Properties

Label 990.2.z.a.431.7
Level $990$
Weight $2$
Character 990.431
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 431.7
Character \(\chi\) \(=\) 990.431
Dual form 990.2.z.a.611.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(0.951057 - 0.309017i) q^{5} +(0.0895822 - 0.123299i) q^{7} +(-0.809017 + 0.587785i) q^{8} -1.00000i q^{10} +(-3.00966 + 1.39353i) q^{11} +(-5.28073 - 1.71581i) q^{13} +(-0.0895822 - 0.123299i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-2.04130 - 6.28247i) q^{17} +(0.940078 + 1.29391i) q^{19} +(-0.951057 - 0.309017i) q^{20} +(0.395293 + 3.29298i) q^{22} -5.41177i q^{23} +(0.809017 - 0.587785i) q^{25} +(-3.26367 + 4.49206i) q^{26} +(-0.144947 + 0.0470961i) q^{28} +(-7.87592 - 5.72219i) q^{29} +(0.344004 - 1.05873i) q^{31} +1.00000 q^{32} -6.60578 q^{34} +(0.0470961 - 0.144947i) q^{35} +(2.04795 + 1.48792i) q^{37} +(1.52108 - 0.494228i) q^{38} +(-0.587785 + 0.809017i) q^{40} +(4.72024 - 3.42946i) q^{41} -2.61291i q^{43} +(3.25397 + 0.641642i) q^{44} +(-5.14690 - 1.67233i) q^{46} +(2.74273 + 3.77505i) q^{47} +(2.15594 + 6.63530i) q^{49} +(-0.309017 - 0.951057i) q^{50} +(3.26367 + 4.49206i) q^{52} +(-2.33573 - 0.758925i) q^{53} +(-2.43173 + 2.25537i) q^{55} +0.152406i q^{56} +(-7.87592 + 5.72219i) q^{58} +(7.83490 - 10.7838i) q^{59} +(-8.25376 + 2.68181i) q^{61} +(-0.900614 - 0.654334i) q^{62} +(0.309017 - 0.951057i) q^{64} -5.55249 q^{65} -5.15651 q^{67} +(-2.04130 + 6.28247i) q^{68} +(-0.123299 - 0.0895822i) q^{70} +(-11.4955 + 3.73511i) q^{71} +(-5.67506 + 7.81104i) q^{73} +(2.04795 - 1.48792i) q^{74} -1.59936i q^{76} +(-0.0977902 + 0.495925i) q^{77} +(11.8575 + 3.85275i) q^{79} +(0.587785 + 0.809017i) q^{80} +(-1.80297 - 5.54898i) q^{82} +(-4.00918 - 12.3390i) q^{83} +(-3.88278 - 5.34419i) q^{85} +(-2.48502 - 0.807432i) q^{86} +(1.61577 - 2.89643i) q^{88} +0.935139i q^{89} +(-0.684618 + 0.497404i) q^{91} +(-3.18096 + 4.37821i) q^{92} +(4.43783 - 1.44194i) q^{94} +(1.29391 + 0.940078i) q^{95} +(-2.38481 + 7.33969i) q^{97} +6.97677 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) 0 0
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0.951057 0.309017i 0.425325 0.138197i
\(6\) 0 0
\(7\) 0.0895822 0.123299i 0.0338589 0.0466027i −0.791752 0.610843i \(-0.790831\pi\)
0.825611 + 0.564240i \(0.190831\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −3.00966 + 1.39353i −0.907447 + 0.420166i
\(12\) 0 0
\(13\) −5.28073 1.71581i −1.46461 0.475881i −0.535136 0.844766i \(-0.679740\pi\)
−0.929475 + 0.368885i \(0.879740\pi\)
\(14\) −0.0895822 0.123299i −0.0239418 0.0329531i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.04130 6.28247i −0.495088 1.52372i −0.816820 0.576893i \(-0.804265\pi\)
0.321732 0.946831i \(-0.395735\pi\)
\(18\) 0 0
\(19\) 0.940078 + 1.29391i 0.215669 + 0.296842i 0.903120 0.429388i \(-0.141271\pi\)
−0.687452 + 0.726230i \(0.741271\pi\)
\(20\) −0.951057 0.309017i −0.212663 0.0690983i
\(21\) 0 0
\(22\) 0.395293 + 3.29298i 0.0842768 + 0.702067i
\(23\) 5.41177i 1.12843i −0.825627 0.564216i \(-0.809178\pi\)
0.825627 0.564216i \(-0.190822\pi\)
\(24\) 0 0
\(25\) 0.809017 0.587785i 0.161803 0.117557i
\(26\) −3.26367 + 4.49206i −0.640059 + 0.880965i
\(27\) 0 0
\(28\) −0.144947 + 0.0470961i −0.0273924 + 0.00890033i
\(29\) −7.87592 5.72219i −1.46252 1.06258i −0.982697 0.185219i \(-0.940701\pi\)
−0.479824 0.877365i \(-0.659299\pi\)
\(30\) 0 0
\(31\) 0.344004 1.05873i 0.0617849 0.190154i −0.915400 0.402546i \(-0.868125\pi\)
0.977185 + 0.212392i \(0.0681253\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.60578 −1.13288
\(35\) 0.0470961 0.144947i 0.00796070 0.0245005i
\(36\) 0 0
\(37\) 2.04795 + 1.48792i 0.336681 + 0.244613i 0.743260 0.669002i \(-0.233278\pi\)
−0.406579 + 0.913616i \(0.633278\pi\)
\(38\) 1.52108 0.494228i 0.246751 0.0801744i
\(39\) 0 0
\(40\) −0.587785 + 0.809017i −0.0929370 + 0.127917i
\(41\) 4.72024 3.42946i 0.737178 0.535591i −0.154648 0.987970i \(-0.549424\pi\)
0.891826 + 0.452378i \(0.149424\pi\)
\(42\) 0 0
\(43\) 2.61291i 0.398464i −0.979952 0.199232i \(-0.936155\pi\)
0.979952 0.199232i \(-0.0638448\pi\)
\(44\) 3.25397 + 0.641642i 0.490554 + 0.0967311i
\(45\) 0 0
\(46\) −5.14690 1.67233i −0.758869 0.246571i
\(47\) 2.74273 + 3.77505i 0.400069 + 0.550647i 0.960761 0.277377i \(-0.0894650\pi\)
−0.560693 + 0.828024i \(0.689465\pi\)
\(48\) 0 0
\(49\) 2.15594 + 6.63530i 0.307992 + 0.947901i
\(50\) −0.309017 0.951057i −0.0437016 0.134500i
\(51\) 0 0
\(52\) 3.26367 + 4.49206i 0.452590 + 0.622936i
\(53\) −2.33573 0.758925i −0.320837 0.104246i 0.144171 0.989553i \(-0.453949\pi\)
−0.465008 + 0.885306i \(0.653949\pi\)
\(54\) 0 0
\(55\) −2.43173 + 2.25537i −0.327895 + 0.304114i
\(56\) 0.152406i 0.0203661i
\(57\) 0 0
\(58\) −7.87592 + 5.72219i −1.03416 + 0.751360i
\(59\) 7.83490 10.7838i 1.02002 1.40393i 0.107825 0.994170i \(-0.465611\pi\)
0.912192 0.409763i \(-0.134389\pi\)
\(60\) 0 0
\(61\) −8.25376 + 2.68181i −1.05679 + 0.343371i −0.785328 0.619080i \(-0.787506\pi\)
−0.271458 + 0.962450i \(0.587506\pi\)
\(62\) −0.900614 0.654334i −0.114378 0.0831005i
\(63\) 0 0
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −5.55249 −0.688701
\(66\) 0 0
\(67\) −5.15651 −0.629968 −0.314984 0.949097i \(-0.601999\pi\)
−0.314984 + 0.949097i \(0.601999\pi\)
\(68\) −2.04130 + 6.28247i −0.247544 + 0.761862i
\(69\) 0 0
\(70\) −0.123299 0.0895822i −0.0147371 0.0107071i
\(71\) −11.4955 + 3.73511i −1.36426 + 0.443275i −0.897464 0.441088i \(-0.854592\pi\)
−0.466798 + 0.884364i \(0.654592\pi\)
\(72\) 0 0
\(73\) −5.67506 + 7.81104i −0.664215 + 0.914214i −0.999612 0.0278634i \(-0.991130\pi\)
0.335397 + 0.942077i \(0.391130\pi\)
\(74\) 2.04795 1.48792i 0.238070 0.172968i
\(75\) 0 0
\(76\) 1.59936i 0.183459i
\(77\) −0.0977902 + 0.495925i −0.0111442 + 0.0565159i
\(78\) 0 0
\(79\) 11.8575 + 3.85275i 1.33408 + 0.433468i 0.887306 0.461180i \(-0.152574\pi\)
0.446771 + 0.894648i \(0.352574\pi\)
\(80\) 0.587785 + 0.809017i 0.0657164 + 0.0904508i
\(81\) 0 0
\(82\) −1.80297 5.54898i −0.199105 0.612782i
