Properties

Label 990.2.z.a.161.3
Level $990$
Weight $2$
Character 990.161
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.3
Character \(\chi\) \(=\) 990.161
Dual form 990.2.z.a.701.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +(-0.587785 - 0.809017i) q^{5} +(1.89200 - 0.614747i) q^{7} +(0.309017 - 0.951057i) q^{8} +1.00000i q^{10} +(-3.28401 + 0.463949i) q^{11} +(-1.89539 + 2.60879i) q^{13} +(-1.89200 - 0.614747i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-5.26884 + 3.82804i) q^{17} +(-1.96673 - 0.639030i) q^{19} +(0.587785 - 0.809017i) q^{20} +(2.92953 + 1.55495i) q^{22} -3.58100i q^{23} +(-0.309017 + 0.951057i) q^{25} +(3.06681 - 0.996467i) q^{26} +(1.16932 + 1.60943i) q^{28} +(-0.406430 - 1.25086i) q^{29} +(0.993242 + 0.721632i) q^{31} +1.00000 q^{32} +6.51264 q^{34} +(-1.60943 - 1.16932i) q^{35} +(-1.08996 - 3.35456i) q^{37} +(1.21551 + 1.67300i) q^{38} +(-0.951057 + 0.309017i) q^{40} +(1.32496 - 4.07780i) q^{41} +8.18374i q^{43} +(-1.45606 - 2.97992i) q^{44} +(-2.10486 + 2.89709i) q^{46} +(-2.18505 - 0.709965i) q^{47} +(-2.46138 + 1.78829i) q^{49} +(0.809017 - 0.587785i) q^{50} +(-3.06681 - 0.996467i) q^{52} +(-7.75090 + 10.6682i) q^{53} +(2.30564 + 2.38412i) q^{55} -1.98936i q^{56} +(-0.406430 + 1.25086i) q^{58} +(-5.67571 + 1.84415i) q^{59} +(1.18547 + 1.63166i) q^{61} +(-0.379385 - 1.16763i) q^{62} +(-0.809017 - 0.587785i) q^{64} +3.22464 q^{65} -7.59383 q^{67} +(-5.26884 - 3.82804i) q^{68} +(0.614747 + 1.89200i) q^{70} +(2.68699 + 3.69833i) q^{71} +(-8.96545 + 2.91305i) q^{73} +(-1.08996 + 3.35456i) q^{74} -2.06794i q^{76} +(-5.92814 + 2.89663i) q^{77} +(-2.40983 + 3.31685i) q^{79} +(0.951057 + 0.309017i) q^{80} +(-3.46878 + 2.52022i) q^{82} +(-1.91200 + 1.38915i) q^{83} +(6.19389 + 2.01252i) q^{85} +(4.81028 - 6.62079i) q^{86} +(-0.573574 + 3.26665i) q^{88} -11.4586i q^{89} +(-1.98234 + 6.10101i) q^{91} +(3.40574 - 1.10659i) q^{92} +(1.35043 + 1.85871i) q^{94} +(0.639030 + 1.96673i) q^{95} +(-0.221400 - 0.160857i) q^{97} +3.04243 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) −0.587785 0.809017i −0.262866 0.361803i
\(6\) 0 0
\(7\) 1.89200 0.614747i 0.715108 0.232353i 0.0712071 0.997462i \(-0.477315\pi\)
0.643901 + 0.765109i \(0.277315\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −3.28401 + 0.463949i −0.990168 + 0.139886i
\(12\) 0 0
\(13\) −1.89539 + 2.60879i −0.525688 + 0.723547i −0.986466 0.163969i \(-0.947570\pi\)
0.460778 + 0.887515i \(0.347570\pi\)
\(14\) −1.89200 0.614747i −0.505658 0.164298i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −5.26884 + 3.82804i −1.27788 + 0.928435i −0.999487 0.0320317i \(-0.989802\pi\)
−0.278394 + 0.960467i \(0.589802\pi\)
\(18\) 0 0
\(19\) −1.96673 0.639030i −0.451199 0.146603i 0.0745977 0.997214i \(-0.476233\pi\)
−0.525797 + 0.850610i \(0.676233\pi\)
\(20\) 0.587785 0.809017i 0.131433 0.180902i
\(21\) 0 0
\(22\) 2.92953 + 1.55495i 0.624577 + 0.331517i
\(23\) 3.58100i 0.746691i −0.927692 0.373346i \(-0.878211\pi\)
0.927692 0.373346i \(-0.121789\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 3.06681 0.996467i 0.601451 0.195423i
\(27\) 0 0
\(28\) 1.16932 + 1.60943i 0.220981 + 0.304154i
\(29\) −0.406430 1.25086i −0.0754721 0.232279i 0.906203 0.422844i \(-0.138968\pi\)
−0.981675 + 0.190565i \(0.938968\pi\)
\(30\) 0 0
\(31\) 0.993242 + 0.721632i 0.178391 + 0.129609i 0.673398 0.739280i \(-0.264834\pi\)
−0.495006 + 0.868889i \(0.664834\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.51264 1.11691
\(35\) −1.60943 1.16932i −0.272043 0.197651i
\(36\) 0 0
\(37\) −1.08996 3.35456i −0.179189 0.551486i 0.820611 0.571487i \(-0.193633\pi\)
−0.999800 + 0.0200005i \(0.993633\pi\)
\(38\) 1.21551 + 1.67300i 0.197181 + 0.271397i
\(39\) 0 0
\(40\) −0.951057 + 0.309017i −0.150375 + 0.0488599i
\(41\) 1.32496 4.07780i 0.206924 0.636845i −0.792705 0.609605i \(-0.791328\pi\)
0.999629 0.0272402i \(-0.00867189\pi\)
\(42\) 0 0
\(43\) 8.18374i 1.24801i 0.781421 + 0.624004i \(0.214495\pi\)
−0.781421 + 0.624004i \(0.785505\pi\)
\(44\) −1.45606 2.97992i −0.219509 0.449239i
\(45\) 0 0
\(46\) −2.10486 + 2.89709i −0.310345 + 0.427153i
\(47\) −2.18505 0.709965i −0.318722 0.103559i 0.145287 0.989390i \(-0.453589\pi\)
−0.464009 + 0.885831i \(0.653589\pi\)
\(48\) 0 0
\(49\) −2.46138 + 1.78829i −0.351625 + 0.255471i
\(50\) 0.809017 0.587785i 0.114412 0.0831254i
\(51\) 0 0
\(52\) −3.06681 0.996467i −0.425290 0.138185i
\(53\) −7.75090 + 10.6682i −1.06467 + 1.46539i −0.189307 + 0.981918i \(0.560624\pi\)
−0.875360 + 0.483471i \(0.839376\pi\)
\(54\) 0 0
\(55\) 2.30564 + 2.38412i 0.310892 + 0.321475i
\(56\) 1.98936i 0.265840i
\(57\) 0 0
\(58\) −0.406430 + 1.25086i −0.0533669 + 0.164246i
\(59\) −5.67571 + 1.84415i −0.738914 + 0.240088i −0.654204 0.756318i \(-0.726996\pi\)
−0.0847100 + 0.996406i \(0.526996\pi\)
\(60\) 0 0
\(61\) 1.18547 + 1.63166i 0.151784 + 0.208912i 0.878137 0.478409i \(-0.158786\pi\)
−0.726353 + 0.687321i \(0.758786\pi\)
\(62\) −0.379385 1.16763i −0.0481819 0.148289i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 3.22464 0.399967
\(66\) 0 0
\(67\) −7.59383 −0.927734 −0.463867 0.885905i \(-0.653539\pi\)
−0.463867 + 0.885905i \(0.653539\pi\)
\(68\) −5.26884 3.82804i −0.638941 0.464218i
\(69\) 0 0
\(70\) 0.614747 + 1.89200i 0.0734764 + 0.226137i
\(71\) 2.68699 + 3.69833i 0.318888 + 0.438911i 0.938127 0.346291i \(-0.112559\pi\)
