092 + 0.569006i
\(188\) 0.435663i 0.0317740i
\(189\) 0 0
\(190\) −1.31896 0.958278i −0.0956872 0.0695208i
\(191\) 4.26512 + 5.87043i 0.308613 + 0.424769i 0.934948 0.354785i \(-0.115446\pi\)
−0.626335 + 0.779554i \(0.715446\pi\)
\(192\) 0 0
\(193\) −12.6084 4.09673i −0.907576 0.294889i −0.182216 0.983259i \(-0.558327\pi\)
−0.725360 + 0.688369i \(0.758327\pi\)
\(194\) −5.23399 + 3.80272i −0.375779 + 0.273019i
\(195\) 0 0
\(196\) 0.706510 + 2.17441i 0.0504650 + 0.155315i
\(197\) 2.18020 0.155333 0.0776665 0.996979i \(-0.475253\pi\)
0.0776665 + 0.996979i \(0.475253\pi\)
\(198\) 0 0
\(199\) 2.48321 0.176030 0.0880152 0.996119i \(-0.471948\pi\)
0.0880152 + 0.996119i \(0.471948\pi\)
\(200\) −0.309017 0.951057i −0.0218508 0.0672499i
\(201\) 0 0
\(202\) −3.93391 + 2.85815i −0.276789 + 0.201099i
\(203\) −7.76729 2.52375i −0.545157 0.177132i
\(204\) 0 0
\(205\) −2.71690 3.73949i −0.189756 0.261177i
\(206\) −3.34205 2.42814i −0.232852 0.169177i
\(207\) 0 0
\(208\) 2.95537i 0.204918i
\(209\) 1.77363 + 5.10799i 0.122685 + 0.353327i
\(210\) 0 0
\(211\) 18.2803 5.93962i 1.25846 0.408900i 0.397518 0.917594i \(-0.369872\pi\)
0.860947 + 0.508694i \(0.169872\pi\)
\(212\) 5.92144 8.15016i 0.406686 0.559755i
\(213\) 0 0
\(214\) −2.10186 + 6.46885i −0.143680 + 0.442202i
\(215\) −2.22878 + 6.85948i −0.152002 + 0.467813i
\(216\) 0 0
\(217\) −12.9718 + 17.8542i −0.880585 + 1.21202i
\(218\) −5.08403 + 1.65190i −0.344334 + 0.111881i
\(219\) 0 0
\(220\) −0.961471 + 3.17420i −0.0648224 + 0.214005i
\(221\) 8.69871i 0.585139i
\(222\) 0 0
\(223\) 12.5868 + 9.14488i 0.842878 + 0.612387i 0.923173 0.384385i \(-0.125586\pi\)
−0.0802953 + 0.996771i \(0.525586\pi\)
\(224\) −1.27614 1.75646i −0.0852658 0.117358i
\(225\) 0 0
\(226\) 12.3425 + 4.01032i 0.821010 + 0.266762i
\(227\) −12.1804 + 8.84958i −0.808442 + 0.587368i −0.913379 0.407111i \(-0.866536\pi\)
0.104936 + 0.994479i \(0.466536\pi\)
\(228\) 0 0
\(229\) 3.59361 + 11.0600i 0.237472 + 0.730864i 0.996784 + 0.0801372i \(0.0255359\pi\)
−0.759312 + 0.650727i \(0.774464\pi\)
\(230\) −3.41555 −0.225215
\(231\) 0 0
\(232\) −3.76169 −0.246967
\(233\) −2.59400 7.98352i −0.169939 0.523018i 0.829427 0.558614i \(-0.188667\pi\)
−0.999366 + 0.0355966i \(0.988667\pi\)
\(234\) 0 0
\(235\) −0.352459 + 0.256076i −0.0229919 + 0.0167046i
\(236\) −6.85841 2.22843i −0.446445 0.145059i
\(237\) 0 0
\(238\) −3.75614 5.16988i −0.243474 0.335114i
\(239\) −11.1708 8.11608i −0.722580 0.524985i 0.164627 0.986356i \(-0.447358\pi\)
−0.887208 + 0.461370i \(0.847358\pi\)
\(240\) 0 0
\(241\) 0.850746i 0.0548013i −0.999625 0.0274007i \(-0.991277\pi\)
0.999625 0.0274007i \(-0.00872300\pi\)
\(242\) 8.63293 6.81708i 0.554946 0.438218i
\(243\) 0 0
\(244\) 12.6549 4.11183i 0.810147 0.263233i
\(245\) −1.34386 + 1.84967i −0.0858562 + 0.118171i
\(246\) 0 0
\(247\) 1.48891 4.58238i 0.0947369 0.291570i
\(248\) −3.14112 + 9.66737i −0.199461 + 0.613879i
\(249\) 0 0
\(250\) 0.587785 0.809017i 0.0371748 0.0511667i
\(251\) −17.6122 + 5.72256i −1.11167 + 0.361205i −0.806584 0.591119i \(-0.798686\pi\)
−0.305090 + 0.952324i \(0.598686\pi\)
\(252\) 0 0
\(253\) 9.29624 + 6.47348i 0.584449 + 0.406985i
\(254\) 3.35278i 0.210372i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 5.83354 + 8.02917i 0.363886 + 0.500846i 0.951226 0.308494i \(-0.0998250\pi\)
−0.587340 + 0.809340i \(0.699825\pi\)
\(258\) 0 0
\(259\) −24.2818 7.88964i −1.50880 0.490238i
\(260\) 2.39095 1.73712i 0.148280 0.107732i
\(261\) 0 0
\(262\) −4.61942 14.2171i −0.285389 0.878336i
\(263\) −8.60914 −0.530862 −0.265431 0.964130i \(-0.585514\pi\)
−0.265431 + 0.964130i \(0.585514\pi\)
\(264\) 0 0
\(265\) 10.0742 0.618850
\(266\) −1.09379 3.36635i −0.0670648 0.206404i
\(267\) 0 0
\(268\) −4.21245 + 3.06052i −0.257316 + 0.186951i
\(269\) −18.5881 6.03964i −1.13334 0.368243i −0.318493 0.947925i \(-0.603177\pi\)
−0.814843 + 0.579682i \(0.803177\pi\)
\(270\) 0 0
\(271\) −12.6600 17.4250i −0.769041 1.05849i −0.996408 0.0846846i \(-0.973012\pi\)
0.227367 0.973809i \(-0.426988\pi\)
\(272\) −2.38122 1.73006i −0.144383 0.104900i
\(273\) 0 0
\(274\) 1.84588i 0.111513i
\(275\) −3.13312 + 1.08790i −0.188934 + 0.0656031i
\(276\) 0 0
\(277\) 16.8009 5.45894i 1.00947 0.327996i 0.242825 0.970070i \(-0.421926\pi\)
0.766643 + 0.642074i \(0.221926\pi\)
\(278\) 8.77734 12.0810i 0.526430 0.724569i
\(279\) 0 0
\(280\) 0.670908 2.06484i 0.0400944 0.123398i
\(281\) −7.26948 + 22.3732i −0.433661 + 1.33467i 0.460792 + 0.887508i \(0.347565\pi\)
−0.894453 + 0.447162i \(0.852435\pi\)
\(282\) 0 0
\(283\) −2.45806 + 3.38323i −0.146116 + 0.201112i −0.875802 0.482671i \(-0.839667\pi\)