\(83\) −4.00918 12.3390i −0.440065 1.35438i −0.887806 0.460217i \(-0.847772\pi\)
0.447742 0.894163i \(-0.352228\pi\)
\(84\) 0 0
\(85\) −3.88278 5.34419i −0.421147 0.579659i
\(86\) −2.48502 0.807432i −0.267967 0.0870677i
\(87\) 0 0
\(88\) 1.61577 2.89643i 0.172241 0.308760i
\(89\) 0.935139i 0.0991246i 0.998771 + 0.0495623i \(0.0157826\pi\)
−0.998771 + 0.0495623i \(0.984217\pi\)
\(90\) 0 0
\(91\) −0.684618 + 0.497404i −0.0717674 + 0.0521421i
\(92\) −3.18096 + 4.37821i −0.331638 + 0.456460i
\(93\) 0 0
\(94\) 4.43783 1.44194i 0.457728 0.148725i
\(95\) 1.29391 + 0.940078i 0.132752 + 0.0964499i
\(96\) 0 0
\(97\) −2.38481 + 7.33969i −0.242141 + 0.745233i 0.753953 + 0.656929i \(0.228145\pi\)
−0.996094 + 0.0883040i \(0.971855\pi\)
\(98\) 6.97677 0.704760
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −5.07090 + 15.6066i −0.504573 + 1.55292i 0.296914 + 0.954904i \(0.404043\pi\)
−0.801487 + 0.598012i \(0.795957\pi\)
\(102\) 0 0
\(103\) 3.89495 + 2.82985i 0.383781 + 0.278833i 0.762902 0.646514i \(-0.223774\pi\)
−0.379121 + 0.925347i \(0.623774\pi\)
\(104\) 5.28073 1.71581i 0.517818 0.168249i
\(105\) 0 0
\(106\) −1.44356 + 1.98689i −0.140211 + 0.192984i
\(107\) 16.0668 11.6732i 1.55324 1.12849i 0.611947 0.790899i \(-0.290387\pi\)
0.941292 0.337594i \(-0.109613\pi\)
\(108\) 0 0
\(109\) 6.93652i 0.664398i −0.943209 0.332199i \(-0.892209\pi\)
0.943209 0.332199i \(-0.107791\pi\)
\(110\) 1.39353 + 3.00966i 0.132868 + 0.286960i
\(111\) 0 0
\(112\) 0.144947 + 0.0470961i 0.0136962 + 0.00445017i
\(113\) 5.29489 + 7.28779i 0.498101 + 0.685577i 0.981856 0.189626i \(-0.0607276\pi\)
−0.483755 + 0.875203i \(0.660728\pi\)
\(114\) 0 0
\(115\) −1.67233 5.14690i −0.155946 0.479951i
\(116\) 3.00833 + 9.25870i 0.279317 + 0.859648i
\(117\) 0 0
\(118\) −7.83490 10.7838i −0.721261 0.992731i
\(119\) −0.957488 0.311107i −0.0877728 0.0285191i
\(120\) 0 0
\(121\) 7.11612 8.38813i 0.646920 0.762558i
\(122\) 8.67852i 0.785716i
\(123\) 0 0
\(124\) −0.900614 + 0.654334i −0.0808775 + 0.0587609i
\(125\) 0.587785 0.809017i 0.0525731 0.0723607i
\(126\) 0 0
\(127\) 13.7362 4.46317i 1.21889 0.396042i 0.372213 0.928147i \(-0.378599\pi\)
0.846678 + 0.532105i \(0.178599\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 0 0
\(130\) −1.71581 + 5.28073i −0.150487 + 0.463151i
\(131\) −13.5703 −1.18564 −0.592821 0.805335i \(-0.701986\pi\)
−0.592821 + 0.805335i \(0.701986\pi\)
\(132\) 0 0
\(133\) 0.243752 0.0211360
\(134\) −1.59345 + 4.90413i −0.137653 + 0.423653i
\(135\) 0 0
\(136\) 5.34419 + 3.88278i 0.458261 + 0.332946i
\(137\) 2.97795 0.967595i 0.254424 0.0826672i −0.179028 0.983844i \(-0.557295\pi\)
0.433452 + 0.901177i \(0.357295\pi\)
\(138\) 0 0
\(139\) −4.01186 + 5.52185i −0.340281 + 0.468357i −0.944524 0.328444i \(-0.893476\pi\)
0.604242 + 0.796801i \(0.293476\pi\)
\(140\) −0.123299 + 0.0895822i −0.0104207 + 0.00757107i
\(141\) 0 0
\(142\) 12.0871i 1.01432i
\(143\) 18.2843 2.19486i 1.52901 0.183544i
\(144\) 0 0
\(145\) −9.25870 3.00833i −0.768893 0.249828i
\(146\) 5.67506 + 7.81104i 0.469671 + 0.646447i
\(147\) 0 0
\(148\) −0.782248 2.40751i −0.0643004 0.197896i
\(149\) 4.23188 + 13.0244i 0.346689 + 1.06700i 0.960673 + 0.277681i \(0.0895657\pi\)
−0.613985 + 0.789318i \(0.710434\pi\)
\(150\) 0 0
\(151\) 4.55787 + 6.27337i 0.370914 + 0.510520i 0.953149 0.302501i \(-0.0978215\pi\)
−0.582235 + 0.813021i \(0.697822\pi\)
\(152\) −1.52108 0.494228i −0.123376 0.0400872i
\(153\) 0 0
\(154\) 0.441434 + 0.246253i 0.0355717 + 0.0198437i
\(155\) 1.11322i 0.0894160i
\(156\) 0 0
\(157\) 15.1300 10.9926i 1.20751 0.877305i 0.212505 0.977160i \(-0.431838\pi\)
0.995002 + 0.0998549i \(0.0318379\pi\)
\(158\) 7.32836 10.0866i 0.583013 0.802449i
\(159\) 0 0
\(160\) 0.951057 0.309017i 0.0751876 0.0244299i
\(161\) −0.667267 0.484798i −0.0525880 0.0382074i
\(162\) 0 0
\(163\) 4.93985 15.2033i 0.386919 1.19081i −0.548160 0.836374i \(-0.684671\pi\)
0.935079 0.354440i \(-0.115329\pi\)
\(164\) −5.83454 −0.455601
\(165\) 0 0
\(166\) −12.9740 −1.00698
\(167\) 7.56336 23.2776i 0.585271 1.80128i −0.0129103 0.999917i \(-0.504110\pi\)
0.598181 0.801361i \(-0.295890\pi\)
\(168\) 0 0
\(169\) 14.4249 + 10.4803i 1.10961 + 0.806176i
\(170\) −6.28247 + 2.04130i −0.481844 + 0.156560i
\(171\) 0 0
\(172\) −1.53583 + 2.11389i −0.117106 + 0.161182i
\(173\) −6.44905 + 4.68551i −0.490312 + 0.356233i −0.805304 0.592862i \(-0.797998\pi\)
0.314992 + 0.949094i \(0.397998\pi\)
\(174\) 0 0
\(175\) 0.152406i 0.0115208i
\(176\) −2.25537 2.43173i −0.170005 0.183299i
\(177\) 0 0
\(178\) 0.889370 + 0.288974i 0.0666611 + 0.0216595i
\(179\) 2.53469 + 3.48870i 0.189452 + 0.260758i 0.893168 0.449723i \(-0.148477\pi\)
−0.703716 + 0.710481i \(0.748477\pi\)
\(180\) 0 0
\(181\) −5.94243 18.2889i −0.441697 1.35940i −0.886066 0.463560i \(-0.846572\pi\)
0.444369 0.895844i \(-0.353428\pi\)
\(182\) 0.261501 + 0.804817i 0.0193837 + 0.0596570i
\(183\) 0 0
\(184\) 3.18096 + 4.37821i 0.234503 + 0.322766i
\(185\) 2.40751 + 0.782248i 0.177004 + 0.0575120i
\(186\) 0 0
\(187\) 14.8985 + 16.0635i 1.08948 + 1.17468i
\(188\) 4.66622i 0.340319i
\(189\) 0 0
\(190\) 1.29391 0.940078i 0.0938698 0.0682004i
\(191\) −9.78384 + 13.4663i −0.707934 + 0.974387i 0.291905 + 0.956447i \(0.405711\pi\)
−0.999839 + 0.0179401i \(0.994289\pi\)
\(192\) 0 0
\(193\) −1.28936 + 0.418938i −0.0928100 + 0.0301558i −0.355054 0.934846i \(-0.615538\pi\)
0.262244 + 0.965002i \(0.415538\pi\)
\(194\) 6.24351 + 4.53618i 0.448258 + 0.325679i
\(195\) 0 0
\(196\) 2.15594 6.63530i 0.153996 0.473950i
\(197\) 5.96944 0.425305 0.212653 0.977128i \(-0.431790\pi\)
0.212653 + 0.977128i \(0.431790\pi\)
\(198\) 0 0
\(199\) −9.51803 −0.674715 −0.337358 0.941377i \(-0.609533\pi\)
−0.337358 + 0.941377i \(0.609533\pi\)
\(200\) −0.309017 + 0.951057i −0.0218508 + 0.0672499i
\(201\) 0 0
\(202\) 13.2758 + 9.64542i 0.934081 + 0.678649i
\(203\) −1.41108 + 0.458489i −0.0990386 + 0.0321796i
\(204\) 0 0
\(205\) 3.42946 4.72024i 0.239524 0.329676i
\(206\) 3.89495 2.82985i 0.271374 0.197165i
\(207\) 0 0
\(208\) 5.55249i 0.384996i