−0.619240 + 0.785202i \(0.712559\pi\)
\(72\) 0 0
\(73\) −8.96545 + 2.91305i −1.04933 + 0.340947i −0.782404 0.622771i \(-0.786007\pi\)
−0.266922 + 0.963718i \(0.586007\pi\)
\(74\) −1.08996 + 3.35456i −0.126706 + 0.389960i
\(75\) 0 0
\(76\) 2.06794i 0.237209i
\(77\) −5.92814 + 2.89663i −0.675574 + 0.330102i
\(78\) 0 0
\(79\) −2.40983 + 3.31685i −0.271127 + 0.373175i −0.922770 0.385351i \(-0.874080\pi\)
0.651643 + 0.758526i \(0.274080\pi\)
\(80\) 0.951057 + 0.309017i 0.106331 + 0.0345492i
\(81\) 0 0
\(82\) −3.46878 + 2.52022i −0.383063 + 0.278311i
\(83\) −1.91200 + 1.38915i −0.209869 + 0.152479i −0.687754 0.725943i \(-0.741403\pi\)
0.477885 + 0.878422i \(0.341403\pi\)
\(84\) 0 0
\(85\) 6.19389 + 2.01252i 0.671822 + 0.218288i
\(86\) 4.81028 6.62079i 0.518706 0.713938i
\(87\) 0 0
\(88\) −0.573574 + 3.26665i −0.0611432 + 0.348226i
\(89\) 11.4586i 1.21461i −0.794468 0.607306i \(-0.792250\pi\)
0.794468 0.607306i \(-0.207750\pi\)
\(90\) 0 0
\(91\) −1.98234 + 6.10101i −0.207805 + 0.639559i
\(92\) 3.40574 1.10659i 0.355073 0.115370i
\(93\) 0 0
\(94\) 1.35043 + 1.85871i 0.139287 + 0.191711i
\(95\) 0.639030 + 1.96673i 0.0655630 + 0.201782i
\(96\) 0 0
\(97\) −0.221400 0.160857i −0.0224798 0.0163325i 0.576489 0.817105i \(-0.304423\pi\)
−0.598968 + 0.800773i \(0.704423\pi\)
\(98\) 3.04243 0.307332
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 14.7990 + 10.7521i 1.47255 + 1.06987i 0.979864 + 0.199665i \(0.0639854\pi\)
0.492688 + 0.870206i \(0.336015\pi\)
\(102\) 0 0
\(103\) −0.426688 1.31321i −0.0420428 0.129394i 0.927832 0.372998i \(-0.121670\pi\)
−0.969875 + 0.243604i \(0.921670\pi\)
\(104\) 1.89539 + 2.60879i 0.185859 + 0.255812i
\(105\) 0 0
\(106\) 12.5412 4.07489i 1.21811 0.395788i
\(107\) −4.72453 + 14.5406i −0.456737 + 1.40569i 0.412346 + 0.911027i \(0.364709\pi\)
−0.869084 + 0.494665i \(0.835291\pi\)
\(108\) 0 0
\(109\) 19.7457i 1.89130i −0.325188 0.945649i \(-0.605428\pi\)
0.325188 0.945649i \(-0.394572\pi\)
\(110\) −0.463949 3.28401i −0.0442358 0.313118i
\(111\) 0 0
\(112\) −1.16932 + 1.60943i −0.110490 + 0.152077i
\(113\) −10.9477 3.55711i −1.02987 0.334625i −0.255130 0.966907i \(-0.582118\pi\)
−0.774738 + 0.632282i \(0.782118\pi\)
\(114\) 0 0
\(115\) −2.89709 + 2.10486i −0.270155 + 0.196279i
\(116\) 1.06405 0.773076i 0.0987943 0.0717783i
\(117\) 0 0
\(118\) 5.67571 + 1.84415i 0.522491 + 0.169768i
\(119\) −7.61536 + 10.4816i −0.698099 + 0.960851i
\(120\) 0 0
\(121\) 10.5695 3.04723i 0.960864 0.277021i
\(122\) 2.01684i 0.182596i
\(123\) 0 0
\(124\) −0.379385 + 1.16763i −0.0340697 + 0.104856i
\(125\) 0.951057 0.309017i 0.0850651 0.0276393i
\(126\) 0 0
\(127\) −3.61822 4.98005i −0.321065 0.441908i 0.617727 0.786393i \(-0.288054\pi\)
−0.938792 + 0.344484i \(0.888054\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) −2.60879 1.89539i −0.228806 0.166237i
\(131\) 15.9580 1.39425 0.697126 0.716948i \(-0.254462\pi\)
0.697126 + 0.716948i \(0.254462\pi\)
\(132\) 0 0
\(133\) −4.11389 −0.356720
\(134\) 6.14354 + 4.46354i 0.530721 + 0.385591i
\(135\) 0 0
\(136\) 2.01252 + 6.19389i 0.172572 + 0.531122i
\(137\) −0.610519 0.840308i −0.0521602 0.0717923i 0.782140 0.623103i \(-0.214128\pi\)
−0.834300 + 0.551310i \(0.814128\pi\)
\(138\) 0 0
\(139\) −5.85148 + 1.90126i −0.496316 + 0.161263i −0.546470 0.837479i \(-0.684029\pi\)
0.0501541 + 0.998741i \(0.484029\pi\)
\(140\) 0.614747 1.89200i 0.0519556 0.159903i
\(141\) 0 0
\(142\) 4.57139i 0.383622i
\(143\) 5.01416 9.44665i 0.419305 0.789969i
\(144\) 0 0
\(145\) −0.773076 + 1.06405i −0.0642004 + 0.0883643i
\(146\) 8.96545 + 2.91305i 0.741986 + 0.241086i
\(147\) 0 0
\(148\) 2.85356 2.07323i 0.234561 0.170419i
\(149\) −9.75875 + 7.09015i −0.799468 + 0.580848i −0.910758 0.412940i \(-0.864502\pi\)
0.111290 + 0.993788i \(0.464502\pi\)
\(150\) 0 0
\(151\) 4.66255 + 1.51496i 0.379433 + 0.123285i 0.492523 0.870299i \(-0.336075\pi\)
−0.113090 + 0.993585i \(0.536075\pi\)
\(152\) −1.21551 + 1.67300i −0.0985906 + 0.135698i
\(153\) 0 0
\(154\) 6.49856 + 1.14105i 0.523669 + 0.0919483i
\(155\) 1.22771i 0.0986124i
\(156\) 0 0
\(157\) 5.37853 16.5534i 0.429253 1.32111i −0.469609 0.882874i \(-0.655605\pi\)
0.898862 0.438231i \(-0.144395\pi\)
\(158\) 3.89919 1.26692i 0.310203 0.100791i
\(159\) 0 0
\(160\) −0.587785 0.809017i −0.0464685 0.0639584i
\(161\) −2.20141 6.77525i −0.173496 0.533965i
\(162\) 0 0
\(163\) −11.2253 8.15565i −0.879232 0.638800i 0.0538159 0.998551i \(-0.482862\pi\)
−0.933048 + 0.359751i \(0.882862\pi\)
\(164\) 4.28765 0.334809
\(165\) 0 0
\(166\) 2.36336 0.183432
\(167\) 12.2139 + 8.87389i 0.945137 + 0.686683i 0.949652 0.313307i \(-0.101437\pi\)
−0.00451436 + 0.999990i \(0.501437\pi\)
\(168\) 0 0
\(169\) 0.803977 + 2.47439i 0.0618444 + 0.190337i
\(170\) −3.82804 5.26884i −0.293597 0.404102i
\(171\) 0 0
\(172\) −7.78320 + 2.52892i −0.593464 + 0.192828i
\(173\) −2.68224 + 8.25508i −0.203927 + 0.627622i 0.795829 + 0.605521i \(0.207035\pi\)
−0.999756 + 0.0221006i \(0.992965\pi\)
\(174\) 0 0
\(175\) 1.98936i 0.150382i
\(176\) 2.38412 2.30564i 0.179710 0.173794i
\(177\) 0 0
\(178\) −6.73521 + 9.27022i −0.504825 + 0.694833i
\(179\) 7.87244 + 2.55791i 0.588414 + 0.191187i 0.588066 0.808813i \(-0.299889\pi\)
0.000347497 1.00000i \(0.499889\pi\)
\(180\) 0 0
\(181\) 7.53720 5.47610i 0.560236 0.407035i −0.271309 0.962492i \(-0.587457\pi\)
0.831545 + 0.555457i \(0.187457\pi\)