0.729685 + 0.683783i \(0.239667\pi\)
\(284\) 8.20611 2.66633i 0.486943 0.158217i
\(285\) 0 0
\(286\) −9.79990 + 0.196443i −0.579480 + 0.0116159i
\(287\) 10.0354i 0.592371i
\(288\) 0 0
\(289\) 6.74450 + 4.90016i 0.396735 + 0.288245i
\(290\) −2.21107 3.04327i −0.129838 0.178707i
\(291\) 0 0
\(292\) −6.54963 2.12810i −0.383288 0.124538i
\(293\) 26.4329 19.2046i 1.54422 1.12194i 0.596609 0.802532i \(-0.296514\pi\)
0.947616 0.319413i \(-0.103486\pi\)
\(294\) 0 0
\(295\) −2.22843 6.85841i −0.129744 0.399312i
\(296\) −11.7597 −0.683516
\(297\) 0 0
\(298\) 16.9199 0.980143
\(299\) −3.11929 9.60019i −0.180393 0.555193i
\(300\) 0 0
\(301\) −12.6684 + 9.20416i −0.730197 + 0.530519i
\(302\) −10.5674 3.43354i −0.608083 0.197578i
\(303\) 0 0
\(304\) −0.958278 1.31896i −0.0549610 0.0756473i
\(305\) 10.7649 + 7.82116i 0.616396 + 0.447838i
\(306\) 0 0
\(307\) 4.82788i 0.275542i 0.990464 + 0.137771i \(0.0439938\pi\)
−0.990464 + 0.137771i \(0.956006\pi\)
\(308\) −5.73952 + 4.34839i −0.327039 + 0.247772i
\(309\) 0 0
\(310\) −9.66737 + 3.14112i −0.549070 + 0.178404i
\(311\) −11.8471 + 16.3061i −0.671787 + 0.924636i −0.999799 0.0200380i \(-0.993621\pi\)
0.328012 + 0.944673i \(0.393621\pi\)
\(312\) 0 0
\(313\) −1.77491 + 5.46260i −0.100324 + 0.308765i −0.988605 0.150536i \(-0.951900\pi\)
0.888281 + 0.459301i \(0.151900\pi\)
\(314\) −6.36647 + 19.5940i −0.359281 + 1.10575i
\(315\) 0 0
\(316\) −1.19538 + 1.64530i −0.0672452 + 0.0925551i
\(317\) 26.1314 8.49061i 1.46769 0.476880i 0.537278 0.843405i \(-0.319452\pi\)
0.930408 + 0.366525i \(0.119452\pi\)
\(318\) 0 0
\(319\) 0.250039 + 12.4736i 0.0139995 + 0.698388i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −5.99928 4.35873i −0.334327 0.242903i
\(323\) −2.82055 3.88216i −0.156940 0.216009i
\(324\) 0 0
\(325\) 2.81073 + 0.913261i 0.155911 + 0.0506586i
\(326\) −13.2496 + 9.62637i −0.733826 + 0.533156i
\(327\) 0 0
\(328\) −1.42836 4.39603i −0.0788679 0.242730i
\(329\) −0.945869 −0.0521475
\(330\) 0 0
\(331\) −30.3697 −1.66927 −0.834636 0.550802i \(-0.814322\pi\)
−0.834636 + 0.550802i \(0.814322\pi\)
\(332\) −3.19368 9.82914i −0.175276 0.539444i
\(333\) 0 0
\(334\) 18.9413 13.7617i 1.03642 0.753005i
\(335\) −4.95203 1.60901i −0.270558 0.0879098i
\(336\) 0 0
\(337\) 14.1360 + 19.4566i 0.770038 + 1.05987i 0.996312 + 0.0858033i \(0.0273457\pi\)
−0.226274 + 0.974064i \(0.572654\pi\)
\(338\) −3.45108 2.50736i −0.187714 0.136382i
\(339\) 0 0
\(340\) 2.94336i 0.159626i
\(341\) 32.2654 + 9.77323i 1.74727 + 0.529250i
\(342\) 0 0
\(343\) −19.1748 + 6.23026i −1.03534 + 0.336402i
\(344\) −4.23939 + 5.83503i −0.228573 + 0.314604i
\(345\) 0 0
\(346\) −0.289511 + 0.891022i −0.0155642 + 0.0479016i
\(347\) 5.25524 16.1740i 0.282116 0.868263i −0.705132 0.709076i \(-0.749112\pi\)
0.987248 0.159188i \(-0.0508875\pi\)
\(348\) 0 0
\(349\) −7.90156 + 10.8756i −0.422961 + 0.582156i −0.966320 0.257345i \(-0.917152\pi\)
0.543359 + 0.839501i \(0.317152\pi\)
\(350\) 2.06484 0.670908i 0.110370 0.0358615i
\(351\) 0 0
\(352\) −1.89530 + 2.72174i −0.101020 + 0.145069i
\(353\) 5.31870i 0.283086i −0.989932 0.141543i \(-0.954794\pi\)
0.989932 0.141543i \(-0.0452063\pi\)
\(354\) 0 0
\(355\) 6.98054 + 5.07166i 0.370488 + 0.269176i
\(356\) 4.12995 + 5.68440i 0.218887 + 0.301272i
\(357\) 0 0
\(358\) 18.9435 + 6.15512i 1.00120 + 0.325308i
\(359\) 12.3354 8.96218i 0.651036 0.473006i −0.212588 0.977142i \(-0.568189\pi\)
0.863624 + 0.504136i \(0.168189\pi\)
\(360\) 0 0
\(361\) 5.04997 + 15.5422i 0.265788 + 0.818012i
\(362\) 2.69597 0.141697
\(363\) 0 0
\(364\) 6.41642 0.336312
\(365\) −2.12810 6.54963i −0.111390 0.342823i
\(366\) 0 0
\(367\) 9.93552 7.21858i 0.518630 0.376807i −0.297458 0.954735i \(-0.596139\pi\)
0.816087 + 0.577928i \(0.196139\pi\)
\(368\) −3.24838 1.05546i −0.169334 0.0550199i
\(369\) 0 0
\(370\) −6.91215 9.51376i −0.359346 0.494597i
\(371\) 17.6948 + 12.8560i 0.918670 + 0.667453i
\(372\) 0 0
\(373\) 32.9413i 1.70564i −0.522209 0.852818i \(-0.674892\pi\)
0.522209 0.852818i \(-0.325108\pi\)
\(374\) −5.57853 + 8.01104i −0.288459 + 0.414241i
\(375\) 0 0
\(376\) −0.414340 + 0.134627i −0.0213680 + 0.00694288i
\(377\) 6.53452 8.99400i 0.336545 0.463215i
\(378\) 0 0
\(379\) 8.12100 24.9939i 0.417148 1.28385i −0.493168 0.869934i \(-0.664161\pi\)
0.910316 0.413914i \(-0.135839\pi\)
\(380\) 0.503797 1.55053i 0.0258442 0.0795403i
\(381\) 0 0
\(382\) −4.26512 + 5.87043i −0.218222 + 0.300357i
\(383\) 8.84153 2.87279i 0.451781 0.146793i −0.0742836 0.997237i \(-0.523667\pi\)
0.526065 + 0.850445i \(0.323667\pi\)
\(384\) 0 0
\(385\) −6.89152 2.08745i −0.351225 0.106386i
\(386\) 13.2573i 0.674779i
\(387\) 0 0