\(209\) −4.63242 2.58419i −0.320431 0.178752i
\(210\) 0 0
\(211\) 8.98630 + 2.91983i 0.618643 + 0.201009i 0.601538 0.798845i \(-0.294555\pi\)
0.0171051 + 0.999854i \(0.494555\pi\)
\(212\) 1.44356 + 1.98689i 0.0991442 + 0.136460i
\(213\) 0 0
\(214\) −6.13698 18.8877i −0.419515 1.29114i
\(215\) −0.807432 2.48502i −0.0550664 0.169477i
\(216\) 0 0
\(217\) −0.0997246 0.137259i −0.00676975 0.00931776i
\(218\) −6.59702 2.14350i −0.446807 0.145176i
\(219\) 0 0
\(220\) 3.29298 0.395293i 0.222013 0.0266507i
\(221\) 36.6785i 2.46727i
\(222\) 0 0
\(223\) 3.28441 2.38627i 0.219941 0.159796i −0.472359 0.881406i \(-0.656598\pi\)
0.692300 + 0.721610i \(0.256598\pi\)
\(224\) 0.0895822 0.123299i 0.00598546 0.00823828i
\(225\) 0 0
\(226\) 8.56731 2.78369i 0.569889 0.185168i
\(227\) 1.03359 + 0.750948i 0.0686019 + 0.0498422i 0.621558 0.783368i \(-0.286500\pi\)
−0.552956 + 0.833211i \(0.686500\pi\)
\(228\) 0 0
\(229\) 5.69723 17.5343i 0.376483 1.15870i −0.565989 0.824413i \(-0.691505\pi\)
0.942472 0.334284i \(-0.108495\pi\)
\(230\) −5.41177 −0.356842
\(231\) 0 0
\(232\) 9.73517 0.639145
\(233\) −2.56554 + 7.89593i −0.168074 + 0.517279i −0.999250 0.0387310i \(-0.987668\pi\)
0.831175 + 0.556010i \(0.187668\pi\)
\(234\) 0 0
\(235\) 3.77505 + 2.74273i 0.246257 + 0.178916i
\(236\) −12.6771 + 4.11905i −0.825211 + 0.268127i
\(237\) 0 0
\(238\) −0.591760 + 0.814488i −0.0383581 + 0.0527954i
\(239\) 14.2272 10.3367i 0.920280 0.668622i −0.0233138 0.999728i \(-0.507422\pi\)
0.943594 + 0.331106i \(0.107422\pi\)
\(240\) 0 0
\(241\) 11.7908i 0.759514i −0.925086 0.379757i \(-0.876008\pi\)
0.925086 0.379757i \(-0.123992\pi\)
\(242\) −5.77858 9.35991i −0.371461 0.601678i
\(243\) 0 0
\(244\) 8.25376 + 2.68181i 0.528393 + 0.171685i
\(245\) 4.10084 + 5.64433i 0.261993 + 0.360603i
\(246\) 0 0
\(247\) −2.74420 8.44577i −0.174609 0.537391i
\(248\) 0.344004 + 1.05873i 0.0218443 + 0.0672297i
\(249\) 0 0
\(250\) −0.587785 0.809017i −0.0371748 0.0511667i
\(251\) 2.51653 + 0.817672i 0.158842 + 0.0516110i 0.387359 0.921929i \(-0.373387\pi\)
−0.228516 + 0.973540i \(0.573387\pi\)
\(252\) 0 0
\(253\) 7.54149 + 16.2876i 0.474129 + 1.02399i
\(254\) 14.4431i 0.906241i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 12.5168 17.2279i 0.780778 1.07465i −0.214417 0.976742i \(-0.568785\pi\)
0.995196 0.0979069i \(-0.0312148\pi\)
\(258\) 0 0
\(259\) 0.366920 0.119219i 0.0227993 0.00740794i
\(260\) 4.49206 + 3.26367i 0.278586 + 0.202404i
\(261\) 0 0
\(262\) −4.19345 + 12.9061i −0.259072 + 0.797342i
\(263\) −9.65974 −0.595645 −0.297822 0.954621i \(-0.596260\pi\)
−0.297822 + 0.954621i \(0.596260\pi\)
\(264\) 0 0
\(265\) −2.45593 −0.150867
\(266\) 0.0753235 0.231822i 0.00461838 0.0142139i
\(267\) 0 0
\(268\) 4.17171 + 3.03092i 0.254827 + 0.185143i
\(269\) −9.17955 + 2.98262i −0.559687 + 0.181853i −0.575180 0.818027i \(-0.695068\pi\)
0.0154934 + 0.999880i \(0.495068\pi\)
\(270\) 0 0
\(271\) 1.14450 1.57527i 0.0695234 0.0956907i −0.772839 0.634602i \(-0.781164\pi\)
0.842363 + 0.538911i \(0.181164\pi\)
\(272\) 5.34419 3.88278i 0.324039 0.235428i
\(273\) 0 0
\(274\) 3.13120i 0.189163i
\(275\) −1.61577 + 2.89643i −0.0974345 + 0.174661i
\(276\) 0 0
\(277\) −17.2145 5.59331i −1.03432 0.336070i −0.257821 0.966193i \(-0.583004\pi\)
−0.776495 + 0.630123i \(0.783004\pi\)
\(278\) 4.01186 + 5.52185i 0.240615 + 0.331178i
\(279\) 0 0
\(280\) 0.0470961 + 0.144947i 0.00281453 + 0.00866224i
\(281\) −7.17964 22.0966i −0.428301 1.31818i −0.899798 0.436307i \(-0.856286\pi\)
0.471497 0.881868i \(-0.343714\pi\)
\(282\) 0 0
\(283\) 13.4332 + 18.4892i 0.798520 + 1.09907i 0.992995 + 0.118160i \(0.0376997\pi\)
−0.194475 + 0.980907i \(0.562300\pi\)
\(284\) 11.4955 + 3.73511i 0.682131 + 0.221638i
\(285\) 0 0
\(286\) 3.56271 18.0676i 0.210667 1.06836i
\(287\) 0.889221i 0.0524891i
\(288\) 0 0
\(289\) −21.5493 + 15.6565i −1.26760 + 0.920968i
\(290\) −5.72219 + 7.87592i −0.336018 + 0.462490i
\(291\) 0 0
\(292\) 9.18243 2.98355i 0.537361 0.174599i
\(293\) −22.5322 16.3706i −1.31635 0.956382i −0.999970 0.00774809i \(-0.997534\pi\)
−0.316377 0.948634i \(-0.602466\pi\)
\(294\) 0 0
\(295\) 4.11905 12.6771i 0.239820 0.738091i
\(296\) −2.53141 −0.147135
\(297\) 0 0
\(298\) 13.6946 0.793309
\(299\) −9.28559 + 28.5781i −0.536999 + 1.65271i
\(300\) 0 0
\(301\) −0.322169 0.234070i −0.0185695 0.0134916i
\(302\) 7.37479 2.39622i 0.424372 0.137887i
\(303\) 0 0
\(304\) −0.940078 + 1.29391i −0.0539171 + 0.0742106i
\(305\) −7.02107 + 5.10111i −0.402025 + 0.292089i
\(306\) 0 0
\(307\) 25.3291i 1.44561i −0.691054 0.722803i \(-0.742853\pi\)
0.691054 0.722803i \(-0.257147\pi\)
\(308\) 0.370611 0.343732i 0.0211175 0.0195859i
\(309\) 0 0
\(310\) −1.05873 0.344004i −0.0601321 0.0195381i
\(311\) 7.22756 + 9.94788i 0.409837 + 0.564092i 0.963179 0.268862i \(-0.0866476\pi\)
−0.553342 + 0.832954i \(0.686648\pi\)
\(312\) 0 0
\(313\) −3.26566 10.0507i −0.184586 0.568097i 0.815355 0.578961i \(-0.196542\pi\)
−0.999941 + 0.0108643i \(0.996542\pi\)
\(314\) −5.77915 17.7864i −0.326136 1.00374i
\(315\) 0 0
\(316\) −7.32836 10.0866i −0.412253 0.567417i
\(317\) 0.647860 + 0.210502i 0.0363874 + 0.0118230i 0.327154 0.944971i \(-0.393910\pi\)
−0.290767 + 0.956794i \(0.593910\pi\)
\(318\) 0 0
\(319\) 31.6779 + 6.24649i 1.77362 + 0.349736i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −0.667267 + 0.484798i −0.0371854 + 0.0270167i
\(323\) 6.20995 8.54726i 0.345531 0.475582i
\(324\) 0 0
\(325\) −5.28073 + 1.71581i −0.292922 + 0.0951762i
\(326\) −12.9327 9.39615i −0.716276 0.520405i
\(327\) 0 0
\(328\) −1.80297 + 5.54898i −0.0995525 + 0.306391i
\(329\) 0.711161 0.0392076
\(330\) 0 0
\(331\) −10.5021 −0.577246 −0.288623 0.957443i \(-0.593197\pi\)
−0.288623 + 0.957443i \(0.593197\pi\)
\(332\) −4.00918 + 12.3390i −0.220032 + 0.677190i
\(333\) 0 0
\(334\) −19.8011 14.3864i −1.08347 0.787187i
\(335\) −4.90413 + 1.59345i −0.267941 + 0.0870595i
\(336\) 0 0
\(337\) −1.47591 + 2.03141i −0.0803978 + 0.110658i −0.847322 0.531080i \(-0.821786\pi\)
0.766924 + 0.641738i \(0.221786\pi\)
\(338\) 14.4249 10.4803i 0.784610 0.570053i