\(182\) 5.18983 3.77063i 0.384695 0.279498i
\(183\) 0 0
\(184\) −3.40574 1.10659i −0.251074 0.0815790i
\(185\) −2.07323 + 2.85356i −0.152427 + 0.209798i
\(186\) 0 0
\(187\) 15.5269 15.0158i 1.13544 1.09806i
\(188\) 2.29749i 0.167562i
\(189\) 0 0
\(190\) 0.639030 1.96673i 0.0463601 0.142682i
\(191\) 22.8697 7.43081i 1.65479 0.537675i 0.675022 0.737798i \(-0.264134\pi\)
0.979771 + 0.200123i \(0.0641342\pi\)
\(192\) 0 0
\(193\) −2.35589 3.24260i −0.169580 0.233407i 0.715765 0.698341i \(-0.246078\pi\)
−0.885345 + 0.464934i \(0.846078\pi\)
\(194\) 0.0845673 + 0.260271i 0.00607158 + 0.0186864i
\(195\) 0 0
\(196\) −2.46138 1.78829i −0.175813 0.127735i
\(197\) −22.8884 −1.63073 −0.815365 0.578948i \(-0.803464\pi\)
−0.815365 + 0.578948i \(0.803464\pi\)
\(198\) 0 0
\(199\) −16.4034 −1.16281 −0.581404 0.813615i \(-0.697497\pi\)
−0.581404 + 0.813615i \(0.697497\pi\)
\(200\) 0.809017 + 0.587785i 0.0572061 + 0.0415627i
\(201\) 0 0
\(202\) −5.65270 17.3972i −0.397723 1.22406i
\(203\) −1.53793 2.11678i −0.107941 0.148569i
\(204\) 0 0
\(205\) −4.07780 + 1.32496i −0.284806 + 0.0925390i
\(206\) −0.426688 + 1.31321i −0.0297288 + 0.0914957i
\(207\) 0 0
\(208\) 3.22464i 0.223588i
\(209\) 6.75525 + 1.18612i 0.467270 + 0.0820456i
\(210\) 0 0
\(211\) −13.9526 + 19.2041i −0.960534 + 1.32206i −0.0138480 + 0.999904i \(0.504408\pi\)
−0.946686 + 0.322158i \(0.895592\pi\)
\(212\) −12.5412 4.07489i −0.861334 0.279864i
\(213\) 0 0
\(214\) 12.3690 8.98658i 0.845525 0.614310i
\(215\) 6.62079 4.81028i 0.451534 0.328059i
\(216\) 0 0
\(217\) 2.32283 + 0.754734i 0.157684 + 0.0512347i
\(218\) −11.6063 + 15.9746i −0.786075 + 1.08194i
\(219\) 0 0
\(220\) −1.55495 + 2.92953i −0.104835 + 0.197509i
\(221\) 21.0009i 1.41267i
\(222\) 0 0
\(223\) 8.64819 26.6164i 0.579126 1.78237i −0.0425547 0.999094i \(-0.513550\pi\)
0.621680 0.783271i \(-0.286450\pi\)
\(224\) 1.89200 0.614747i 0.126414 0.0410745i
\(225\) 0 0
\(226\) 6.76602 + 9.31263i 0.450069 + 0.619467i
\(227\) 6.30941 + 19.4184i 0.418770 + 1.28884i 0.908835 + 0.417156i \(0.136973\pi\)
−0.490065 + 0.871686i \(0.663027\pi\)
\(228\) 0 0
\(229\) −1.24761 0.906440i −0.0824443 0.0598993i 0.545800 0.837916i \(-0.316226\pi\)
−0.628244 + 0.778016i \(0.716226\pi\)
\(230\) 3.58100 0.236124
\(231\) 0 0
\(232\) −1.31523 −0.0863494
\(233\) −10.4496 7.59211i −0.684579 0.497376i 0.190295 0.981727i \(-0.439056\pi\)
−0.874874 + 0.484351i \(0.839056\pi\)
\(234\) 0 0
\(235\) 0.709965 + 2.18505i 0.0463130 + 0.142537i
\(236\) −3.50778 4.82805i −0.228337 0.314279i
\(237\) 0 0
\(238\) 12.3219 4.00363i 0.798711 0.259517i
\(239\) 0.700590 2.15619i 0.0453174 0.139473i −0.925838 0.377921i \(-0.876639\pi\)
0.971155 + 0.238449i \(0.0766389\pi\)
\(240\) 0 0
\(241\) 25.7528i 1.65889i −0.558591 0.829443i \(-0.688658\pi\)
0.558591 0.829443i \(-0.311342\pi\)
\(242\) −10.3420 3.74734i −0.664811 0.240888i
\(243\) 0 0
\(244\) −1.18547 + 1.63166i −0.0758918 + 0.104456i
\(245\) 2.89352 + 0.940162i 0.184860 + 0.0600647i
\(246\) 0 0
\(247\) 5.39482 3.91957i 0.343264 0.249396i
\(248\) 0.993242 0.721632i 0.0630709 0.0458237i
\(249\) 0 0
\(250\) −0.951057 0.309017i −0.0601501 0.0195440i
\(251\) 13.6275 18.7567i 0.860162 1.18391i −0.121369 0.992607i \(-0.538728\pi\)
0.981531 0.191304i \(-0.0612716\pi\)
\(252\) 0 0
\(253\) 1.66140 + 11.7601i 0.104452 + 0.739349i
\(254\) 6.15568i 0.386242i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 9.79799 3.18356i 0.611182 0.198585i 0.0129608 0.999916i \(-0.495874\pi\)
0.598221 + 0.801331i \(0.295874\pi\)
\(258\) 0 0
\(259\) −4.12442 5.67677i −0.256279 0.352737i
\(260\) 0.996467 + 3.06681i 0.0617983 + 0.190196i
\(261\) 0 0
\(262\) −12.9103 9.37985i −0.797598 0.579489i
\(263\) 21.8652 1.34827 0.674133 0.738610i \(-0.264518\pi\)
0.674133 + 0.738610i \(0.264518\pi\)
\(264\) 0 0
\(265\) 13.1866 0.810047
\(266\) 3.32821 + 2.41809i 0.204066 + 0.148262i
\(267\) 0 0
\(268\) −2.34662 7.22216i −0.143343 0.441164i
\(269\) −9.87617 13.5934i −0.602161 0.828803i 0.393743 0.919220i \(-0.371180\pi\)
−0.995904 + 0.0904173i \(0.971180\pi\)
\(270\) 0 0
\(271\) −1.30254 + 0.423220i −0.0791234 + 0.0257088i −0.348311 0.937379i \(-0.613245\pi\)
0.269188 + 0.963088i \(0.413245\pi\)
\(272\) 2.01252 6.19389i 0.122027 0.375560i
\(273\) 0 0
\(274\) 1.03868i 0.0627488i
\(275\) 0.573574 3.26665i 0.0345878 0.196987i
\(276\) 0 0
\(277\) 1.51875 2.09038i 0.0912530 0.125599i −0.760949 0.648811i \(-0.775266\pi\)
0.852202 + 0.523212i \(0.175266\pi\)
\(278\) 5.85148 + 1.90126i 0.350948 + 0.114030i
\(279\) 0 0
\(280\) −1.60943 + 1.16932i −0.0961818 + 0.0698802i
\(281\) 13.1771 9.57371i 0.786079 0.571120i −0.120718 0.992687i \(-0.538520\pi\)
0.906797 + 0.421567i \(0.138520\pi\)
\(282\) 0 0
\(283\) 13.4479 + 4.36949i 0.799396 + 0.259739i 0.680100 0.733119i \(-0.261936\pi\)
0.119296 + 0.992859i \(0.461936\pi\)
\(284\) −2.68699 + 3.69833i −0.159444 + 0.219456i
\(285\) 0 0
\(286\) −9.60914 + 4.69526i −0.568200 + 0.277636i
\(287\) 8.52970i 0.503492i
\(288\) 0 0
\(289\) 7.85352 24.1707i 0.461972 1.42180i
\(290\) 1.25086 0.406430i 0.0734532 0.0238664i
\(291\) 0 0
\(292\) −5.54095 7.62647i −0.324260 0.446305i
\(293\) −3.91654 12.0539i −0.228807 0.704194i −0.997883 0.0650371i \(-0.979283\pi\)
0.769076 0.639157i \(-0.220717\pi\)
\(294\) 0 0
\(295\) 4.82805 + 3.50778i 0.281100 + 0.204231i
\(296\) −3.52719 −0.205014
\(297\) 0 0
\(298\) 12.0625 0.698761