\(388\) −5.23399 3.80272i −0.265716 0.193054i
\(389\) 12.9712 + 17.8534i 0.657668 + 0.905202i 0.999401 0.0345945i \(-0.0110140\pi\)
−0.341733 + 0.939797i \(0.611014\pi\)
\(390\) 0 0
\(391\) −9.56115 3.10661i −0.483528 0.157108i
\(392\) −1.84967 + 1.34386i −0.0934223 + 0.0678753i
\(393\) 0 0
\(394\) 0.673720 + 2.07350i 0.0339415 + 0.104461i
\(395\) −2.03370 −0.102326
\(396\) 0 0
\(397\) 12.0800 0.606277 0.303139 0.952947i \(-0.401966\pi\)
0.303139 + 0.952947i \(0.401966\pi\)
\(398\) 0.767356 + 2.36168i 0.0384641 + 0.118380i
\(399\) 0 0
\(400\) 0.809017 0.587785i 0.0404508 0.0293893i
\(401\) −11.5659 3.75800i −0.577575 0.187665i 0.00563912 0.999984i \(-0.498205\pi\)
−0.583214 + 0.812319i \(0.698205\pi\)
\(402\) 0 0
\(403\) −17.6577 24.3037i −0.879590 1.21065i
\(404\) −3.93391 2.85815i −0.195719 0.142198i
\(405\) 0 0
\(406\) 8.16701i 0.405322i
\(407\) 0.781662 + 38.9945i 0.0387456 + 1.93289i
\(408\) 0 0
\(409\) −7.00134 + 2.27487i −0.346194 + 0.112485i −0.476953 0.878929i \(-0.658259\pi\)
0.130759 + 0.991414i \(0.458259\pi\)
\(410\) 2.71690 3.73949i 0.134178 0.184680i
\(411\) 0 0
\(412\) 1.27655 3.92882i 0.0628911 0.193559i
\(413\) 4.83816 14.8903i 0.238070 0.732705i
\(414\) 0 0
\(415\) 6.07474 8.36116i 0.298197 0.410433i
\(416\) 2.81073 0.913261i 0.137807 0.0447763i
\(417\) 0 0
\(418\) −4.30991 + 3.26528i −0.210805 + 0.159710i
\(419\) 20.1621i 0.984981i 0.870318 + 0.492490i \(0.163913\pi\)
−0.870318 + 0.492490i \(0.836087\pi\)
\(420\) 0 0
\(421\) 28.3503 + 20.5977i 1.38171 + 1.00387i 0.996718 + 0.0809522i \(0.0257961\pi\)
0.384993 + 0.922920i \(0.374204\pi\)
\(422\) 11.2978 + 15.5501i 0.549969 + 0.756968i
\(423\) 0 0
\(424\) 9.58109 + 3.11308i 0.465299 + 0.151185i
\(425\) 2.38122 1.73006i 0.115506 0.0839203i
\(426\) 0 0
\(427\) 8.92719 + 27.4751i 0.432017 + 1.32961i
\(428\) −6.80176 −0.328775
\(429\) 0 0
\(430\) −7.21249 −0.347817
\(431\) −5.01283 15.4279i −0.241459 0.743136i −0.996199 0.0871108i \(-0.972237\pi\)
0.754739 0.656025i \(-0.227763\pi\)
\(432\) 0 0
\(433\) −11.1385 + 8.09262i −0.535284 + 0.388906i −0.822330 0.569010i \(-0.807326\pi\)
0.287047 + 0.957917i \(0.407326\pi\)
\(434\) −20.9888 6.81969i −1.00750 0.327356i
\(435\) 0 0
\(436\) −3.14210 4.32473i −0.150479 0.207117i
\(437\) −4.50497 3.27305i −0.215502 0.156571i
\(438\) 0 0
\(439\) 12.2140i 0.582942i 0.956580 + 0.291471i \(0.0941447\pi\)
−0.956580 + 0.291471i \(0.905855\pi\)
\(440\) −3.31596 + 0.0664698i −0.158082 + 0.00316883i
\(441\) 0 0
\(442\) 8.27297 2.68805i 0.393505 0.127858i
\(443\) 11.6068 15.9754i 0.551456 0.759015i −0.438752 0.898608i \(-0.644580\pi\)
0.990209 + 0.139593i \(0.0445795\pi\)
\(444\) 0 0
\(445\) −2.17125 + 6.68241i −0.102927 + 0.316776i
\(446\) −4.80775 + 14.7967i −0.227653 + 0.700645i
\(447\) 0 0
\(448\) 1.27614 1.75646i 0.0602920 0.0829849i
\(449\) 22.1132 7.18500i 1.04358 0.339081i 0.263437 0.964677i \(-0.415144\pi\)
0.780148 + 0.625595i \(0.215144\pi\)
\(450\) 0 0
\(451\) −14.4821 + 5.02858i −0.681936 + 0.236787i
\(452\) 12.9777i 0.610418i
\(453\) 0 0
\(454\) −12.1804 8.84958i −0.571655 0.415332i
\(455\) 3.77148 + 5.19099i 0.176810 + 0.243357i
\(456\) 0 0
\(457\) 5.13103 + 1.66717i 0.240019 + 0.0779870i 0.426557 0.904461i \(-0.359726\pi\)
−0.186537 + 0.982448i \(0.559726\pi\)
\(458\) −9.40819 + 6.83545i −0.439616 + 0.319399i
\(459\) 0 0
\(460\) −1.05546 3.24838i −0.0492113 0.151457i
\(461\) −1.35065 −0.0629062 −0.0314531 0.999505i \(-0.510013\pi\)
−0.0314531 + 0.999505i \(0.510013\pi\)
\(462\) 0 0
\(463\) 19.7560 0.918138 0.459069 0.888401i \(-0.348183\pi\)
0.459069 + 0.888401i \(0.348183\pi\)
\(464\) −1.16243 3.57758i −0.0539643 0.166085i
\(465\) 0 0
\(466\) 6.79119 4.93409i 0.314596 0.228567i
\(467\) 15.7837 + 5.12844i 0.730384 + 0.237316i 0.650519 0.759490i \(-0.274551\pi\)
0.0798643 + 0.996806i \(0.474551\pi\)
\(468\) 0 0
\(469\) −6.64471 9.14566i −0.306824 0.422307i
\(470\) −0.352459 0.256076i −0.0162577 0.0118119i
\(471\) 0 0
\(472\) 7.21136i 0.331930i
\(473\) 19.6305 + 13.6698i 0.902611 + 0.628538i
\(474\) 0 0
\(475\) 1.55053 0.503797i 0.0711430 0.0231158i
\(476\) 3.75614 5.16988i 0.172162 0.236961i
\(477\) 0 0
\(478\) 4.26687 13.1321i 0.195162 0.600648i
\(479\) −1.54696 + 4.76107i −0.0706826 + 0.217539i −0.980158 0.198220i \(-0.936484\pi\)
0.909475 + 0.415759i \(0.136484\pi\)
\(480\) 0 0
\(481\) 20.4280 28.1167i 0.931436 1.28201i
\(482\) 0.809107 0.262895i 0.0368538 0.0119745i
\(483\) 0 0
\(484\) 9.15115 + 6.10381i 0.415961 + 0.277446i
\(485\) 6.46957i 0.293768i
\(486\) 0 0
\(487\) 12.3948 + 9.00534i 0.561662 + 0.408071i 0.832067 0.554676i \(-0.187158\pi\)
−0.270405 + 0.962747i \(0.587158\pi\)