\(339\) 0 0
\(340\) 6.60578i 0.358249i
\(341\) 0.440048 + 3.66581i 0.0238299 + 0.198515i
\(342\) 0 0
\(343\) 2.02589 + 0.658252i 0.109388 + 0.0355423i
\(344\) 1.53583 + 2.11389i 0.0828063 + 0.113973i
\(345\) 0 0
\(346\) 2.46332 + 7.58131i 0.132429 + 0.407574i
\(347\) −3.75461 11.5555i −0.201558 0.620331i −0.999837 0.0180439i \(-0.994256\pi\)
0.798279 0.602287i \(-0.205744\pi\)
\(348\) 0 0
\(349\) 11.2628 + 15.5019i 0.602885 + 0.829799i 0.995969 0.0897032i \(-0.0285918\pi\)
−0.393084 + 0.919503i \(0.628592\pi\)
\(350\) −0.144947 0.0470961i −0.00774774 0.00251739i
\(351\) 0 0
\(352\) −3.00966 + 1.39353i −0.160415 + 0.0742756i
\(353\) 15.8425i 0.843214i 0.906779 + 0.421607i \(0.138534\pi\)
−0.906779 + 0.421607i \(0.861466\pi\)
\(354\) 0 0
\(355\) −9.77863 + 7.10459i −0.518996 + 0.377073i
\(356\) 0.549661 0.756544i 0.0291320 0.0400967i
\(357\) 0 0
\(358\) 4.10122 1.33257i 0.216756 0.0704283i
\(359\) −12.3838 8.99737i −0.653593 0.474863i 0.210900 0.977508i \(-0.432360\pi\)
−0.864493 + 0.502645i \(0.832360\pi\)
\(360\) 0 0
\(361\) 5.08088 15.6373i 0.267415 0.823017i
\(362\) −19.2301 −1.01071
\(363\) 0 0
\(364\) 0.846234 0.0443547
\(365\) −2.98355 + 9.18243i −0.156166 + 0.480631i
\(366\) 0 0
\(367\) −5.62988 4.09035i −0.293878 0.213515i 0.431070 0.902318i \(-0.358136\pi\)
−0.724948 + 0.688804i \(0.758136\pi\)
\(368\) 5.14690 1.67233i 0.268301 0.0871762i
\(369\) 0 0
\(370\) 1.48792 2.04795i 0.0773535 0.106468i
\(371\) −0.302815 + 0.220008i −0.0157214 + 0.0114222i
\(372\) 0 0
\(373\) 20.1218i 1.04187i −0.853597 0.520933i \(-0.825584\pi\)
0.853597 0.520933i \(-0.174416\pi\)
\(374\) 19.8812 9.20538i 1.02803 0.475999i
\(375\) 0 0
\(376\) −4.43783 1.44194i −0.228864 0.0743624i
\(377\) 31.7724 + 43.7309i 1.63636 + 2.25226i
\(378\) 0 0
\(379\) 6.18964 + 19.0498i 0.317941 + 0.978520i 0.974527 + 0.224270i \(0.0719996\pi\)
−0.656587 + 0.754251i \(0.728000\pi\)
\(380\) −0.494228 1.52108i −0.0253534 0.0780296i
\(381\) 0 0
\(382\) 9.78384 + 13.4663i 0.500585 + 0.688996i
\(383\) 35.9330 + 11.6753i 1.83609 + 0.596582i 0.998755 + 0.0498930i \(0.0158880\pi\)
0.837336 + 0.546689i \(0.184112\pi\)
\(384\) 0 0
\(385\) 0.0602452 + 0.501871i 0.00307038 + 0.0255777i
\(386\) 1.35571i 0.0690039i
\(387\) 0 0
\(388\) 6.24351 4.53618i 0.316966 0.230290i
\(389\) −2.95903 + 4.07275i −0.150029 + 0.206497i −0.877416 0.479731i \(-0.840734\pi\)
0.727387 + 0.686227i \(0.240734\pi\)
\(390\) 0 0
\(391\) −33.9993 + 11.0470i −1.71942 + 0.558673i
\(392\) −5.64433 4.10084i −0.285082 0.207124i
\(393\) 0 0
\(394\) 1.84466 5.67728i 0.0929326 0.286017i
\(395\) 12.4678 0.627321
\(396\) 0 0
\(397\) 4.46058 0.223870 0.111935 0.993716i \(-0.464295\pi\)
0.111935 + 0.993716i \(0.464295\pi\)
\(398\) −2.94123 + 9.05218i −0.147431 + 0.453745i
\(399\) 0 0
\(400\) 0.809017 + 0.587785i 0.0404508 + 0.0293893i
\(401\) 8.52629 2.77036i 0.425782 0.138345i −0.0882842 0.996095i \(-0.528138\pi\)
0.514067 + 0.857750i \(0.328138\pi\)
\(402\) 0 0
\(403\) −3.63318 + 5.00065i −0.180982 + 0.249100i
\(404\) 13.2758 9.64542i 0.660495 0.479878i
\(405\) 0 0
\(406\) 1.48370i 0.0736348i
\(407\) −8.23711 1.62426i −0.408299 0.0805114i
\(408\) 0 0
\(409\) −11.2169 3.64459i −0.554639 0.180213i 0.0182683 0.999833i \(-0.494185\pi\)
−0.572908 + 0.819620i \(0.694185\pi\)
\(410\) −3.42946 4.72024i −0.169369 0.233116i
\(411\) 0 0
\(412\) −1.48774 4.57879i −0.0732956 0.225581i
\(413\) −0.627769 1.93208i −0.0308905 0.0950712i
\(414\) 0 0
\(415\) −7.62592 10.4962i −0.374341 0.515237i
\(416\) −5.28073 1.71581i −0.258909 0.0841247i
\(417\) 0 0
\(418\) −3.88920 + 3.60713i −0.190227 + 0.176431i
\(419\) 2.74738i 0.134218i −0.997746 0.0671092i \(-0.978622\pi\)
0.997746 0.0671092i \(-0.0213776\pi\)
\(420\) 0 0
\(421\) −31.6239 + 22.9761i −1.54126 + 1.11979i −0.591715 + 0.806148i \(0.701549\pi\)
−0.949542 + 0.313641i \(0.898451\pi\)
\(422\) 5.55384 7.64421i 0.270357 0.372114i
\(423\) 0 0
\(424\) 2.33573 0.758925i 0.113433 0.0368567i
\(425\) −5.34419 3.88278i −0.259231 0.188343i
\(426\) 0 0
\(427\) −0.408725 + 1.25793i −0.0197796 + 0.0608753i
\(428\) −19.8597 −0.959954
\(429\) 0 0
\(430\) −2.61291 −0.126006
\(431\) 6.58603 20.2697i 0.317238 0.976358i −0.657586 0.753380i \(-0.728422\pi\)
0.974823 0.222978i \(-0.0715778\pi\)
\(432\) 0 0
\(433\) 1.57276 + 1.14268i 0.0755822 + 0.0549137i 0.624935 0.780677i \(-0.285126\pi\)
−0.549353 + 0.835591i \(0.685126\pi\)
\(434\) −0.161358 + 0.0524283i −0.00774542 + 0.00251664i
\(435\) 0 0
\(436\) −4.07718 + 5.61176i −0.195262 + 0.268755i
\(437\) 7.00232 5.08748i 0.334966 0.243367i
\(438\) 0 0
\(439\) 16.9345i 0.808238i 0.914706 + 0.404119i \(0.132422\pi\)
−0.914706 + 0.404119i \(0.867578\pi\)
\(440\) 0.641642 3.25397i 0.0305891 0.155127i
\(441\) 0 0
\(442\) 34.8834 + 11.3343i 1.65923 + 0.539117i
\(443\) −5.33419 7.34189i −0.253435 0.348824i 0.663275 0.748375i \(-0.269166\pi\)
−0.916711 + 0.399552i \(0.869166\pi\)
\(444\) 0 0
\(445\) 0.288974 + 0.889370i 0.0136987 + 0.0421602i
\(446\) −1.25453 3.86106i −0.0594039 0.182826i
\(447\) 0 0
\(448\) −0.0895822 0.123299i −0.00423236 0.00582534i
\(449\) 5.42830 + 1.76376i 0.256178 + 0.0832371i 0.434290 0.900773i \(-0.356999\pi\)
−0.178113 + 0.984010i \(0.556999\pi\)
\(450\) 0 0
\(451\) −9.42727 + 16.8993i −0.443913 + 0.795758i
\(452\) 9.00820i 0.423710i
\(453\) 0 0
\(454\) 1.03359 0.750948i 0.0485089 0.0352438i
\(455\) −0.497404 + 0.684618i −0.0233187 + 0.0320954i
\(456\) 0 0
\(457\) −21.9767 + 7.14067i −1.02803 + 0.334026i −0.774010 0.633173i \(-0.781752\pi\)
−0.254018 + 0.967200i \(0.581752\pi\)
\(458\) −14.9155 10.8368i −0.696957 0.506369i
\(459\) 0 0
\(460\) −1.67233 + 5.14690i −0.0779728 + 0.239975i
\(461\) −32.2987 −1.50430 −0.752151 0.658991i \(-0.770984\pi\)
−0.752151 + 0.658991i \(0.770984\pi\)
\(462\) 0 0
\(463\) −4.19877 −0.195134 −0.0975668 0.995229i \(-0.531106\pi\)
−0.0975668 + 0.995229i \(0.531106\pi\)
\(464\) 3.00833 9.25870i 0.139658 0.429824i
\(465\) 0 0
\(466\) 6.71668 + 4.87995i 0.311144 + 0.226059i