\(299\) 9.34207 + 6.78741i 0.540266 + 0.392526i
\(300\) 0 0
\(301\) 5.03093 + 15.4836i 0.289978 + 0.892461i
\(302\) −2.88162 3.96620i −0.165818 0.228229i
\(303\) 0 0
\(304\) 1.96673 0.639030i 0.112800 0.0366509i
\(305\) 0.623237 1.91813i 0.0356865 0.109832i
\(306\) 0 0
\(307\) 5.84773i 0.333748i 0.985978 + 0.166874i \(0.0533672\pi\)
−0.985978 + 0.166874i \(0.946633\pi\)
\(308\) −4.58675 4.74289i −0.261355 0.270251i
\(309\) 0 0
\(310\) −0.721632 + 0.993242i −0.0409860 + 0.0564123i
\(311\) −17.4807 5.67981i −0.991237 0.322072i −0.231878 0.972745i \(-0.574487\pi\)
−0.759359 + 0.650672i \(0.774487\pi\)
\(312\) 0 0
\(313\) 9.26715 6.73298i 0.523810 0.380570i −0.294227 0.955736i \(-0.595062\pi\)
0.818037 + 0.575165i \(0.195062\pi\)
\(314\) −14.0812 + 10.2306i −0.794646 + 0.577344i
\(315\) 0 0
\(316\) −3.89919 1.26692i −0.219347 0.0712700i
\(317\) −13.0834 + 18.0078i −0.734837 + 1.01142i 0.264062 + 0.964506i \(0.414938\pi\)
−0.998899 + 0.0469108i \(0.985062\pi\)
\(318\) 0 0
\(319\) 1.91506 + 3.91929i 0.107223 + 0.219438i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −2.20141 + 6.77525i −0.122680 + 0.377570i
\(323\) 12.8086 4.16177i 0.712691 0.231567i
\(324\) 0 0
\(325\) −1.89539 2.60879i −0.105138 0.144709i
\(326\) 4.28768 + 13.1961i 0.237473 + 0.730865i
\(327\) 0 0
\(328\) −3.46878 2.52022i −0.191531 0.139156i
\(329\) −4.57055 −0.251983
\(330\) 0 0
\(331\) 17.9026 0.984018 0.492009 0.870590i \(-0.336263\pi\)
0.492009 + 0.870590i \(0.336263\pi\)
\(332\) −1.91200 1.38915i −0.104934 0.0762394i
\(333\) 0 0
\(334\) −4.66528 14.3583i −0.255273 0.785649i
\(335\) 4.46354 + 6.14354i 0.243869 + 0.335657i
\(336\) 0 0
\(337\) 18.0053 5.85029i 0.980814 0.318686i 0.225640 0.974211i \(-0.427553\pi\)
0.755174 + 0.655525i \(0.227553\pi\)
\(338\) 0.803977 2.47439i 0.0437306 0.134589i
\(339\) 0 0
\(340\) 6.51264i 0.353198i
\(341\) −3.59662 1.90904i −0.194768 0.103380i
\(342\) 0 0
\(343\) −11.7428 + 16.1626i −0.634052 + 0.872697i
\(344\) 7.78320 + 2.52892i 0.419642 + 0.136350i
\(345\) 0 0
\(346\) 7.02219 5.10192i 0.377515 0.274281i
\(347\) −26.3730 + 19.1611i −1.41577 + 1.02862i −0.423324 + 0.905978i \(0.639137\pi\)
−0.992451 + 0.122642i \(0.960863\pi\)
\(348\) 0 0
\(349\) −27.7215 9.00727i −1.48390 0.482148i −0.548624 0.836069i \(-0.684848\pi\)
−0.935275 + 0.353921i \(0.884848\pi\)
\(350\) 1.16932 1.60943i 0.0625027 0.0860276i
\(351\) 0 0
\(352\) −3.28401 + 0.463949i −0.175039 + 0.0247286i
\(353\) 8.70013i 0.463061i −0.972828 0.231531i \(-0.925627\pi\)
0.972828 0.231531i \(-0.0743734\pi\)
\(354\) 0 0
\(355\) 1.41264 4.34765i 0.0749750 0.230749i
\(356\) 10.8978 3.54091i 0.577582 0.187668i
\(357\) 0 0
\(358\) −4.86544 6.69670i −0.257146 0.353931i
\(359\) 0.819179 + 2.52117i 0.0432346 + 0.133062i 0.970344 0.241729i \(-0.0777144\pi\)
−0.927109 + 0.374791i \(0.877714\pi\)
\(360\) 0 0
\(361\) −11.9117 8.65432i −0.626929 0.455491i
\(362\) −9.31649 −0.489664
\(363\) 0 0
\(364\) −6.41498 −0.336236
\(365\) 7.62647 + 5.54095i 0.399187 + 0.290027i
\(366\) 0 0
\(367\) 10.6218 + 32.6904i 0.554451 + 1.70642i 0.697389 + 0.716693i \(0.254345\pi\)
−0.142938 + 0.989732i \(0.545655\pi\)
\(368\) 2.10486 + 2.89709i 0.109723 + 0.151021i
\(369\) 0 0
\(370\) 3.35456 1.08996i 0.174395 0.0566645i
\(371\) −8.10644 + 24.9490i −0.420865 + 1.29529i
\(372\) 0 0
\(373\) 0.680689i 0.0352447i 0.999845 + 0.0176224i \(0.00560967\pi\)
−0.999845 + 0.0176224i \(0.994390\pi\)
\(374\) −21.3876 + 3.02154i −1.10593 + 0.156240i
\(375\) 0 0
\(376\) −1.35043 + 1.85871i −0.0696433 + 0.0958557i
\(377\) 4.03358 + 1.31059i 0.207740 + 0.0674987i
\(378\) 0 0
\(379\) 3.47279 2.52313i 0.178385 0.129604i −0.495010 0.868888i \(-0.664835\pi\)
0.673395 + 0.739283i \(0.264835\pi\)
\(380\) −1.67300 + 1.21551i −0.0858231 + 0.0623542i
\(381\) 0 0
\(382\) −22.8697 7.43081i −1.17012 0.380193i
\(383\) 1.79016 2.46395i 0.0914731 0.125902i −0.760828 0.648954i \(-0.775207\pi\)
0.852301 + 0.523052i \(0.175207\pi\)
\(384\) 0 0
\(385\) 5.82790 + 3.09337i 0.297017 + 0.157653i
\(386\) 4.00807i 0.204006i
\(387\) 0 0
\(388\) 0.0845673 0.260271i 0.00429325 0.0132133i
\(389\) 9.09639 2.95560i 0.461205 0.149855i −0.0691930 0.997603i \(-0.522042\pi\)
0.530398 + 0.847749i \(0.322042\pi\)
\(390\) 0 0
\(391\) 13.7082 + 18.8677i 0.693254 + 0.954183i
\(392\) 0.940162 + 2.89352i 0.0474854 + 0.146145i
\(393\) 0 0
\(394\) 18.5171 + 13.4534i 0.932877 + 0.677775i
\(395\) 4.09985 0.206286
\(396\) 0 0
\(397\) −12.4217 −0.623428 −0.311714 0.950176i \(-0.600903\pi\)
−0.311714 + 0.950176i \(0.600903\pi\)
\(398\) 13.2707 + 9.64170i 0.665198 + 0.483295i
\(399\) 0 0
\(400\) −0.309017 0.951057i −0.0154508 0.0475528i
\(401\) −20.0553 27.6038i −1.00152 1.37847i −0.924390 0.381448i \(-0.875426\pi\)
−0.0771259 0.997021i \(-0.524574\pi\)
\(402\) 0 0
\(403\) −3.76517 + 1.22338i −0.187556 + 0.0609408i
\(404\) −5.65270 + 17.3972i −0.281232 + 0.865544i
\(405\) 0 0
\(406\) 2.61648i 0.129854i
\(407\) 5.13580 + 10.5107i 0.254572 + 0.520998i
\(408\) 0 0
\(409\) −12.0795 + 16.6259i −0.597291 + 0.822100i −0.995457 0.0952133i \(-0.969647\pi\)
0.398166 + 0.917313i \(0.369647\pi\)
\(410\) 4.07780 + 1.32496i 0.201388 + 0.0654350i
\(411\) 0 0
\(412\) 1.11708 0.811609i 0.0550347 0.0399851i
\(413\) −9.60475 + 6.97826i −0.472619 + 0.343378i
\(414\) 0 0
\(415\) 2.24769 + 0.730318i 0.110335 + 0.0358499i
\(416\) −1.89539 + 2.60879i −0.0929293 + 0.127906i