\(488\) 7.82116 + 10.7649i 0.354047 + 0.487304i
\(489\) 0 0
\(490\) −2.17441 0.706510i −0.0982300 0.0319169i
\(491\) −7.10090 + 5.15910i −0.320459 + 0.232827i −0.736371 0.676578i \(-0.763462\pi\)
0.415912 + 0.909405i \(0.363462\pi\)
\(492\) 0 0
\(493\) −3.42143 10.5301i −0.154094 0.474251i
\(494\) 4.81820 0.216781
\(495\) 0 0
\(496\) −10.1649 −0.456416
\(497\) 5.78887 + 17.8163i 0.259666 + 0.799171i
\(498\) 0 0
\(499\) −2.34627 + 1.70466i −0.105033 + 0.0763113i −0.639062 0.769155i \(-0.720677\pi\)
0.534029 + 0.845466i \(0.320677\pi\)
\(500\) 0.951057 + 0.309017i 0.0425325 + 0.0138197i
\(501\) 0 0
\(502\) −10.8850 14.9819i −0.485819 0.668673i
\(503\) 24.9214 + 18.1065i 1.11119 + 0.807327i 0.982851 0.184403i \(-0.0590352\pi\)
0.128340 + 0.991730i \(0.459035\pi\)
\(504\) 0 0
\(505\) 4.86258i 0.216382i
\(506\) −3.28395 + 10.8417i −0.145990 + 0.481971i
\(507\) 0 0
\(508\) 3.18868 1.03607i 0.141475 0.0459680i
\(509\) 25.1023 34.5504i 1.11264 1.53142i 0.295176 0.955443i \(-0.404622\pi\)
0.817466 0.575978i \(-0.195378\pi\)
\(510\) 0 0
\(511\) 4.62033 14.2199i 0.204391 0.629052i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 0 0
\(514\) −5.83354 + 8.02917i −0.257306 + 0.354152i
\(515\) 3.92882 1.27655i 0.173124 0.0562515i
\(516\) 0 0
\(517\) 0.473960 + 1.36499i 0.0208447 + 0.0600321i
\(518\) 25.5314i 1.12179i
\(519\) 0 0
\(520\) 2.39095 + 1.73712i 0.104850 + 0.0761780i
\(521\) 5.10032 + 7.01999i 0.223449 + 0.307551i 0.905992 0.423294i \(-0.139126\pi\)
−0.682543 + 0.730845i \(0.739126\pi\)
\(522\) 0 0
\(523\) −11.7306 3.81151i −0.512944 0.166666i 0.0410965 0.999155i \(-0.486915\pi\)
−0.554041 + 0.832489i \(0.686915\pi\)
\(524\) 12.0938 8.78665i 0.528320 0.383847i
\(525\) 0 0
\(526\) −2.66037 8.18778i −0.115998 0.357004i
\(527\) −29.9188 −1.30328
\(528\) 0 0
\(529\) 11.3340 0.492783
\(530\) 3.11308 + 9.58109i 0.135224 + 0.416176i
\(531\) 0 0
\(532\) 2.86359 2.08052i 0.124152 0.0902020i
\(533\) 12.9919 + 4.22133i 0.562742 + 0.182846i
\(534\) 0 0
\(535\) −3.99797 5.50274i −0.172847 0.237904i
\(536\) −4.21245 3.06052i −0.181950 0.132195i
\(537\) 0 0
\(538\) 19.5447i 0.842631i
\(539\) 4.57914 + 6.04409i 0.197237 + 0.260338i
\(540\) 0 0
\(541\) 23.4000 7.60312i 1.00604 0.326884i 0.240766 0.970583i \(-0.422601\pi\)
0.765278 + 0.643700i \(0.222601\pi\)
\(542\) 12.6600 17.4250i 0.543794 0.748468i
\(543\) 0 0
\(544\) 0.909547 2.79930i 0.0389965 0.120019i
\(545\) 1.65190 5.08403i 0.0707597 0.217776i
\(546\) 0 0
\(547\) 1.62116 2.23134i 0.0693158 0.0954050i −0.772952 0.634465i \(-0.781220\pi\)
0.842267 + 0.539060i \(0.181220\pi\)
\(548\) 1.75553 0.570407i 0.0749926 0.0243666i
\(549\) 0 0
\(550\) −2.00285 2.64360i −0.0854017 0.112723i
\(551\) 6.13276i 0.261264i
\(552\) 0 0
\(553\) −3.57210 2.59529i −0.151901 0.110363i
\(554\) 10.3835 + 14.2917i 0.441154 + 0.607196i
\(555\) 0 0
\(556\) 14.2020 + 4.61452i 0.602301 + 0.195699i
\(557\) −10.4713 + 7.60784i −0.443683 + 0.322355i −0.787097 0.616830i \(-0.788417\pi\)
0.343414 + 0.939184i \(0.388417\pi\)
\(558\) 0 0
\(559\) −6.58688 20.2723i −0.278595 0.857429i
\(560\) 2.17110 0.0917458
\(561\) 0 0
\(562\) −23.5245 −0.992322
\(563\) 10.8605 + 33.4251i 0.457715 + 1.40870i 0.867918 + 0.496708i \(0.165458\pi\)
−0.410203 + 0.911994i \(0.634542\pi\)
\(564\) 0 0
\(565\) −10.4991 + 7.62808i −0.441702 + 0.320916i
\(566\) −3.97722 1.29228i −0.167175 0.0543185i
\(567\) 0 0
\(568\) 5.07166 + 6.98054i 0.212802 + 0.292897i
\(569\) 30.2344 + 21.9666i 1.26749 + 0.920886i 0.999100 0.0424239i \(-0.0135080\pi\)
0.268391 + 0.963310i \(0.413508\pi\)
\(570\) 0 0
\(571\) 37.1195i 1.55340i 0.629870 + 0.776700i \(0.283108\pi\)
−0.629870 + 0.776700i \(0.716892\pi\)
\(572\) −3.21516 9.25955i −0.134433 0.387161i
\(573\) 0 0
\(574\) 9.54424 3.10111i 0.398369 0.129438i
\(575\) 2.00761 2.76324i 0.0837232 0.115235i
\(576\) 0 0
\(577\) 9.94256 30.6001i 0.413914 1.27390i −0.499304 0.866427i \(-0.666411\pi\)
0.913218 0.407470i \(-0.133589\pi\)
\(578\) −2.57617 + 7.92863i −0.107154 + 0.329788i
\(579\) 0 0
\(580\) 2.21107 3.04327i 0.0918095 0.126365i
\(581\) 21.3401 6.93381i 0.885335 0.287663i
\(582\) 0 0
\(583\) 9.68601 31.9774i 0.401153 1.32437i
\(584\) 6.88669i 0.284973i
\(585\) 0 0
\(586\) 26.4329 + 19.2046i 1.09193 + 0.793335i
\(587\) 10.9681 + 15.0963i 0.452702 + 0.623091i 0.972975 0.230909i \(-0.0741699\pi\)
−0.520273 + 0.854000i \(0.674170\pi\)
\(588\) 0 0
\(589\) −15.7609 5.12103i −0.649417 0.211008i
\(590\) 5.83411 4.23873i 0.240187 0.174506i
\(591\) 0 0
\(592\) −3.63393 11.1841i −0.149354 0.459664i
\(593\) −2.69018 −0.110472 −0.0552362 0.998473i \(-0.517591\pi\)