\(467\) 15.2751 4.96319i 0.706848 0.229669i 0.0665364 0.997784i \(-0.478805\pi\)
0.640312 + 0.768115i \(0.278805\pi\)
\(468\) 0 0
\(469\) −0.461931 + 0.635794i −0.0213300 + 0.0293582i
\(470\) 3.77505 2.74273i 0.174130 0.126513i
\(471\) 0 0
\(472\) 13.3295i 0.613541i
\(473\) 3.64117 + 7.86396i 0.167421 + 0.361585i
\(474\) 0 0
\(475\) 1.52108 + 0.494228i 0.0697918 + 0.0226767i
\(476\) 0.591760 + 0.814488i 0.0271233 + 0.0373320i
\(477\) 0 0
\(478\) −5.43430 16.7251i −0.248559 0.764986i
\(479\) −5.37815 16.5522i −0.245734 0.756291i −0.995515 0.0946049i \(-0.969841\pi\)
0.749781 0.661686i \(-0.230159\pi\)
\(480\) 0 0
\(481\) −8.26168 11.3712i −0.376700 0.518483i
\(482\) −11.2137 3.64357i −0.510772 0.165960i
\(483\) 0 0
\(484\) −10.6875 + 2.60339i −0.485795 + 0.118336i
\(485\) 7.71741i 0.350429i
\(486\) 0 0
\(487\) −30.2542 + 21.9809i −1.37095 + 0.996051i −0.373285 + 0.927717i \(0.621769\pi\)
−0.997662 + 0.0683345i \(0.978231\pi\)
\(488\) 5.10111 7.02107i 0.230916 0.317829i
\(489\) 0 0
\(490\) 6.63530 2.15594i 0.299753 0.0973955i
\(491\) 9.58642 + 6.96494i 0.432629 + 0.314323i 0.782699 0.622400i \(-0.213842\pi\)
−0.350070 + 0.936723i \(0.613842\pi\)
\(492\) 0 0
\(493\) −19.8724 + 61.1609i −0.895007 + 2.75455i
\(494\) −8.88040 −0.399548
\(495\) 0 0
\(496\) 1.11322 0.0499850
\(497\) −0.569254 + 1.75198i −0.0255345 + 0.0785871i
\(498\) 0 0
\(499\) −16.3465 11.8764i −0.731768 0.531660i 0.158354 0.987382i \(-0.449381\pi\)
−0.890122 + 0.455722i \(0.849381\pi\)
\(500\) −0.951057 + 0.309017i −0.0425325 + 0.0138197i
\(501\) 0 0
\(502\) 1.55530 2.14069i 0.0694166 0.0955438i
\(503\) 4.87978 3.54537i 0.217579 0.158080i −0.473657 0.880709i \(-0.657066\pi\)
0.691236 + 0.722629i \(0.257066\pi\)
\(504\) 0 0
\(505\) 16.4098i 0.730225i
\(506\) 17.8209 2.13924i 0.792235 0.0951007i
\(507\) 0 0
\(508\) −13.7362 4.46317i −0.609446 0.198021i
\(509\) 21.6510 + 29.8001i 0.959665 + 1.32087i 0.947098 + 0.320944i \(0.104000\pi\)
0.0125669 + 0.999921i \(0.496000\pi\)
\(510\) 0 0
\(511\) 0.454712 + 1.39946i 0.0201153 + 0.0619085i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) −12.5168 17.2279i −0.552094 0.759892i
\(515\) 4.57879 + 1.48774i 0.201766 + 0.0655576i
\(516\) 0 0
\(517\) −13.5154 7.53952i −0.594405 0.331588i
\(518\) 0.385802i 0.0169512i
\(519\) 0 0
\(520\) 4.49206 3.26367i 0.196990 0.143121i
\(521\) −16.0407 + 22.0781i −0.702756 + 0.967261i 0.297166 + 0.954826i \(0.403958\pi\)
−0.999923 + 0.0124353i \(0.996042\pi\)
\(522\) 0 0
\(523\) 9.53302 3.09747i 0.416850 0.135443i −0.0930801 0.995659i \(-0.529671\pi\)
0.509930 + 0.860216i \(0.329671\pi\)
\(524\) 10.9786 + 7.97641i 0.479602 + 0.348451i
\(525\) 0 0
\(526\) −2.98502 + 9.18696i −0.130153 + 0.400570i
\(527\) −7.35369 −0.320332
\(528\) 0 0
\(529\) −6.28727 −0.273359
\(530\) −0.758925 + 2.33573i −0.0329656 + 0.101458i
\(531\) 0 0
\(532\) −0.197199 0.143274i −0.00854968 0.00621170i
\(533\) −30.8106 + 10.0110i −1.33456 + 0.433624i
\(534\) 0 0
\(535\) 11.6732 16.0668i 0.504678 0.694629i
\(536\) 4.17171 3.03092i 0.180190 0.130916i
\(537\) 0 0
\(538\) 9.65195i 0.416125i
\(539\) −15.7352 16.9656i −0.677762 0.730762i
\(540\) 0 0
\(541\) −27.7079 9.00283i −1.19125 0.387062i −0.354718 0.934973i \(-0.615423\pi\)
−0.836536 + 0.547911i \(0.815423\pi\)
\(542\) −1.14450 1.57527i −0.0491605 0.0676636i
\(543\) 0 0
\(544\) −2.04130 6.28247i −0.0875200 0.269359i
\(545\) −2.14350 6.59702i −0.0918176 0.282585i
\(546\) 0 0
\(547\) 4.47249 + 6.15585i 0.191230 + 0.263205i 0.893856 0.448354i \(-0.147989\pi\)
−0.702626 + 0.711559i \(0.747989\pi\)
\(548\) −2.97795 0.967595i −0.127212 0.0413336i
\(549\) 0 0
\(550\) 2.25537 + 2.43173i 0.0961691 + 0.103689i
\(551\) 15.5700i 0.663304i
\(552\) 0 0
\(553\) 1.53727 1.11689i 0.0653712 0.0474949i
\(554\) −10.6391 + 14.6435i −0.452013 + 0.622142i
\(555\) 0 0
\(556\) 6.49132 2.10916i 0.275293 0.0894482i
\(557\) −15.2894 11.1084i −0.647831 0.470677i 0.214700 0.976680i \(-0.431123\pi\)
−0.862532 + 0.506003i \(0.831123\pi\)
\(558\) 0 0
\(559\) −4.48326 + 13.7981i −0.189622 + 0.583596i
\(560\) 0.152406 0.00644034
\(561\) 0 0
\(562\) −23.2338 −0.980058
\(563\) −9.70359 + 29.8646i −0.408958 + 1.25864i 0.508588 + 0.861010i \(0.330168\pi\)
−0.917545 + 0.397632i \(0.869832\pi\)
\(564\) 0 0
\(565\) 7.28779 + 5.29489i 0.306599 + 0.222758i
\(566\) 21.7353 7.06224i 0.913605 0.296848i
\(567\) 0 0
\(568\) 7.10459 9.77863i 0.298102 0.410302i
\(569\) −1.56100 + 1.13414i −0.0654407 + 0.0475454i −0.620025 0.784582i \(-0.712877\pi\)
0.554584 + 0.832128i \(0.312877\pi\)
\(570\) 0 0
\(571\) 19.3196i 0.808500i −0.914649 0.404250i \(-0.867533\pi\)
0.914649 0.404250i \(-0.132467\pi\)
\(572\) −16.0824 8.97154i −0.672438 0.375119i
\(573\) 0 0
\(574\) −0.845699 0.274784i −0.0352988 0.0114693i
\(575\) −3.18096 4.37821i −0.132655 0.182584i
\(576\) 0 0
\(577\) −7.88433 24.2655i −0.328229 1.01018i −0.969962 0.243256i \(-0.921784\pi\)
0.641733 0.766928i \(-0.278216\pi\)
\(578\) 8.23109 + 25.3327i 0.342368 + 1.05370i
\(579\) 0 0
\(580\) 5.72219 + 7.87592i 0.237601 + 0.327030i
\(581\) −1.88054 0.611024i −0.0780179 0.0253496i
\(582\) 0 0
\(583\) 8.08735 0.970814i 0.334944 0.0402070i
\(584\) 9.65498i 0.399526i
\(585\) 0 0
\(586\) −22.5322 + 16.3706i −0.930798 + 0.676264i
\(587\) 27.4017 37.7152i 1.13099 1.55667i 0.344812 0.938672i \(-0.387943\pi\)
0.786177 0.618001i \(-0.212057\pi\)
\(588\) 0 0
\(589\) 1.69329 0.550184i 0.0697709 0.0226700i
\(590\) −10.7838 7.83490i −0.443963 0.322558i
\(591\) 0 0
\(592\) −0.782248 + 2.40751i −0.0321502 + 0.0989481i
\(593\) −5.28272 −0.216935 −0.108468 0.994100i \(-0.534594\pi\)
−0.108468 + 0.994100i \(0.534594\pi\)
\(594\) 0 0
\(595\) −1.00676 −0.0412733
\(596\) 4.23188 13.0244i 0.173344 0.533499i
\(597\) 0 0
\(598\) 24.3100 + 17.6622i 0.994109 + 0.722263i
\(599\) −22.0596 + 7.16760i −0.901331 + 0.292860i −0.722786 0.691072i \(-0.757139\pi\)
−0.178544 + 0.983932i \(0.557139\pi\)
\(600\) 0 0
\(601\) 8.42912 11.6017i 0.343831 0.473243i −0.601724 0.798704i \(-0.705519\pi\)
0.945555 + 0.325461i \(0.105519\pi\)
\(602\) −0.322169 + 0.234070i −0.0131306 + 0.00953997i