\(417\) 0 0
\(418\) −4.76793 4.93023i −0.233207 0.241145i
\(419\) 35.5918i 1.73877i −0.494131 0.869387i \(-0.664514\pi\)
0.494131 0.869387i \(-0.335486\pi\)
\(420\) 0 0
\(421\) −9.04539 + 27.8389i −0.440845 + 1.35678i 0.446131 + 0.894968i \(0.352802\pi\)
−0.886976 + 0.461815i \(0.847198\pi\)
\(422\) 22.5757 7.33530i 1.09897 0.357077i
\(423\) 0 0
\(424\) 7.75090 + 10.6682i 0.376417 + 0.518093i
\(425\) −2.01252 6.19389i −0.0976214 0.300448i
\(426\) 0 0
\(427\) 3.24596 + 2.35833i 0.157083 + 0.114127i
\(428\) −15.2889 −0.739016
\(429\) 0 0
\(430\) −8.18374 −0.394655
\(431\) 6.89142 + 5.00691i 0.331948 + 0.241174i 0.741257 0.671222i \(-0.234230\pi\)
−0.409309 + 0.912396i \(0.634230\pi\)
\(432\) 0 0
\(433\) 5.58836 + 17.1992i 0.268559 + 0.826540i 0.990852 + 0.134953i \(0.0430883\pi\)
−0.722293 + 0.691587i \(0.756912\pi\)
\(434\) −1.43559 1.97592i −0.0689105 0.0948472i
\(435\) 0 0
\(436\) 18.7793 6.10177i 0.899366 0.292222i
\(437\) −2.28837 + 7.04287i −0.109467 + 0.336906i
\(438\) 0 0
\(439\) 23.1252i 1.10370i 0.833942 + 0.551852i \(0.186079\pi\)
−0.833942 + 0.551852i \(0.813921\pi\)
\(440\) 2.97992 1.45606i 0.142062 0.0694149i
\(441\) 0 0
\(442\) −12.3440 + 16.9901i −0.587145 + 0.808136i
\(443\) 23.3716 + 7.59390i 1.11042 + 0.360797i 0.806104 0.591774i \(-0.201572\pi\)
0.304316 + 0.952571i \(0.401572\pi\)
\(444\) 0 0
\(445\) −9.27022 + 6.73521i −0.439451 + 0.319280i
\(446\) −22.6413 + 16.4498i −1.07209 + 0.778922i
\(447\) 0 0
\(448\) −1.89200 0.614747i −0.0893885 0.0290441i
\(449\) −12.2986 + 16.9276i −0.580407 + 0.798862i −0.993740 0.111718i \(-0.964365\pi\)
0.413333 + 0.910580i \(0.364365\pi\)
\(450\) 0 0
\(451\) −2.45929 + 14.0063i −0.115803 + 0.659529i
\(452\) 11.5110i 0.541434i
\(453\) 0 0
\(454\) 6.30941 19.4184i 0.296115 0.911349i
\(455\) 6.10101 1.98234i 0.286020 0.0929334i
\(456\) 0 0
\(457\) −1.50614 2.07302i −0.0704541 0.0969718i 0.772336 0.635215i \(-0.219088\pi\)
−0.842790 + 0.538243i \(0.819088\pi\)
\(458\) 0.476544 + 1.46665i 0.0222674 + 0.0685321i
\(459\) 0 0
\(460\) −2.89709 2.10486i −0.135078 0.0981397i
\(461\) 21.9616 1.02285 0.511427 0.859327i \(-0.329117\pi\)
0.511427 + 0.859327i \(0.329117\pi\)
\(462\) 0 0
\(463\) −17.3737 −0.807423 −0.403712 0.914886i \(-0.632280\pi\)
−0.403712 + 0.914886i \(0.632280\pi\)
\(464\) 1.06405 + 0.773076i 0.0493971 + 0.0358891i
\(465\) 0 0
\(466\) 3.99141 + 12.2843i 0.184898 + 0.569059i
\(467\) −19.7056 27.1224i −0.911866 1.25508i −0.966525 0.256571i \(-0.917407\pi\)
0.0546596 0.998505i \(-0.482593\pi\)
\(468\) 0 0
\(469\) −14.3675 + 4.66829i −0.663430 + 0.215562i
\(470\) 0.709965 2.18505i 0.0327482 0.100789i
\(471\) 0 0
\(472\) 5.96779i 0.274690i
\(473\) −3.79684 26.8755i −0.174579 1.23574i
\(474\) 0 0
\(475\) 1.21551 1.67300i 0.0557713 0.0767626i
\(476\) −12.3219 4.00363i −0.564774 0.183506i
\(477\) 0 0
\(478\) −1.83417 + 1.33260i −0.0838929 + 0.0609518i
\(479\) 4.84360 3.51908i 0.221310 0.160791i −0.471606 0.881809i \(-0.656326\pi\)
0.692916 + 0.721018i \(0.256326\pi\)
\(480\) 0 0
\(481\) 10.8172 + 3.51473i 0.493224 + 0.160258i
\(482\) −15.1371 + 20.8345i −0.689478 + 0.948985i
\(483\) 0 0
\(484\) 6.16425 + 9.11055i 0.280193 + 0.414116i
\(485\) 0.273666i 0.0124265i
\(486\) 0 0
\(487\) −3.46306 + 10.6582i −0.156926 + 0.482969i −0.998351 0.0574053i \(-0.981717\pi\)
0.841425 + 0.540374i \(0.181717\pi\)
\(488\) 1.91813 0.623237i 0.0868295 0.0282126i
\(489\) 0 0
\(490\) −1.78829 2.46138i −0.0807869 0.111194i
\(491\) 4.81643 + 14.8235i 0.217363 + 0.668973i 0.998977 + 0.0452118i \(0.0143963\pi\)
−0.781615 + 0.623761i \(0.785604\pi\)
\(492\) 0 0
\(493\) 6.92976 + 5.03477i 0.312101 + 0.226754i
\(494\) −6.66836 −0.300024
\(495\) 0 0
\(496\) −1.22771 −0.0551260
\(497\) 7.35733 + 5.34541i 0.330021 + 0.239774i
\(498\) 0 0
\(499\) 12.1829 + 37.4951i 0.545381 + 1.67851i 0.720082 + 0.693889i \(0.244104\pi\)
−0.174700 + 0.984622i \(0.555896\pi\)
\(500\) 0.587785 + 0.809017i 0.0262866 + 0.0361803i
\(501\) 0 0
\(502\) −22.0498 + 7.16442i −0.984131 + 0.319764i
\(503\) −9.40543 + 28.9469i −0.419367 + 1.29068i 0.488918 + 0.872330i \(0.337392\pi\)
−0.908286 + 0.418351i \(0.862608\pi\)
\(504\) 0 0
\(505\) 18.2925i 0.814007i
\(506\) 5.56829 10.4906i 0.247541 0.466366i
\(507\) 0 0
\(508\) 3.61822 4.98005i 0.160533 0.220954i
\(509\) −8.13145 2.64207i −0.360420 0.117108i 0.123209 0.992381i \(-0.460682\pi\)
−0.483629 + 0.875273i \(0.660682\pi\)
\(510\) 0 0
\(511\) −15.1718 + 11.0230i −0.671162 + 0.487628i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) −9.79799 3.18356i −0.432171 0.140421i
\(515\) −0.811609 + 1.11708i −0.0357637 + 0.0492246i
\(516\) 0 0
\(517\) 7.50511 + 1.31778i 0.330074 + 0.0579561i
\(518\) 7.01687i 0.308304i
\(519\) 0 0
\(520\) 0.996467 3.06681i 0.0436980 0.134489i
\(521\) −4.48525 + 1.45734i −0.196502 + 0.0638474i −0.405615 0.914044i \(-0.632943\pi\)
0.209112 + 0.977892i \(0.432943\pi\)
\(522\) 0 0
\(523\) −20.7298 28.5322i −0.906452 1.24762i −0.968364 0.249543i \(-0.919720\pi\)
0.0619116 0.998082i \(-0.480280\pi\)
\(524\) 4.93128 + 15.1769i 0.215424 + 0.663007i
\(525\) 0 0
\(526\) −17.6893 12.8520i −0.771291 0.560375i
\(527\) −7.99567 −0.348297
\(528\) 0 0
\(529\) 10.1764 0.442452
\(530\) −10.6682 7.75090i −0.463397 0.336677i
\(531\) 0 0
\(532\) −1.27126 3.91254i −0.0551162 0.169630i
\(533\) 8.12678 + 11.1856i 0.352010 + 0.484500i
\(534\) 0 0