−0.0552362 + 0.998473i \(0.517591\pi\)
\(594\) 0 0
\(595\) 6.39033 0.261978
\(596\) 5.22853 + 16.0918i 0.214169 + 0.659145i
\(597\) 0 0
\(598\) 8.16641 5.93324i 0.333949 0.242628i
\(599\) 34.7907 + 11.3042i 1.42151 + 0.461876i 0.916081 0.400993i \(-0.131335\pi\)
0.505428 + 0.862869i \(0.331335\pi\)
\(600\) 0 0
\(601\) −8.40074 11.5626i −0.342673 0.471649i 0.602547 0.798084i \(-0.294153\pi\)
−0.945220 + 0.326434i \(0.894153\pi\)
\(602\) −12.6684 9.20416i −0.516327 0.375134i
\(603\) 0 0
\(604\) 11.1112i 0.452107i
\(605\) 0.440822 + 10.9912i 0.0179220 + 0.446854i
\(606\) 0 0
\(607\) 3.85294 1.25190i 0.156386 0.0508129i −0.229778 0.973243i \(-0.573800\pi\)
0.386164 + 0.922430i \(0.373800\pi\)
\(608\) 0.958278 1.31896i 0.0388633 0.0534908i
\(609\) 0 0
\(610\) −4.11183 + 12.6549i −0.166483 + 0.512382i
\(611\) 0.397874 1.22453i 0.0160963 0.0495392i
\(612\) 0 0
\(613\) −20.5695 + 28.3114i −0.830793 + 1.14349i 0.156982 + 0.987601i \(0.449824\pi\)
−0.987775 + 0.155887i \(0.950176\pi\)
\(614\) −4.59159 + 1.49190i −0.185302 + 0.0602081i
\(615\) 0 0
\(616\) −5.90917 4.11488i −0.238087 0.165793i
\(617\) 11.8147i 0.475642i 0.971309 + 0.237821i \(0.0764332\pi\)
−0.971309 + 0.237821i \(0.923567\pi\)
\(618\) 0 0
\(619\) 13.2833 + 9.65088i 0.533901 + 0.387902i 0.821815 0.569755i \(-0.192962\pi\)
−0.287914 + 0.957656i \(0.592962\pi\)
\(620\) −5.97476 8.22356i −0.239952 0.330266i
\(621\) 0 0
\(622\) −19.1690 6.22839i −0.768607 0.249736i
\(623\) −12.3414 + 8.96655i −0.494448 + 0.359237i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −5.74372 −0.229565
\(627\) 0 0
\(628\) −20.6023 −0.822123
\(629\) −10.6960 32.9188i −0.426476 1.31256i
\(630\) 0 0
\(631\) −34.4072 + 24.9983i −1.36973 + 0.995165i −0.371969 + 0.928245i \(0.621317\pi\)
−0.997758 + 0.0669202i \(0.978683\pi\)
\(632\) −1.93416 0.628447i −0.0769368 0.0249983i
\(633\) 0 0
\(634\) 16.1501 + 22.2287i 0.641403 + 0.882815i
\(635\) 2.71246 + 1.97071i 0.107641 + 0.0782054i
\(636\) 0 0
\(637\) 6.75691i 0.267719i
\(638\) −11.7858 + 4.09236i −0.466606 + 0.162018i
\(639\) 0 0
\(640\) 0.951057 0.309017i 0.0375938 0.0122150i
\(641\) −12.2000 + 16.7919i −0.481872 + 0.663240i −0.978863 0.204515i \(-0.934438\pi\)
0.496991 + 0.867756i \(0.334438\pi\)
\(642\) 0 0
\(643\) 15.3243 47.1634i 0.604332 1.85994i 0.103014 0.994680i \(-0.467151\pi\)
0.501318 0.865263i \(-0.332849\pi\)
\(644\) 2.29152 7.05257i 0.0902985 0.277910i
\(645\) 0 0
\(646\) 2.82055 3.88216i 0.110973 0.152741i
\(647\) −37.7755 + 12.2740i −1.48511 + 0.482541i −0.935634 0.352971i \(-0.885171\pi\)
−0.549473 + 0.835512i \(0.685171\pi\)
\(648\) 0 0
\(649\) −23.9126 + 0.479338i −0.938651 + 0.0188157i
\(650\) 2.95537i 0.115919i
\(651\) 0 0
\(652\) −13.2496 9.62637i −0.518893 0.376998i
\(653\) −21.3597 29.3991i −0.835869 1.15047i −0.986802 0.161931i \(-0.948228\pi\)
0.150933 0.988544i \(-0.451772\pi\)
\(654\) 0 0
\(655\) 14.2171 + 4.61942i 0.555508 + 0.180496i
\(656\) 3.73949 2.71690i 0.146003 0.106077i
\(657\) 0 0
\(658\) −0.292290 0.899575i −0.0113946 0.0350691i
\(659\) −46.1554 −1.79796 −0.898979 0.437992i \(-0.855690\pi\)
−0.898979 + 0.437992i \(0.855690\pi\)
\(660\) 0 0
\(661\) 49.9012 1.94093 0.970466 0.241239i \(-0.0775539\pi\)
0.970466 + 0.241239i \(0.0775539\pi\)
\(662\) −9.38476 28.8833i −0.364749 1.12258i
\(663\) 0 0
\(664\) 8.36116 6.07474i 0.324476 0.235746i
\(665\) 3.36635 + 1.09379i 0.130542 + 0.0424155i
\(666\) 0 0
\(667\) −7.55201 10.3945i −0.292415 0.402475i
\(668\) 18.9413 + 13.7617i 0.732862 + 0.532455i
\(669\) 0 0
\(670\) 5.20687i 0.201159i
\(671\) 35.1761 26.6502i 1.35796 1.02882i
\(672\) 0 0
\(673\) −31.2825 + 10.1643i −1.20585 + 0.391805i −0.841911 0.539616i \(-0.818569\pi\)
−0.363942 + 0.931422i \(0.618569\pi\)
\(674\) −14.1360 + 19.4566i −0.544499 + 0.749439i
\(675\) 0 0
\(676\) 1.31819 4.05699i 0.0506998 0.156038i
\(677\) 6.45255 19.8589i 0.247992 0.763240i −0.747138 0.664669i \(-0.768573\pi\)
0.995130 0.0985715i \(-0.0314273\pi\)
\(678\) 0 0
\(679\) 8.25609 11.3635i 0.316840 0.436092i
\(680\) 2.79930 0.909547i 0.107348 0.0348795i
\(681\) 0 0
\(682\) 0.675657 + 33.7063i 0.0258723 + 1.29068i
\(683\) 25.8461i 0.988972i −0.869186 0.494486i \(-0.835356\pi\)
0.869186 0.494486i \(-0.164644\pi\)
\(684\) 0 0
\(685\) 1.49334 + 1.08498i 0.0570578 + 0.0414549i
\(686\) −11.8507 16.3110i −0.452460 0.622758i
\(687\) 0 0
\(688\) −6.85948 2.22878i −0.261515 0.0849715i
\(689\) −24.0868 + 17.5001i −0.917633 + 0.666699i
\(690\) 0 0
\(691\) −0.451065 1.38824i −0.0171593 0.0528110i 0.942110 0.335303i \(-0.108839\pi\)
−0.959270 + 0.282492i \(0.908839\pi\)
\(692\) −0.936876 −0.0356147
\(693\) 0 0