\(603\) 0 0
\(604\) 7.75432i 0.315519i
\(605\) 4.17576 10.1766i 0.169769 0.413737i
\(606\) 0 0
\(607\) −2.40028 0.779897i −0.0974242 0.0316550i 0.259899 0.965636i \(-0.416311\pi\)
−0.357324 + 0.933981i \(0.616311\pi\)
\(608\) 0.940078 + 1.29391i 0.0381252 + 0.0524748i
\(609\) 0 0
\(610\) 2.68181 + 8.25376i 0.108583 + 0.334185i
\(611\) −8.00636 24.6410i −0.323902 0.996869i
\(612\) 0 0
\(613\) 16.3068 + 22.4444i 0.658625 + 0.906520i 0.999435 0.0336127i \(-0.0107013\pi\)
−0.340810 + 0.940132i \(0.610701\pi\)
\(614\) −24.0894 7.82711i −0.972168 0.315877i
\(615\) 0 0
\(616\) −0.212383 0.458691i −0.00855717 0.0184812i
\(617\) 18.5712i 0.747649i −0.927500 0.373824i \(-0.878046\pi\)
0.927500 0.373824i \(-0.121954\pi\)
\(618\) 0 0
\(619\) 17.0712 12.4029i 0.686148 0.498516i −0.189243 0.981930i \(-0.560603\pi\)
0.875392 + 0.483414i \(0.160603\pi\)
\(620\) −0.654334 + 0.900614i −0.0262787 + 0.0361695i
\(621\) 0 0
\(622\) 11.6944 3.79975i 0.468904 0.152356i
\(623\) 0.115302 + 0.0837718i 0.00461948 + 0.00335625i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) −10.5679 −0.422378
\(627\) 0 0
\(628\) −18.7017 −0.746280
\(629\) 5.16736 15.9035i 0.206036 0.634114i
\(630\) 0 0
\(631\) 32.3436 + 23.4990i 1.28758 + 0.935479i 0.999753 0.0222041i \(-0.00706836\pi\)
0.287823 + 0.957683i \(0.407068\pi\)
\(632\) −11.8575 + 3.85275i −0.471668 + 0.153254i
\(633\) 0 0
\(634\) 0.400399 0.551103i 0.0159019 0.0218871i
\(635\) 11.6847 8.48945i 0.463694 0.336893i
\(636\) 0 0
\(637\) 38.7384i 1.53487i
\(638\) 15.7298 28.1972i 0.622748 1.11634i
\(639\) 0 0
\(640\) −0.951057 0.309017i −0.0375938 0.0122150i
\(641\) 18.1622 + 24.9981i 0.717362 + 0.987364i 0.999607 + 0.0280221i \(0.00892087\pi\)
−0.282245 + 0.959342i \(0.591079\pi\)
\(642\) 0 0
\(643\) −3.38171 10.4078i −0.133362 0.410445i 0.861970 0.506960i \(-0.169231\pi\)
−0.995332 + 0.0965143i \(0.969231\pi\)
\(644\) 0.254873 + 0.784420i 0.0100434 + 0.0309105i
\(645\) 0 0
\(646\) −6.20995 8.54726i −0.244327 0.336287i
\(647\) 12.9007 + 4.19169i 0.507178 + 0.164792i 0.551419 0.834229i \(-0.314087\pi\)
−0.0442403 + 0.999021i \(0.514087\pi\)
\(648\) 0 0
\(649\) −8.55278 + 43.3738i −0.335726 + 1.70257i
\(650\) 5.55249i 0.217787i
\(651\) 0 0
\(652\) −12.9327 + 9.39615i −0.506483 + 0.367982i
\(653\) −18.4874 + 25.4457i −0.723468 + 0.995768i 0.275933 + 0.961177i \(0.411013\pi\)
−0.999402 + 0.0345916i \(0.988987\pi\)
\(654\) 0 0
\(655\) −12.9061 + 4.19345i −0.504283 + 0.163852i
\(656\) 4.72024 + 3.42946i 0.184295 + 0.133898i
\(657\) 0 0
\(658\) 0.219761 0.676354i 0.00856716 0.0263670i
\(659\) −29.4398 −1.14681 −0.573406 0.819271i \(-0.694378\pi\)
−0.573406 + 0.819271i \(0.694378\pi\)
\(660\) 0 0
\(661\) 6.45084 0.250908 0.125454 0.992099i \(-0.459961\pi\)
0.125454 + 0.992099i \(0.459961\pi\)
\(662\) −3.24532 + 9.98806i −0.126133 + 0.388197i
\(663\) 0 0
\(664\) 10.4962 + 7.62592i 0.407331 + 0.295943i
\(665\) 0.231822 0.0753235i 0.00898966 0.00292092i
\(666\) 0 0
\(667\) −30.9672 + 42.6227i −1.19905 + 1.65036i
\(668\) −19.8011 + 14.3864i −0.766129 + 0.556625i
\(669\) 0 0
\(670\) 5.15651i 0.199213i
\(671\) 21.1038 19.5732i 0.814705 0.755617i
\(672\) 0 0
\(673\) −9.10081 2.95703i −0.350810 0.113985i 0.128311 0.991734i \(-0.459045\pi\)
−0.479121 + 0.877749i \(0.659045\pi\)
\(674\) 1.47591 + 2.03141i 0.0568498 + 0.0782471i
\(675\) 0 0
\(676\) −5.50981 16.9575i −0.211916 0.652210i
\(677\) 0.0262757 + 0.0808683i 0.00100986 + 0.00310802i 0.951560 0.307463i \(-0.0994799\pi\)
−0.950550 + 0.310571i \(0.899480\pi\)
\(678\) 0 0
\(679\) 0.691342 + 0.951551i 0.0265313 + 0.0365172i
\(680\) 6.28247 + 2.04130i 0.240922 + 0.0782802i
\(681\) 0 0
\(682\) 3.62238 + 0.714288i 0.138708 + 0.0273515i
\(683\) 39.5811i 1.51453i 0.653108 + 0.757265i \(0.273465\pi\)
−0.653108 + 0.757265i \(0.726535\pi\)
\(684\) 0 0
\(685\) 2.53320 1.84048i 0.0967885 0.0703210i
\(686\) 1.25207 1.72333i 0.0478042 0.0657969i
\(687\) 0 0
\(688\) 2.48502 0.807432i 0.0947406 0.0307831i
\(689\) 11.0322 + 8.01536i 0.420293 + 0.305361i
\(690\) 0 0
\(691\) 10.8812 33.4890i 0.413942 1.27398i −0.499252 0.866457i \(-0.666392\pi\)
0.913194 0.407525i \(-0.133608\pi\)
\(692\) 7.97146 0.303029
\(693\) 0 0
\(694\) −12.1502 −0.461214
\(695\) −2.10916 + 6.49132i −0.0800049 + 0.246230i
\(696\) 0 0
\(697\) −31.1809 22.6543i −1.18106 0.858091i
\(698\) 18.2236 5.92121i 0.689774 0.224121i
\(699\) 0 0
\(700\) −0.0895822 + 0.123299i −0.00338589 + 0.00466027i
\(701\) 16.1575 11.7391i 0.610260 0.443380i −0.239246 0.970959i \(-0.576900\pi\)
0.849506 + 0.527579i \(0.176900\pi\)
\(702\) 0 0
\(703\) 4.04862i 0.152697i
\(704\) 0.395293 + 3.29298i 0.0148982 + 0.124109i
\(705\) 0 0
\(706\) 15.0672 + 4.89562i 0.567060 + 0.184249i
\(707\) 1.47002 + 2.02331i 0.0552859 + 0.0760945i
\(708\) 0 0
\(709\) −6.85765 21.1057i −0.257545 0.792641i −0.993318 0.115413i \(-0.963181\pi\)
0.735773 0.677228i \(-0.236819\pi\)
\(710\) 3.73511 + 11.4955i 0.140176 + 0.431417i
\(711\) 0 0
\(712\) −0.549661 0.756544i −0.0205994 0.0283527i
\(713\) −5.72963 1.86167i −0.214576 0.0697201i
\(714\) 0 0
\(715\) 16.7111 7.73758i 0.624960 0.289369i
\(716\) 4.31227i 0.161157i
\(717\) 0 0
\(718\) −12.3838 + 8.99737i −0.462160 + 0.335779i
\(719\) 23.3892 32.1925i 0.872271 1.20058i −0.106231 0.994341i \(-0.533878\pi\)
0.978502 0.206237i \(-0.0661217\pi\)
\(720\) 0 0
\(721\) 0.697836 0.226741i 0.0259888 0.00844427i
\(722\) −13.3019 9.66440i −0.495046 0.359672i
\(723\) 0 0
\(724\) −5.94243 + 18.2889i −0.220849 + 0.679702i
\(725\) −9.73517 −0.361555
\(726\) 0 0
\(727\) −2.80594 −0.104066 −0.0520332 0.998645i \(-0.516570\pi\)
−0.0520332 + 0.998645i \(0.516570\pi\)
\(728\) 0.261501 0.804817i 0.00969186 0.0298285i
\(729\) 0 0
\(730\) 7.81104 + 5.67506i 0.289100 + 0.210043i
\(731\) −16.4155 + 5.33372i −0.607150 + 0.197275i
\(732\) 0 0
\(733\) 12.6587 17.4232i 0.467561 0.643542i −0.508494 0.861065i \(-0.669798\pi\)
0.976055 + 0.217523i \(0.0697977\pi\)
\(734\) −5.62988 + 4.09035i −0.207803 + 0.150978i
\(735\) 0 0
\(736\) 5.41177i 0.199481i