\(535\) 14.5406 4.72453i 0.628645 0.204259i
\(536\) −2.34662 + 7.22216i −0.101359 + 0.311950i
\(537\) 0 0
\(538\) 16.8023i 0.724400i
\(539\) 7.25352 7.01474i 0.312431 0.302146i
\(540\) 0 0
\(541\) 1.40151 1.92902i 0.0602558 0.0829350i −0.777826 0.628480i \(-0.783677\pi\)
0.838081 + 0.545545i \(0.183677\pi\)
\(542\) 1.30254 + 0.423220i 0.0559487 + 0.0181788i
\(543\) 0 0
\(544\) −5.26884 + 3.82804i −0.225900 + 0.164126i
\(545\) −15.9746 + 11.6063i −0.684278 + 0.497157i
\(546\) 0 0
\(547\) 13.9478 + 4.53192i 0.596365 + 0.193771i 0.591619 0.806218i \(-0.298489\pi\)
0.00474659 + 0.999989i \(0.498489\pi\)
\(548\) 0.610519 0.840308i 0.0260801 0.0358962i
\(549\) 0 0
\(550\) −2.38412 + 2.30564i −0.101659 + 0.0983127i
\(551\) 2.71983i 0.115869i
\(552\) 0 0
\(553\) −2.52037 + 7.75691i −0.107177 + 0.329858i
\(554\) −2.45739 + 0.798456i −0.104405 + 0.0339231i
\(555\) 0 0
\(556\) −3.61641 4.97756i −0.153370 0.211096i
\(557\) −8.92390 27.4649i −0.378118 1.16373i −0.941351 0.337429i \(-0.890443\pi\)
0.563233 0.826298i \(-0.309557\pi\)
\(558\) 0 0
\(559\) −21.3496 15.5114i −0.902993 0.656063i
\(560\) 1.98936 0.0840660
\(561\) 0 0
\(562\) −16.2878 −0.687058
\(563\) 26.6587 + 19.3687i 1.12353 + 0.816292i 0.984740 0.174030i \(-0.0556789\pi\)
0.138789 + 0.990322i \(0.455679\pi\)
\(564\) 0 0
\(565\) 3.55711 + 10.9477i 0.149649 + 0.460571i
\(566\) −8.31127 11.4395i −0.349349 0.480837i
\(567\) 0 0
\(568\) 4.34765 1.41264i 0.182423 0.0592729i
\(569\) 4.25580 13.0980i 0.178412 0.549097i −0.821361 0.570409i \(-0.806785\pi\)
0.999773 + 0.0213127i \(0.00678455\pi\)
\(570\) 0 0
\(571\) 3.76789i 0.157681i −0.996887 0.0788407i \(-0.974878\pi\)
0.996887 0.0788407i \(-0.0251218\pi\)
\(572\) 10.5338 + 1.84957i 0.440439 + 0.0773343i
\(573\) 0 0
\(574\) −5.01363 + 6.90067i −0.209265 + 0.288029i
\(575\) 3.40574 + 1.10659i 0.142029 + 0.0461480i
\(576\) 0 0
\(577\) 26.7658 19.4465i 1.11428 0.809569i 0.130945 0.991390i \(-0.458199\pi\)
0.983332 + 0.181820i \(0.0581989\pi\)
\(578\) −20.5608 + 14.9383i −0.855216 + 0.621351i
\(579\) 0 0
\(580\) −1.25086 0.406430i −0.0519392 0.0168761i
\(581\) −2.76352 + 3.80366i −0.114650 + 0.157802i
\(582\) 0 0
\(583\) 20.5046 38.6305i 0.849212 1.59991i
\(584\) 9.42683i 0.390085i
\(585\) 0 0
\(586\) −3.91654 + 12.0539i −0.161791 + 0.497940i
\(587\) −2.79609 + 0.908506i −0.115407 + 0.0374980i −0.366151 0.930555i \(-0.619325\pi\)
0.250744 + 0.968053i \(0.419325\pi\)
\(588\) 0 0
\(589\) −1.49229 2.05397i −0.0614889 0.0846322i
\(590\) −1.84415 5.67571i −0.0759224 0.233665i
\(591\) 0 0
\(592\) 2.85356 + 2.07323i 0.117281 + 0.0852093i
\(593\) 16.7157 0.686433 0.343217 0.939256i \(-0.388483\pi\)
0.343217 + 0.939256i \(0.388483\pi\)
\(594\) 0 0
\(595\) 12.9560 0.531145
\(596\) −9.75875 7.09015i −0.399734 0.290424i
\(597\) 0 0
\(598\) −3.56835 10.9823i −0.145921 0.449098i
\(599\) −18.3703 25.2846i −0.750592 1.03310i −0.997939 0.0641738i \(-0.979559\pi\)
0.247347 0.968927i \(-0.420441\pi\)
\(600\) 0 0
\(601\) −29.2088 + 9.49051i −1.19145 + 0.387126i −0.836609 0.547800i \(-0.815465\pi\)
−0.354842 + 0.934926i \(0.615465\pi\)
\(602\) 5.03093 15.4836i 0.205046 0.631065i
\(603\) 0 0
\(604\) 4.90250i 0.199480i
\(605\) −8.67786 6.75979i −0.352805 0.274825i
\(606\) 0 0
\(607\) −11.8324 + 16.2859i −0.480263 + 0.661025i −0.978555 0.205984i \(-0.933961\pi\)
0.498293 + 0.867009i \(0.333961\pi\)
\(608\) −1.96673 0.639030i −0.0797615 0.0259161i
\(609\) 0 0
\(610\) −1.63166 + 1.18547i −0.0660638 + 0.0479982i
\(611\) 5.99367 4.35465i 0.242478 0.176170i
\(612\) 0 0
\(613\) 32.0589 + 10.4166i 1.29485 + 0.420722i 0.873786 0.486310i \(-0.161657\pi\)
0.421062 + 0.907032i \(0.361657\pi\)
\(614\) 3.43721 4.73091i 0.138714 0.190924i
\(615\) 0 0
\(616\) 0.922964 + 6.53310i 0.0371873 + 0.263226i
\(617\) 9.36425i 0.376991i −0.982074 0.188495i \(-0.939639\pi\)
0.982074 0.188495i \(-0.0603610\pi\)
\(618\) 0 0
\(619\) −6.51637 + 20.0553i −0.261915 + 0.806091i 0.730473 + 0.682941i \(0.239300\pi\)
−0.992388 + 0.123150i \(0.960700\pi\)
\(620\) 1.16763 0.379385i 0.0468930 0.0152365i
\(621\) 0 0
\(622\) 10.8036 + 14.8699i 0.433187 + 0.596230i
\(623\) −7.04416 21.6797i −0.282218 0.868579i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) −11.4548 −0.457827
\(627\) 0 0
\(628\) 17.4053 0.694546
\(629\) 18.5842 + 13.5022i 0.741001 + 0.538369i
\(630\) 0 0
\(631\) 12.6162 + 38.8287i 0.502244 + 1.54575i 0.805355 + 0.592793i \(0.201975\pi\)
−0.303111 + 0.952955i \(0.598025\pi\)
\(632\) 2.40983 + 3.31685i 0.0958580 + 0.131937i
\(633\) 0 0
\(634\) 21.1694 6.87835i 0.840744 0.273174i
\(635\) −1.90221 + 5.85440i −0.0754869 + 0.232325i
\(636\) 0 0
\(637\) 9.81072i 0.388715i
\(638\) 0.754385 4.29641i 0.0298664 0.170097i
\(639\) 0 0
\(640\) 0.587785 0.809017i 0.0232343 0.0319792i
\(641\) −31.2238 10.1452i −1.23327 0.400713i −0.381371 0.924422i \(-0.624548\pi\)
−0.851897 + 0.523709i \(0.824548\pi\)
\(642\) 0 0
\(643\) −18.2934 + 13.2910i −0.721423 + 0.524144i −0.886838 0.462080i \(-0.847103\pi\)
0.165416 + 0.986224i \(0.447103\pi\)
\(644\) 5.76338 4.18734i 0.227109 0.165004i
\(645\) 0 0
\(646\) −12.8086 4.16177i −0.503948 0.163743i
\(647\) −0.851111 + 1.17145i −0.0334606 + 0.0460546i −0.825420 0.564520i \(-0.809061\pi\)
0.791959 + 0.610574i \(0.209061\pi\)
\(648\) 0 0
\(649\) 17.7835 8.68946i 0.698064 0.341091i
\(650\) 3.22464i 0.126481i
\(651\) 0 0
\(652\) 4.28768 13.1961i 0.167918 0.516800i