\(694\) 17.0063 0.645550
\(695\) 4.61452 + 14.2020i 0.175039 + 0.538714i
\(696\) 0 0
\(697\) 11.0066 7.99680i 0.416906 0.302900i
\(698\) −12.7850 4.15410i −0.483919 0.157235i
\(699\) 0 0
\(700\) 1.27614 + 1.75646i 0.0482336 + 0.0663879i
\(701\) −17.2156 12.5078i −0.650223 0.472415i 0.213124 0.977025i \(-0.431636\pi\)
−0.863347 + 0.504610i \(0.831636\pi\)
\(702\) 0 0
\(703\) 19.1720i 0.723086i
\(704\) −3.17420 0.961471i −0.119632 0.0362368i
\(705\) 0 0
\(706\) 5.05838 1.64357i 0.190375 0.0618565i
\(707\) 6.20534 8.54092i 0.233376 0.321214i
\(708\) 0 0
\(709\) −5.80501 + 17.8660i −0.218012 + 0.670971i 0.780914 + 0.624638i \(0.214754\pi\)
−0.998926 + 0.0463332i \(0.985246\pi\)
\(710\) −2.66633 + 8.20611i −0.100066 + 0.307970i
\(711\) 0 0
\(712\) −4.12995 + 5.68440i −0.154777 + 0.213032i
\(713\) −33.0194 + 10.7287i −1.23659 + 0.401791i
\(714\) 0 0
\(715\) 5.60131 8.04375i 0.209477 0.300819i
\(716\) 19.9184i 0.744385i
\(717\) 0 0
\(718\) 12.3354 + 8.96218i 0.460352 + 0.334466i
\(719\) −12.8075 17.6280i −0.477639 0.657413i 0.500410 0.865788i \(-0.333183\pi\)
−0.978049 + 0.208375i \(0.933183\pi\)
\(720\) 0 0
\(721\) 8.52986 + 2.77152i 0.317669 + 0.103217i
\(722\) −13.2210 + 9.60562i −0.492035 + 0.357484i
\(723\) 0 0
\(724\) 0.833100 + 2.56402i 0.0309619 + 0.0952910i
\(725\) 3.76169 0.139706
\(726\) 0 0
\(727\) −4.33889 −0.160921 −0.0804603 0.996758i \(-0.525639\pi\)
−0.0804603 + 0.996758i \(0.525639\pi\)
\(728\) 1.98278 + 6.10238i 0.0734868 + 0.226169i
\(729\) 0 0
\(730\) 5.57145 4.04789i 0.206209 0.149819i
\(731\) −20.1899 6.56010i −0.746751 0.242634i
\(732\) 0 0
\(733\) 24.4947 + 33.7141i 0.904734 + 1.24526i 0.968933 + 0.247322i \(0.0795506\pi\)
−0.0641994 + 0.997937i \(0.520449\pi\)
\(734\) 9.93552 + 7.21858i 0.366727 + 0.266443i
\(735\) 0 0
\(736\) 3.41555i 0.125899i
\(737\) −9.86857 + 14.1717i −0.363513 + 0.522023i
\(738\) 0 0
\(739\) −22.8157 + 7.41327i −0.839289 + 0.272702i −0.696953 0.717117i \(-0.745461\pi\)
−0.142336 + 0.989818i \(0.545461\pi\)
\(740\) 6.91215 9.51376i 0.254096 0.349733i
\(741\) 0 0
\(742\) −6.75883 + 20.8015i −0.248124 + 0.763648i
\(743\) −7.50279 + 23.0912i −0.275251 + 0.847134i 0.713902 + 0.700245i \(0.246926\pi\)
−0.989153 + 0.146889i \(0.953074\pi\)
\(744\) 0 0
\(745\) −9.94526 + 13.6885i −0.364366 + 0.501507i
\(746\) 31.3290 10.1794i 1.14704 0.372695i
\(747\) 0 0
\(748\) −9.34281 2.82995i −0.341607 0.103473i
\(749\) 14.7673i 0.539586i
\(750\) 0 0
\(751\) 16.1133 + 11.7070i 0.587984 + 0.427195i 0.841594 0.540111i \(-0.181618\pi\)
−0.253610 + 0.967307i \(0.581618\pi\)
\(752\) −0.256076 0.352459i −0.00933815 0.0128529i
\(753\) 0 0
\(754\) 10.5731 + 3.43540i 0.385049 + 0.125110i
\(755\) 8.98913 6.53099i 0.327148 0.237687i
\(756\) 0 0
\(757\) 10.4833 + 32.2643i 0.381023 + 1.17267i 0.939325 + 0.343029i \(0.111453\pi\)
−0.558302 + 0.829638i \(0.688547\pi\)
\(758\) 26.2801 0.954536
\(759\) 0 0
\(760\) 1.63032 0.0591379
\(761\) −10.9848 33.8078i −0.398200 1.22553i −0.926442 0.376439i \(-0.877149\pi\)
0.528242 0.849094i \(-0.322851\pi\)
\(762\) 0 0
\(763\) 9.38944 6.82183i 0.339921 0.246967i
\(764\) −6.90110 2.24230i −0.249673 0.0811237i
\(765\) 0 0
\(766\) 5.46436 + 7.52105i 0.197435 + 0.271747i
\(767\) 17.2420 + 12.5270i 0.622572 + 0.452325i
\(768\) 0 0
\(769\) 27.6948i 0.998701i −0.866400 0.499351i \(-0.833572\pi\)
0.866400 0.499351i \(-0.166428\pi\)
\(770\) −0.144313 7.19929i −0.00520067 0.259444i
\(771\) 0 0
\(772\) 12.6084 4.09673i 0.453788 0.147445i
\(773\) 27.9789 38.5097i 1.00633 1.38510i 0.0849748 0.996383i \(-0.472919\pi\)
0.921358 0.388715i \(-0.127081\pi\)
\(774\) 0 0
\(775\) 3.14112 9.66737i 0.112832 0.347262i
\(776\) 1.99921 6.15293i 0.0717674 0.220877i
\(777\) 0 0
\(778\) −12.9712 + 17.8534i −0.465042 + 0.640075i
\(779\) 7.16694 2.32868i 0.256782 0.0834336i
\(780\) 0 0
\(781\) 22.8101 17.2814i 0.816208 0.618377i
\(782\) 10.0532i 0.359501i
\(783\) 0 0
\(784\) −1.84967 1.34386i −0.0660596 0.0479951i
\(785\) −12.1098 16.6676i −0.432216 0.594894i
\(786\) 0 0
\(787\) −20.5218 6.66795i −0.731524 0.237687i −0.0805117 0.996754i \(-0.525655\pi\)
−0.651012 + 0.759067i \(0.725655\pi\)
\(788\) −1.76382 + 1.28149i −0.0628335 + 0.0456512i
\(789\) 0 0
\(790\) −0.628447 1.93416i −0.0223591 0.0688143i
\(791\) −28.1758 −1.00182
\(792\) 0 0
\(793\) −39.3246 −1.39646
\(794\) 3.73292 + 11.4887i 0.132476 + 0.407720i
\(795\) 0 0
\(796\) −2.00896 + 1.45960i −0.0712058 + 0.0517340i
\(797\) −30.2700 9.83531i −1.07222 0.348384i −0.280866 0.959747i \(-0.590622\pi\)
−0.791351 + 0.611362i \(0.790622\pi\)
\(798\) 0 0
\(799\) −0.753724 1.03741i −0.0266648 0.0367010i
\(800\) 0.809017 + 0.587785i 0.0286031 + 0.0207813i