\(737\) 15.5194 7.18578i 0.571663 0.264691i
\(738\) 0 0
\(739\) 12.9939 + 4.22198i 0.477989 + 0.155308i 0.538095 0.842884i \(-0.319144\pi\)
−0.0601064 + 0.998192i \(0.519144\pi\)
\(740\) −1.48792 2.04795i −0.0546972 0.0752842i
\(741\) 0 0
\(742\) 0.115665 + 0.355980i 0.00424619 + 0.0130684i
\(743\) −0.729233 2.24435i −0.0267529 0.0823371i 0.936789 0.349896i \(-0.113783\pi\)
−0.963542 + 0.267559i \(0.913783\pi\)
\(744\) 0 0
\(745\) 8.04951 + 11.0792i 0.294911 + 0.405910i
\(746\) −19.1370 6.21797i −0.700654 0.227656i
\(747\) 0 0
\(748\) −2.61122 21.7527i −0.0954757 0.795359i
\(749\) 3.02674i 0.110595i
\(750\) 0 0
\(751\) −27.8725 + 20.2506i −1.01708 + 0.738954i −0.965683 0.259724i \(-0.916369\pi\)
−0.0514006 + 0.998678i \(0.516369\pi\)
\(752\) −2.74273 + 3.77505i −0.100017 + 0.137662i
\(753\) 0 0
\(754\) 51.4088 16.7037i 1.87220 0.608314i
\(755\) 6.27337 + 4.55787i 0.228311 + 0.165878i
\(756\) 0 0
\(757\) 11.5933 35.6806i 0.421367 1.29683i −0.485064 0.874478i \(-0.661204\pi\)
0.906431 0.422354i \(-0.138796\pi\)
\(758\) 20.0301 0.727526
\(759\) 0 0
\(760\) −1.59936 −0.0580147
\(761\) 14.2773 43.9409i 0.517551 1.59286i −0.261041 0.965328i \(-0.584066\pi\)
0.778592 0.627530i \(-0.215934\pi\)
\(762\) 0 0
\(763\) −0.855268 0.621388i −0.0309628 0.0224958i
\(764\) 15.8306 5.14367i 0.572731 0.186091i
\(765\) 0 0
\(766\) 22.2078 30.5664i 0.802401 1.10441i
\(767\) −59.8770 + 43.5032i −2.16203 + 1.57081i
\(768\) 0 0
\(769\) 21.8773i 0.788916i −0.918914 0.394458i \(-0.870932\pi\)
0.918914 0.394458i \(-0.129068\pi\)
\(770\) 0.495925 + 0.0977902i 0.0178719 + 0.00352412i
\(771\) 0 0
\(772\) 1.28936 + 0.418938i 0.0464050 + 0.0150779i
\(773\) −18.7119 25.7547i −0.673021 0.926333i 0.326803 0.945092i \(-0.394028\pi\)
−0.999824 + 0.0187590i \(0.994028\pi\)
\(774\) 0 0
\(775\) −0.344004 1.05873i −0.0123570 0.0380309i
\(776\) −2.38481 7.33969i −0.0856097 0.263480i
\(777\) 0 0
\(778\) 2.95903 + 4.07275i 0.106086 + 0.146015i
\(779\) 8.87479 + 2.88359i 0.317972 + 0.103315i
\(780\) 0 0
\(781\) 29.3925 27.2607i 1.05175 0.975466i
\(782\) 35.7490i 1.27838i
\(783\) 0 0
\(784\) −5.64433 + 4.10084i −0.201583 + 0.146459i
\(785\) 10.9926 15.1300i 0.392343 0.540013i
\(786\) 0 0
\(787\) 49.8997 16.2134i 1.77873 0.577946i 0.779885 0.625923i \(-0.215278\pi\)
0.998848 + 0.0479773i \(0.0152775\pi\)
\(788\) −4.82938 3.50875i −0.172040 0.124994i
\(789\) 0 0
\(790\) 3.85275 11.8575i 0.137075 0.421872i
\(791\) 1.37291 0.0488149
\(792\) 0 0
\(793\) 48.1874 1.71118
\(794\) 1.37840 4.24226i 0.0489174 0.150552i
\(795\) 0 0
\(796\) 7.70025 + 5.59456i 0.272928 + 0.198294i
\(797\) −39.9840 + 12.9916i −1.41631 + 0.460186i −0.914426 0.404752i \(-0.867358\pi\)
−0.501879 + 0.864938i \(0.667358\pi\)
\(798\) 0 0
\(799\) 18.1179 24.9371i 0.640965 0.882213i
\(800\) 0.809017 0.587785i 0.0286031 0.0207813i
\(801\) 0 0
\(802\) 8.96507i 0.316568i
\(803\) 6.19504 31.4170i 0.218618 1.10868i
\(804\) 0 0
\(805\) −0.784420 0.254873i −0.0276472 0.00898311i
\(806\) 3.63318 + 5.00065i 0.127973 + 0.176140i
\(807\) 0 0
\(808\) −5.07090 15.6066i −0.178394 0.549039i
\(809\) 3.49199 + 10.7472i 0.122772 + 0.377853i 0.993489 0.113932i \(-0.0363447\pi\)
−0.870717 + 0.491785i \(0.836345\pi\)
\(810\) 0 0
\(811\) 21.1821 + 29.1547i 0.743805 + 1.02376i 0.998391 + 0.0567099i \(0.0180610\pi\)
−0.254585 + 0.967050i \(0.581939\pi\)
\(812\) 1.41108 + 0.458489i 0.0495193 + 0.0160898i
\(813\) 0 0
\(814\) −4.09017 + 7.33204i −0.143360 + 0.256988i
\(815\) 15.9857i 0.559954i
\(816\) 0 0
\(817\) 3.38085 2.45633i 0.118281 0.0859363i
\(818\) −6.93242 + 9.54166i −0.242386 + 0.333616i
\(819\) 0 0
\(820\) −5.54898 + 1.80297i −0.193779 + 0.0629625i
\(821\) 46.0430 + 33.4522i 1.60691 + 1.16749i 0.872257 + 0.489047i \(0.162655\pi\)
0.734654 + 0.678442i \(0.237345\pi\)
\(822\) 0 0
\(823\) 4.57501 14.0804i 0.159475 0.490813i −0.839112 0.543959i \(-0.816925\pi\)
0.998587 + 0.0531457i \(0.0169248\pi\)
\(824\) −4.81442 −0.167718
\(825\) 0 0
\(826\) −2.03150 −0.0706851
\(827\) −13.2411 + 40.7520i −0.460439 + 1.41709i 0.404189 + 0.914675i \(0.367554\pi\)
−0.864629 + 0.502411i \(0.832446\pi\)
\(828\) 0 0
\(829\) −18.3791 13.3532i −0.638332 0.463775i 0.220945 0.975286i \(-0.429086\pi\)
−0.859277 + 0.511511i \(0.829086\pi\)
\(830\) −12.3390 + 4.00918i −0.428293 + 0.139161i
\(831\) 0 0
\(832\) −3.26367 + 4.49206i −0.113147 + 0.155734i
\(833\) 37.2852 27.0893i 1.29186 0.938588i
\(834\) 0 0
\(835\) 24.4756i 0.847012i
\(836\) 2.22876 + 4.81352i 0.0770832 + 0.166479i
\(837\) 0 0
\(838\) −2.61291 0.848987i −0.0902616 0.0293278i
\(839\) 13.1041 + 18.0362i 0.452403 + 0.622679i 0.972912 0.231177i \(-0.0742578\pi\)
−0.520509 + 0.853856i \(0.674258\pi\)
\(840\) 0 0
\(841\) 20.3251 + 62.5543i 0.700867 + 2.15705i
\(842\) 12.0793 + 37.1762i 0.416279 + 1.28118i
\(843\) 0 0
\(844\) −5.55384 7.64421i −0.191171 0.263124i
\(845\) 16.9575 + 5.50981i 0.583354 + 0.189543i
\(846\) 0 0
\(847\) −0.396773 1.62884i −0.0136333 0.0559676i
\(848\) 2.45593i 0.0843371i
\(849\) 0 0
\(850\) −5.34419 + 3.88278i −0.183304 + 0.133178i
\(851\) 8.05230 11.0830i 0.276029 0.379922i
\(852\) 0 0
\(853\) −43.8232 + 14.2390i −1.50048 + 0.487535i −0.940157 0.340741i \(-0.889322\pi\)
−0.560321 + 0.828276i \(0.689322\pi\)
\(854\) 1.07006 + 0.777441i 0.0366165 + 0.0266035i
\(855\) 0 0
\(856\) −6.13698 + 18.8877i −0.209758 + 0.645568i
\(857\) 8.32137 0.284252 0.142126 0.989849i \(-0.454606\pi\)
0.142126 + 0.989849i \(0.454606\pi\)
\(858\) 0 0
\(859\) 10.6760 0.364259 0.182130 0.983275i \(-0.441701\pi\)
0.182130 + 0.983275i \(0.441701\pi\)
\(860\) −0.807432 + 2.48502i −0.0275332 + 0.0847385i
\(861\) 0 0
\(862\) −17.2425 12.5274i −0.587280 0.426684i
\(863\) −52.7438 + 17.1375i −1.79542 + 0.583367i −0.999750 0.0223639i \(-0.992881\pi\)
−0.795669 + 0.605731i \(0.792881\pi\)
\(864\) 0 0
\(865\) −4.68551 + 6.44905i −0.159312 + 0.219274i
\(866\) 1.57276 1.14268i 0.0534447 0.0388298i
\(867\) 0 0
\(868\) 0.169662i 0.00575869i
\(869\) −41.0561 + 4.92842i −1.39273 + 0.167185i
\(870\) 0 0
\(871\) 27.2301 + 8.84761i 0.922658 + 0.299790i