\(653\) −33.8810 + 11.0086i −1.32587 + 0.430800i −0.884506 0.466529i \(-0.845504\pi\)
−0.441361 + 0.897330i \(0.645504\pi\)
\(654\) 0 0
\(655\) −9.37985 12.9103i −0.366501 0.504445i
\(656\) 1.32496 + 4.07780i 0.0517309 + 0.159211i
\(657\) 0 0
\(658\) 3.69766 + 2.68650i 0.144150 + 0.104731i
\(659\) 5.47349 0.213217 0.106608 0.994301i \(-0.466001\pi\)
0.106608 + 0.994301i \(0.466001\pi\)
\(660\) 0 0
\(661\) −8.75458 −0.340514 −0.170257 0.985400i \(-0.554460\pi\)
−0.170257 + 0.985400i \(0.554460\pi\)
\(662\) −14.4835 10.5229i −0.562919 0.408985i
\(663\) 0 0
\(664\) 0.730318 + 2.24769i 0.0283418 + 0.0872272i
\(665\) 2.41809 + 3.32821i 0.0937693 + 0.129062i
\(666\) 0 0
\(667\) −4.47934 + 1.45543i −0.173441 + 0.0563544i
\(668\) −4.66528 + 14.3583i −0.180505 + 0.555538i
\(669\) 0 0
\(670\) 7.59383i 0.293375i
\(671\) −4.65010 4.80839i −0.179515 0.185626i
\(672\) 0 0
\(673\) −1.46458 + 2.01582i −0.0564554 + 0.0777042i −0.836311 0.548255i \(-0.815292\pi\)
0.779856 + 0.625959i \(0.215292\pi\)
\(674\) −18.0053 5.85029i −0.693540 0.225345i
\(675\) 0 0
\(676\) −2.10484 + 1.52925i −0.0809553 + 0.0588175i
\(677\) −8.44272 + 6.13400i −0.324480 + 0.235749i −0.738085 0.674708i \(-0.764270\pi\)
0.413605 + 0.910457i \(0.364270\pi\)
\(678\) 0 0
\(679\) −0.517775 0.168235i −0.0198704 0.00645628i
\(680\) 3.82804 5.26884i 0.146798 0.202051i
\(681\) 0 0
\(682\) 1.78762 + 3.65848i 0.0684516 + 0.140091i
\(683\) 20.0565i 0.767440i −0.923449 0.383720i \(-0.874643\pi\)
0.923449 0.383720i \(-0.125357\pi\)
\(684\) 0 0
\(685\) −0.320969 + 0.987841i −0.0122636 + 0.0377435i
\(686\) 19.0003 6.17356i 0.725433 0.235708i
\(687\) 0 0
\(688\) −4.81028 6.62079i −0.183390 0.252415i
\(689\) −13.1400 40.4408i −0.500595 1.54067i
\(690\) 0 0
\(691\) −33.7078 24.4902i −1.28231 0.931650i −0.282686 0.959212i \(-0.591226\pi\)
−0.999620 + 0.0275621i \(0.991226\pi\)
\(692\) −8.67990 −0.329960
\(693\) 0 0
\(694\) 32.5988 1.23743
\(695\) 4.97756 + 3.61641i 0.188810 + 0.137178i
\(696\) 0 0
\(697\) 8.62897 + 26.5572i 0.326846 + 1.00593i
\(698\) 17.1329 + 23.5813i 0.648488 + 0.892567i
\(699\) 0 0
\(700\) −1.89200 + 0.614747i −0.0715108 + 0.0232353i
\(701\) −7.01549 + 21.5914i −0.264971 + 0.815498i 0.726729 + 0.686924i \(0.241040\pi\)
−0.991700 + 0.128573i \(0.958960\pi\)
\(702\) 0 0
\(703\) 7.29404i 0.275100i
\(704\) 2.92953 + 1.55495i 0.110411 + 0.0586045i
\(705\) 0 0
\(706\) −5.11381 + 7.03856i −0.192461 + 0.264900i
\(707\) 34.6094 + 11.2453i 1.30162 + 0.422922i
\(708\) 0 0
\(709\) −1.10372 + 0.801898i −0.0414510 + 0.0301159i −0.608318 0.793694i \(-0.708155\pi\)
0.566867 + 0.823809i \(0.308155\pi\)
\(710\) −3.69833 + 2.68699i −0.138796 + 0.100841i
\(711\) 0 0
\(712\) −10.8978 3.54091i −0.408412 0.132701i
\(713\) 2.58417 3.55680i 0.0967779 0.133203i
\(714\) 0 0
\(715\) −10.5898 + 1.49607i −0.396034 + 0.0559497i
\(716\) 8.27757i 0.309347i
\(717\) 0 0
\(718\) 0.819179 2.52117i 0.0305715 0.0940894i
\(719\) 9.20512 2.99093i 0.343293 0.111543i −0.132296 0.991210i \(-0.542235\pi\)
0.475589 + 0.879668i \(0.342235\pi\)
\(720\) 0 0
\(721\) −1.61459 2.22229i −0.0601303 0.0827623i
\(722\) 4.54985 + 14.0030i 0.169328 + 0.521137i
\(723\) 0 0
\(724\) 7.53720 + 5.47610i 0.280118 + 0.203518i
\(725\) 1.31523 0.0488466
\(726\) 0 0
\(727\) −15.7751 −0.585066 −0.292533 0.956256i \(-0.594498\pi\)
−0.292533 + 0.956256i \(0.594498\pi\)
\(728\) 5.18983 + 3.77063i 0.192348 + 0.139749i
\(729\) 0 0
\(730\) −2.91305 8.96545i −0.107817 0.331826i
\(731\) −31.3277 43.1188i −1.15870 1.59481i
\(732\) 0 0
\(733\) 17.6980 5.75043i 0.653691 0.212397i 0.0366502 0.999328i \(-0.488331\pi\)
0.617041 + 0.786931i \(0.288331\pi\)
\(734\) 10.6218 32.6904i 0.392056 1.20662i
\(735\) 0 0
\(736\) 3.58100i 0.131998i
\(737\) 24.9383 3.52315i 0.918613 0.129777i
\(738\) 0 0
\(739\) 26.8912 37.0126i 0.989210 1.36153i 0.0574924 0.998346i \(-0.481689\pi\)
0.931717 0.363184i \(-0.118311\pi\)
\(740\) −3.35456 1.08996i −0.123316 0.0400678i
\(741\) 0 0
\(742\) 21.2229 15.4194i 0.779118 0.566062i
\(743\) −19.3109 + 14.0302i −0.708447 + 0.514717i −0.882672 0.469989i \(-0.844258\pi\)
0.174226 + 0.984706i \(0.444258\pi\)
\(744\) 0 0
\(745\) 11.4721 + 3.72751i 0.420305 + 0.136565i
\(746\) 0.400099 0.550689i 0.0146487 0.0201622i
\(747\) 0 0
\(748\) 19.0790 + 10.1269i 0.697596 + 0.370274i
\(749\) 30.4152i 1.11135i
\(750\) 0 0
\(751\) 3.31859 10.2136i 0.121097 0.372698i −0.872073 0.489376i \(-0.837225\pi\)
0.993170 + 0.116678i \(0.0372246\pi\)
\(752\) 2.18505 0.709965i 0.0796804 0.0258897i
\(753\) 0 0
\(754\) −2.49289 3.43116i −0.0907856 0.124956i
\(755\) −1.51496 4.66255i −0.0551349 0.169688i
\(756\) 0 0
\(757\) 28.1869 + 20.4790i 1.02447 + 0.744321i 0.967194 0.254037i \(-0.0817587\pi\)
0.0572755 + 0.998358i \(0.481759\pi\)
\(758\) −4.29261 −0.155914
\(759\) 0 0
\(760\) 2.06794 0.0750122
\(761\) 8.03206 + 5.83563i 0.291162 + 0.211541i 0.723771 0.690040i \(-0.242407\pi\)
−0.432609 + 0.901581i \(0.642407\pi\)
\(762\) 0 0
\(763\) −12.1386 37.3589i −0.439448 1.35248i
\(764\) 14.1342 + 19.4541i 0.511359 + 0.703825i
\(765\) 0 0
\(766\) −2.89655 + 0.941145i −0.104656 + 0.0340049i
\(767\) 5.94671 18.3021i 0.214723 0.660850i
\(768\) 0 0
\(769\) 18.4116i 0.663941i 0.943290 + 0.331970i \(0.107713\pi\)
−0.943290 + 0.331970i \(0.892287\pi\)
\(770\) −2.89663 5.92814i −0.104387 0.213635i
\(771\) 0 0
\(772\) 2.35589 3.24260i 0.0847902 0.116704i