\(801\) 0 0
\(802\) 12.1611i 0.429424i
\(803\) −22.8360 + 0.457757i −0.805864 + 0.0161539i
\(804\) 0 0
\(805\) 7.05257 2.29152i 0.248571 0.0807655i
\(806\) 17.6577 24.3037i 0.621964 0.856060i
\(807\) 0 0
\(808\) 1.50262 4.62459i 0.0528620 0.162692i
\(809\) −3.46369 + 10.6602i −0.121777 + 0.374791i −0.993300 0.115563i \(-0.963133\pi\)
0.871523 + 0.490354i \(0.163133\pi\)
\(810\) 0 0
\(811\) −13.4404 + 18.4992i −0.471957 + 0.649594i −0.976935 0.213539i \(-0.931501\pi\)
0.504977 + 0.863133i \(0.331501\pi\)
\(812\) 7.76729 2.52375i 0.272578 0.0885661i
\(813\) 0 0
\(814\) −36.8445 + 12.7934i −1.29140 + 0.448408i
\(815\) 16.3774i 0.573674i
\(816\) 0 0
\(817\) −9.51296 6.91157i −0.332816 0.241805i
\(818\) −4.32707 5.95570i −0.151292 0.208236i
\(819\) 0 0
\(820\) 4.39603 + 1.42836i 0.153516 + 0.0498804i
\(821\) 17.5440 12.7465i 0.612290 0.444854i −0.237930 0.971282i \(-0.576469\pi\)
0.850220 + 0.526428i \(0.176469\pi\)
\(822\) 0 0
\(823\) 7.10488 + 21.8666i 0.247661 + 0.762221i 0.995187 + 0.0979893i \(0.0312411\pi\)
−0.747527 + 0.664231i \(0.768759\pi\)
\(824\) 4.13100 0.143910
\(825\) 0 0
\(826\) 15.6566 0.544763
\(827\) 5.31978 + 16.3726i 0.184987 + 0.569331i 0.999948 0.0101845i \(-0.00324188\pi\)
−0.814961 + 0.579515i \(0.803242\pi\)
\(828\) 0 0
\(829\) 18.8438 13.6908i 0.654473 0.475503i −0.210319 0.977633i \(-0.567450\pi\)
0.864792 + 0.502130i \(0.167450\pi\)
\(830\) 9.82914 + 3.19368i 0.341174 + 0.110854i
\(831\) 0 0
\(832\) 1.73712 + 2.39095i 0.0602240 + 0.0828912i
\(833\) −5.44423 3.95546i −0.188631 0.137049i
\(834\) 0 0
\(835\) 23.4128i 0.810232i
\(836\) −4.43730 3.08994i −0.153467 0.106868i
\(837\) 0 0
\(838\) −19.1752 + 6.23042i −0.662398 + 0.215226i
\(839\) 1.15121 1.58450i 0.0397441 0.0547031i −0.788682 0.614801i \(-0.789236\pi\)
0.828427 + 0.560098i \(0.189236\pi\)
\(840\) 0 0
\(841\) −4.58881 + 14.1229i −0.158235 + 0.486996i
\(842\) −10.8289 + 33.3278i −0.373187 + 1.14855i
\(843\) 0 0
\(844\) −11.2978 + 15.5501i −0.388887 + 0.535257i
\(845\) 4.05699 1.31819i 0.139565 0.0453473i
\(846\) 0 0
\(847\) −13.2520 + 19.8681i −0.455344 + 0.682675i
\(848\) 10.0742i 0.345948i
\(849\) 0 0
\(850\) 2.38122 + 1.73006i 0.0816753 + 0.0593406i
\(851\) −23.6088 32.4948i −0.809300 1.11391i
\(852\) 0 0
\(853\) −18.6695 6.06608i −0.639231 0.207699i −0.0285710 0.999592i \(-0.509096\pi\)
−0.610660 + 0.791893i \(0.709096\pi\)
\(854\) −23.3717 + 16.9805i −0.799763 + 0.581062i
\(855\) 0 0
\(856\) −2.10186 6.46885i −0.0718400 0.221101i
\(857\) −13.9010 −0.474850 −0.237425 0.971406i \(-0.576303\pi\)
−0.237425 + 0.971406i \(0.576303\pi\)
\(858\) 0 0
\(859\) −1.33380 −0.0455088 −0.0227544 0.999741i \(-0.507244\pi\)
−0.0227544 + 0.999741i \(0.507244\pi\)
\(860\) −2.22878 6.85948i −0.0760008 0.233906i
\(861\) 0 0
\(862\) 13.1238 9.53497i 0.446997 0.324762i
\(863\) 14.5348 + 4.72265i 0.494771 + 0.160761i 0.545765 0.837938i \(-0.316239\pi\)
−0.0509943 + 0.998699i \(0.516239\pi\)
\(864\) 0 0
\(865\) −0.550682 0.757949i −0.0187237 0.0257710i
\(866\) −11.1385 8.09262i −0.378503 0.274998i
\(867\) 0 0
\(868\) 22.0690i 0.749070i
\(869\) −1.95534 + 6.45537i −0.0663304 + 0.218983i
\(870\) 0 0
\(871\) 14.6351 4.75523i 0.495892 0.161125i
\(872\) 3.14210 4.32473i 0.106405 0.146454i
\(873\) 0 0
\(874\) 1.72074 5.29591i 0.0582050 0.179137i
\(875\) −0.670908 + 2.06484i −0.0226808 + 0.0698044i
\(876\) 0 0
\(877\) 18.4436 25.3854i 0.622794 0.857203i −0.374758 0.927123i \(-0.622274\pi\)
0.997553 + 0.0699195i \(0.0222743\pi\)
\(878\) −11.6162 + 3.77433i −0.392028 + 0.127377i
\(879\) 0 0
\(880\) −1.08790 3.13312i −0.0366732 0.105618i
\(881\) 14.8675i 0.500900i 0.968130 + 0.250450i \(0.0805785\pi\)
−0.968130 + 0.250450i \(0.919421\pi\)
\(882\) 0 0
\(883\) 21.5919 + 15.6874i 0.726624 + 0.527924i 0.888494 0.458889i \(-0.151752\pi\)
−0.161869 + 0.986812i \(0.551752\pi\)
\(884\) 5.11298 + 7.03741i 0.171968 + 0.236694i
\(885\) 0 0
\(886\) 18.7802 + 6.10206i 0.630934 + 0.205003i
\(887\) −24.8033 + 18.0207i −0.832814 + 0.605075i −0.920354 0.391086i \(-0.872099\pi\)
0.0875402 + 0.996161i \(0.472099\pi\)
\(888\) 0 0
\(889\) 2.24941 + 6.92296i 0.0754426 + 0.232189i
\(890\) −7.02630 −0.235522
\(891\) 0 0
\(892\) −15.5582 −0.520927
\(893\) −0.219486 0.675507i −0.00734481 0.0226050i
\(894\) 0 0
\(895\) −16.1143 + 11.7077i −0.538642 + 0.391346i
\(896\) 2.06484 + 0.670908i 0.0689815 + 0.0224134i
\(897\) 0 0
\(898\) 13.6667 + 18.8106i 0.456063 + 0.627717i
\(899\) −30.9345 22.4752i −1.03172 0.749590i
\(900\) 0 0
\(901\) 29.6518i 0.987845i
\(902\) −9.25768 12.2194i −0.308247 0.406861i
\(903\) 0 0
\(904\) −12.3425 + 4.01032i −0.410505 + 0.133381i