\(872\) 4.07718 + 5.61176i 0.138071 + 0.190038i
\(873\) 0 0
\(874\) −2.67465 8.23172i −0.0904714 0.278442i
\(875\) −0.0470961 0.144947i −0.00159214 0.00490010i
\(876\) 0 0
\(877\) −15.5665 21.4255i −0.525644 0.723487i 0.460815 0.887496i \(-0.347557\pi\)
−0.986459 + 0.164010i \(0.947557\pi\)
\(878\) 16.1056 + 5.23304i 0.543539 + 0.176606i
\(879\) 0 0
\(880\) −2.89643 1.61577i −0.0976386 0.0544675i
\(881\) 10.0938i 0.340070i −0.985438 0.170035i \(-0.945612\pi\)
0.985438 0.170035i \(-0.0543881\pi\)
\(882\) 0 0
\(883\) 39.7352 28.8693i 1.33720 0.971530i 0.337655 0.941270i \(-0.390366\pi\)
0.999542 0.0302605i \(-0.00963370\pi\)
\(884\) 21.5591 29.6736i 0.725111 0.998030i
\(885\) 0 0
\(886\) −8.63091 + 2.80435i −0.289961 + 0.0942140i
\(887\) −3.03117 2.20228i −0.101777 0.0739452i 0.535733 0.844388i \(-0.320035\pi\)
−0.637510 + 0.770442i \(0.720035\pi\)
\(888\) 0 0
\(889\) 0.680214 2.09348i 0.0228137 0.0702132i
\(890\) 0.935139 0.0313459
\(891\) 0 0
\(892\) −4.05976 −0.135931
\(893\) −2.30617 + 7.09768i −0.0771732 + 0.237515i
\(894\) 0 0
\(895\) 3.48870 + 2.53469i 0.116614 + 0.0847254i
\(896\) −0.144947 + 0.0470961i −0.00484234 + 0.00157337i
\(897\) 0 0
\(898\) 3.35488 4.61759i 0.111954 0.154091i
\(899\) −8.76763 + 6.37005i −0.292417 + 0.212453i
\(900\) 0 0
\(901\) 16.2234i 0.540478i
\(902\) 13.1590 + 14.1880i 0.438148 + 0.472410i
\(903\) 0 0
\(904\) −8.56731 2.78369i −0.284944 0.0925840i
\(905\) −11.3032 15.5575i −0.375730 0.517148i
\(906\) 0 0
\(907\) 12.2014 + 37.5522i 0.405142 + 1.24690i 0.920776 + 0.390091i \(0.127556\pi\)
−0.515634 + 0.856809i \(0.672444\pi\)
\(908\) −0.394797 1.21506i −0.0131018 0.0403232i
\(909\) 0 0
\(910\) 0.497404 + 0.684618i 0.0164888 + 0.0226949i
\(911\) −2.86149 0.929754i −0.0948053 0.0308041i 0.261230 0.965277i \(-0.415872\pi\)
−0.356036 + 0.934472i \(0.615872\pi\)
\(912\) 0 0
\(913\) 29.2611 + 31.5493i 0.968401 + 1.04413i
\(914\) 23.1077i 0.764335i
\(915\) 0 0
\(916\) −14.9155 + 10.8368i −0.492823 + 0.358057i
\(917\) −1.21566 + 1.67321i −0.0401445 + 0.0552541i
\(918\) 0 0
\(919\) −41.1363 + 13.3660i −1.35696 + 0.440903i −0.895027 0.446012i \(-0.852844\pi\)
−0.461933 + 0.886915i \(0.652844\pi\)
\(920\) 4.37821 + 3.18096i 0.144345 + 0.104873i
\(921\) 0 0
\(922\) −9.98086 + 30.7179i −0.328702 + 1.01164i
\(923\) 67.1132 2.20906
\(924\) 0 0
\(925\) 2.53141 0.0832322
\(926\) −1.29749 + 3.99327i −0.0426382 + 0.131227i
\(927\) 0 0
\(928\) −7.87592 5.72219i −0.258540 0.187840i
\(929\) −11.8206 + 3.84075i −0.387822 + 0.126011i −0.496437 0.868073i \(-0.665359\pi\)
0.108615 + 0.994084i \(0.465359\pi\)
\(930\) 0 0
\(931\) −6.55871 + 9.02729i −0.214953 + 0.295857i
\(932\) 6.71668 4.87995i 0.220012 0.159848i
\(933\) 0 0
\(934\) 16.0612i 0.525539i
\(935\) 19.1332 + 10.6734i 0.625722 + 0.349058i
\(936\) 0 0
\(937\) 49.9695 + 16.2361i 1.63243 + 0.530410i 0.974829 0.222954i \(-0.0715699\pi\)
0.657604 + 0.753364i \(0.271570\pi\)
\(938\) 0.461931 + 0.635794i 0.0150826 + 0.0207594i
\(939\) 0 0
\(940\) −1.44194 4.43783i −0.0470309 0.144746i
\(941\) −13.3965 41.2300i −0.436712 1.34406i −0.891322 0.453370i \(-0.850221\pi\)
0.454610 0.890690i \(-0.349779\pi\)
\(942\) 0 0
\(943\) −18.5594 25.5449i −0.604379 0.831856i
\(944\) 12.6771 + 4.11905i 0.412606 + 0.134064i
\(945\) 0 0
\(946\) 8.60426 1.03286i 0.279749 0.0335813i
\(947\) 22.6591i 0.736323i 0.929762 + 0.368162i \(0.120013\pi\)
−0.929762 + 0.368162i \(0.879987\pi\)
\(948\) 0 0
\(949\) 43.3707 31.5107i 1.40787 1.02288i
\(950\) 0.940078 1.29391i 0.0305001 0.0419798i
\(951\) 0 0
\(952\) 0.957488 0.311107i 0.0310324 0.0100830i
\(953\) −4.55992 3.31297i −0.147710 0.107318i 0.511476 0.859298i \(-0.329099\pi\)
−0.659186 + 0.751980i \(0.729099\pi\)
\(954\) 0 0
\(955\) −5.14367 + 15.8306i −0.166445 + 0.512266i
\(956\) −17.5858 −0.568764
\(957\) 0 0
\(958\) −17.4040 −0.562299
\(959\) 0.147468 0.453859i 0.00476198 0.0146559i
\(960\) 0 0
\(961\) 24.0769 + 17.4929i 0.776676 + 0.564288i
\(962\) −13.3677 + 4.34342i −0.430991 + 0.140038i
\(963\) 0 0
\(964\) −6.93048 + 9.53898i −0.223216 + 0.307230i
\(965\) −1.09679 + 0.796867i −0.0353070 + 0.0256521i
\(966\) 0 0
\(967\) 40.7386i 1.31006i −0.755601 0.655032i \(-0.772655\pi\)
0.755601 0.655032i \(-0.227345\pi\)
\(968\) −0.826645 + 10.9689i −0.0265694 + 0.352554i
\(969\) 0 0
\(970\) 7.33969 + 2.38481i 0.235663 + 0.0765716i
\(971\) 3.51697 + 4.84070i 0.112865 + 0.155345i 0.861712 0.507397i \(-0.169392\pi\)
−0.748847 + 0.662743i \(0.769392\pi\)
\(972\) 0 0
\(973\) 0.321449 + 0.989318i 0.0103052 + 0.0317161i
\(974\) 11.5561 + 35.5659i 0.370280 + 1.13961i
\(975\) 0 0
\(976\) −5.10111 7.02107i −0.163282 0.224739i
\(977\) −34.1828 11.1067i −1.09360 0.355333i −0.293966 0.955816i \(-0.594975\pi\)
−0.799638 + 0.600483i \(0.794975\pi\)
\(978\) 0 0
\(979\) −1.30315 2.81445i −0.0416488 0.0899503i
\(980\) 6.97677i 0.222865i
\(981\) 0 0
\(982\) 9.58642 6.96494i 0.305915 0.222260i
\(983\) 14.7163 20.2553i 0.469378 0.646044i −0.507042 0.861921i \(-0.669261\pi\)
0.976420 + 0.215878i \(0.0692612\pi\)
\(984\) 0 0
\(985\) 5.67728 1.84466i 0.180893 0.0587757i
\(986\) 52.0266 + 37.7995i 1.65686 + 1.20378i
\(987\) 0 0
\(988\) −2.74420 + 8.44577i −0.0873045 + 0.268696i
\(989\) −14.1405 −0.449640
\(990\) 0 0
\(991\) 43.2366 1.37346 0.686728 0.726914i \(-0.259046\pi\)
0.686728 + 0.726914i \(0.259046\pi\)
\(992\) 0.344004 1.05873i 0.0109221 0.0336149i
\(993\) 0 0
\(994\) 1.49033 + 1.08278i 0.0472702 + 0.0343438i
\(995\) −9.05218 + 2.94123i −0.286973 + 0.0932433i
\(996\) 0 0
\(997\) 7.12656 9.80887i 0.225701 0.310650i −0.681116 0.732175i \(-0.738505\pi\)
0.906817 + 0.421525i \(0.138505\pi\)
\(998\) −16.3465 + 11.8764i −0.517438 + 0.375941i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.431.7 32
3.2 odd 2 990.2.z.b.431.3 yes 32
11.6 odd 10 990.2.z.b.611.3 yes 32
33.17 even 10 inner 990.2.z.a.611.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.431.7 32 1.1 even 1 trivial
990.2.z.a.611.7 yes 32 33.17 even 10 inner
990.2.z.b.431.3 yes 32 3.2 odd 2
990.2.z.b.611.3 yes 32 11.6 odd 10