\(905\) −1.58465 + 2.18108i −0.0526755 + 0.0725017i
\(906\) 0 0
\(907\) 8.77726 27.0136i 0.291444 0.896972i −0.692949 0.720987i \(-0.743689\pi\)
0.984393 0.175986i \(-0.0563112\pi\)
\(908\) 4.65250 14.3189i 0.154399 0.475190i
\(909\) 0 0
\(910\) −3.77148 + 5.19099i −0.125023 + 0.172080i
\(911\) 34.9293 11.3492i 1.15726 0.376016i 0.333385 0.942791i \(-0.391809\pi\)
0.823873 + 0.566775i \(0.191809\pi\)
\(912\) 0 0
\(913\) −20.6994 27.3215i −0.685049 0.904209i
\(914\) 5.39508i 0.178453i
\(915\) 0 0
\(916\) −9.40819 6.83545i −0.310855 0.225850i
\(917\) 19.0767 + 26.2569i 0.629969 + 0.867078i
\(918\) 0 0
\(919\) −37.1303 12.0644i −1.22482 0.397967i −0.375983 0.926627i \(-0.622695\pi\)
−0.848834 + 0.528660i \(0.822695\pi\)
\(920\) 2.76324 2.00761i 0.0911013 0.0661890i
\(921\) 0 0
\(922\) −0.417375 1.28455i −0.0137455 0.0423043i
\(923\) −25.5002 −0.839349
\(924\) 0 0
\(925\) 11.7597 0.386655
\(926\) 6.10493 + 18.7890i 0.200621 + 0.617446i
\(927\) 0 0
\(928\) 3.04327 2.21107i 0.0999002 0.0725818i
\(929\) −14.9921 4.87123i −0.491875 0.159820i 0.0525688 0.998617i \(-0.483259\pi\)
−0.544443 + 0.838798i \(0.683259\pi\)
\(930\) 0 0
\(931\) −2.19093 3.01555i −0.0718047 0.0988307i
\(932\) 6.79119 + 4.93409i 0.222453 + 0.161621i
\(933\) 0 0
\(934\) 16.5960i 0.543037i
\(935\) −3.20209 9.22190i −0.104720 0.301588i
\(936\) 0 0
\(937\) −50.8834 + 16.5330i −1.66229 + 0.540111i −0.981350 0.192229i \(-0.938428\pi\)
−0.680940 + 0.732340i \(0.738428\pi\)
\(938\) 6.64471 9.14566i 0.216958 0.298616i
\(939\) 0 0
\(940\) 0.134627 0.414340i 0.00439106 0.0135143i
\(941\) −5.26886 + 16.2159i −0.171760 + 0.528622i −0.999471 0.0325325i \(-0.989643\pi\)
0.827711 + 0.561155i \(0.189643\pi\)
\(942\) 0 0
\(943\) 9.27971 12.7724i 0.302189 0.415927i
\(944\) 6.85841 2.22843i 0.223222 0.0725293i
\(945\) 0 0
\(946\) −6.93460 + 22.8939i −0.225463 + 0.744345i
\(947\) 6.85596i 0.222789i −0.993776 0.111394i \(-0.964468\pi\)
0.993776 0.111394i \(-0.0355317\pi\)
\(948\) 0 0
\(949\) 16.4657 + 11.9630i 0.534500 + 0.388337i
\(950\) 0.958278 + 1.31896i 0.0310906 + 0.0427926i
\(951\) 0 0
\(952\) 6.07756 + 1.97472i 0.196975 + 0.0640010i
\(953\) −34.9516 + 25.3938i −1.13219 + 0.822586i −0.986012 0.166672i \(-0.946698\pi\)
−0.146180 + 0.989258i \(0.546698\pi\)
\(954\) 0 0
\(955\) −2.24230 6.90110i −0.0725593 0.223314i
\(956\) 13.8079 0.446579
\(957\) 0 0
\(958\) −5.00608 −0.161739
\(959\) 1.23841 + 3.81144i 0.0399904 + 0.123078i
\(960\) 0 0
\(961\) −58.5119 + 42.5114i −1.88748 + 1.37133i
\(962\) 33.0532 + 10.7396i 1.06568 + 0.346260i
\(963\) 0 0
\(964\) 0.500056 + 0.688268i 0.0161057 + 0.0221676i
\(965\) 10.7254 + 7.79245i 0.345262 + 0.250848i
\(966\) 0 0
\(967\) 0.923105i 0.0296850i 0.999890 + 0.0148425i \(0.00472469\pi\)
−0.999890 + 0.0148425i \(0.995275\pi\)
\(968\) −2.97721 + 10.5894i −0.0956911 + 0.340357i
\(969\) 0 0
\(970\) 6.15293 1.99921i 0.197559 0.0641907i
\(971\) 23.2942 32.0617i 0.747545 1.02891i −0.250604 0.968090i \(-0.580629\pi\)
0.998149 0.0608176i \(-0.0193708\pi\)
\(972\) 0 0
\(973\) −10.0186 + 30.8341i −0.321182 + 0.988495i
\(974\) −4.73439 + 14.5710i −0.151700 + 0.466883i
\(975\) 0 0
\(976\) −7.82116 + 10.7649i −0.250349 + 0.344576i
\(977\) −43.3945 + 14.0997i −1.38831 + 0.451091i −0.905393 0.424574i \(-0.860424\pi\)
−0.482920 + 0.875664i \(0.660424\pi\)
\(978\) 0 0
\(979\) 19.1237 + 13.3169i 0.611197 + 0.425611i
\(980\) 2.28631i 0.0730336i
\(981\) 0 0
\(982\) −7.10090 5.15910i −0.226599 0.164634i
\(983\) −4.75580 6.54580i −0.151687 0.208779i 0.726411 0.687261i \(-0.241187\pi\)
−0.878097 + 0.478482i \(0.841187\pi\)
\(984\) 0 0
\(985\) −2.07350 0.673720i −0.0660671 0.0214665i
\(986\) 8.95743 6.50795i 0.285263 0.207255i
\(987\) 0 0
\(988\) 1.48891 + 4.58238i 0.0473684 + 0.145785i
\(989\) −24.6346 −0.783336
\(990\) 0 0
\(991\) −25.1632 −0.799336 −0.399668 0.916660i \(-0.630875\pi\)
−0.399668 + 0.916660i \(0.630875\pi\)
\(992\) −3.14112 9.66737i −0.0997306 0.306939i
\(993\) 0 0
\(994\) −15.1555 + 11.0111i −0.480702 + 0.349250i
\(995\) −2.36168 0.767356i −0.0748702 0.0243268i
\(996\) 0 0
\(997\) 7.41024 + 10.1993i 0.234685 + 0.323016i 0.910074 0.414446i \(-0.136024\pi\)
−0.675390 + 0.737461i \(0.736024\pi\)
\(998\) −2.34627 1.70466i −0.0742698 0.0539602i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.611.1 yes 32
3.2 odd 2 990.2.z.b.611.5 yes 32
11.2 odd 10 990.2.z.b.431.5 yes 32
33.2 even 10 inner 990.2.z.a.431.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.431.1 32 33.2 even 10 inner
990.2.z.a.611.1 yes 32 1.1 even 1 trivial
990.2.z.b.431.5 yes 32 11.2 odd 10
990.2.z.b.611.5 yes 32 3.2 odd 2