\(773\) −15.7733 5.12504i −0.567325 0.184335i 0.0112897 0.999936i \(-0.496406\pi\)
−0.578614 + 0.815601i \(0.696406\pi\)
\(774\) 0 0
\(775\) −0.993242 + 0.721632i −0.0356783 + 0.0259218i
\(776\) −0.221400 + 0.160857i −0.00794780 + 0.00577441i
\(777\) 0 0
\(778\) −9.09639 2.95560i −0.326121 0.105963i
\(779\) −5.21167 + 7.17324i −0.186727 + 0.257008i
\(780\) 0 0
\(781\) −10.5400 10.8987i −0.377150 0.389988i
\(782\) 23.3218i 0.833986i
\(783\) 0 0
\(784\) 0.940162 2.89352i 0.0335772 0.103340i
\(785\) −16.5534 + 5.37853i −0.590816 + 0.191968i
\(786\) 0 0
\(787\) 14.1151 + 19.4277i 0.503148 + 0.692524i 0.982745 0.184965i \(-0.0592171\pi\)
−0.479597 + 0.877489i \(0.659217\pi\)
\(788\) −7.07290 21.7681i −0.251962 0.775458i
\(789\) 0 0
\(790\) −3.31685 2.40983i −0.118008 0.0857380i
\(791\) −22.8997 −0.814218
\(792\) 0 0
\(793\) −6.50357 −0.230948
\(794\) 10.0494 + 7.30130i 0.356639 + 0.259113i
\(795\) 0 0
\(796\) −5.06894 15.6006i −0.179664 0.552948i
\(797\) 26.6640 + 36.6999i 0.944488 + 1.29998i 0.953933 + 0.300021i \(0.0969936\pi\)
−0.00944466 + 0.999955i \(0.503006\pi\)
\(798\) 0 0
\(799\) 14.2304 4.62375i 0.503436 0.163576i
\(800\) −0.309017 + 0.951057i −0.0109254 + 0.0336249i
\(801\) 0 0
\(802\) 34.1202i 1.20483i
\(803\) 28.0912 13.7260i 0.991315 0.484380i
\(804\) 0 0
\(805\) −4.18734 + 5.76338i −0.147584 + 0.203132i
\(806\) 3.76517 + 1.22338i 0.132622 + 0.0430916i
\(807\) 0 0
\(808\) 14.7990 10.7521i 0.520626 0.378257i
\(809\) −8.48073 + 6.16161i −0.298167 + 0.216631i −0.726802 0.686847i \(-0.758994\pi\)
0.428636 + 0.903477i \(0.358994\pi\)
\(810\) 0 0
\(811\) 22.4272 + 7.28702i 0.787524 + 0.255882i 0.675049 0.737773i \(-0.264122\pi\)
0.112475 + 0.993655i \(0.464122\pi\)
\(812\) 1.53793 2.11678i 0.0539707 0.0742843i
\(813\) 0 0
\(814\) 2.02311 11.5221i 0.0709099 0.403850i
\(815\) 13.8752i 0.486028i
\(816\) 0 0
\(817\) 5.22965 16.0952i 0.182962 0.563100i
\(818\) 19.5450 6.35054i 0.683374 0.222042i
\(819\) 0 0
\(820\) −2.52022 3.46878i −0.0880098 0.121135i
\(821\) 16.2627 + 50.0514i 0.567572 + 1.74681i 0.660184 + 0.751104i \(0.270478\pi\)
−0.0926120 + 0.995702i \(0.529522\pi\)
\(822\) 0 0
\(823\) −17.3398 12.5981i −0.604427 0.439142i 0.243020 0.970021i \(-0.421862\pi\)
−0.847448 + 0.530879i \(0.821862\pi\)
\(824\) −1.38079 −0.0481021
\(825\) 0 0
\(826\) 11.8721 0.413084
\(827\) 24.6615 + 17.9176i 0.857564 + 0.623057i 0.927221 0.374514i \(-0.122190\pi\)
−0.0696570 + 0.997571i \(0.522190\pi\)
\(828\) 0 0
\(829\) −0.920986 2.83450i −0.0319872 0.0984464i 0.933788 0.357826i \(-0.116482\pi\)
−0.965775 + 0.259380i \(0.916482\pi\)
\(830\) −1.38915 1.91200i −0.0482180 0.0663664i
\(831\) 0 0
\(832\) 3.06681 0.996467i 0.106323 0.0345463i
\(833\) 6.12294 18.8445i 0.212147 0.652922i
\(834\) 0 0
\(835\) 15.0972i 0.522459i
\(836\) 0.959421 + 6.79116i 0.0331823 + 0.234877i
\(837\) 0 0
\(838\) −20.9204 + 28.7944i −0.722682 + 0.994686i
\(839\) 2.21611 + 0.720058i 0.0765087 + 0.0248592i 0.347021 0.937857i \(-0.387193\pi\)
−0.270513 + 0.962716i \(0.587193\pi\)
\(840\) 0 0
\(841\) 22.0620 16.0290i 0.760759 0.552724i
\(842\) 23.6811 17.2054i 0.816106 0.592936i
\(843\) 0 0
\(844\) −22.5757 7.33530i −0.777088 0.252491i
\(845\) 1.52925 2.10484i 0.0526080 0.0724086i
\(846\) 0 0
\(847\) 18.1242 12.2629i 0.622755 0.421359i
\(848\) 13.1866i 0.452830i
\(849\) 0 0
\(850\) −2.01252 + 6.19389i −0.0690288 + 0.212449i
\(851\) −12.0127 + 3.90316i −0.411790 + 0.133799i
\(852\) 0 0
\(853\) −28.8442 39.7006i −0.987605 1.35932i −0.932630 0.360834i \(-0.882492\pi\)
−0.0549754 0.998488i \(-0.517508\pi\)
\(854\) −1.23985 3.81585i −0.0424267 0.130576i
\(855\) 0 0
\(856\) 12.3690 + 8.98658i 0.422763 + 0.307155i
\(857\) 16.9993 0.580685 0.290342 0.956923i \(-0.406231\pi\)
0.290342 + 0.956923i \(0.406231\pi\)
\(858\) 0 0
\(859\) −22.5470 −0.769292 −0.384646 0.923064i \(-0.625677\pi\)
−0.384646 + 0.923064i \(0.625677\pi\)
\(860\) 6.62079 + 4.81028i 0.225767 + 0.164029i
\(861\) 0 0
\(862\) −2.63229 8.10135i −0.0896561 0.275933i
\(863\) 16.0841 + 22.1379i 0.547510 + 0.753583i 0.989672 0.143353i \(-0.0457883\pi\)
−0.442162 + 0.896935i \(0.645788\pi\)
\(864\) 0 0
\(865\) 8.25508 2.68224i 0.280681 0.0911988i
\(866\) 5.58836 17.1992i 0.189900 0.584452i
\(867\) 0 0
\(868\) 2.44237i 0.0828995i
\(869\) 6.37508 12.0106i 0.216260 0.407433i
\(870\) 0 0
\(871\) 14.3933 19.8107i 0.487698 0.671259i
\(872\) −18.7793 6.10177i −0.635948 0.206632i
\(873\) 0 0
\(874\) 5.99102 4.35273i 0.202649 0.147233i
\(875\) 1.60943 1.16932i 0.0544087 0.0395302i
\(876\) 0 0
\(877\) −41.4783 13.4771i −1.40062 0.455090i −0.491230 0.871030i \(-0.663453\pi\)
−0.909392 + 0.415940i \(0.863453\pi\)
\(878\) 13.5926 18.7087i 0.458729 0.631387i
\(879\) 0 0
\(880\) −3.26665 0.573574i −0.110119 0.0193352i
\(881\) 28.1586i 0.948688i 0.880340 + 0.474344i \(0.157315\pi\)
−0.880340 + 0.474344i \(0.842685\pi\)
\(882\) 0 0
\(883\) −11.7034 + 36.0194i −0.393852 + 1.21215i 0.536001 + 0.844218i \(0.319934\pi\)
−0.929852 + 0.367933i \(0.880066\pi\)
\(884\) 19.9730 6.48964i 0.671766 0.218270i
\(885\) 0 0
\(886\) −14.4445 19.8811i −0.485271 0.667918i
\(887\) −6.01979 18.5270i −0.202125 0.622076i −0.999819 0.0190144i \(-0.993947\pi\)
0.797694 0.603062i \(-0.206053\pi\)
\(888\) 0 0
\(889\) −9.90714 7.19796i −0.332275 0.241412i
\(890\) 11.4586 0.384094
\(891\) 0 0
\(892\) 27.9861 0.937045
\(893\) 3.84371 + 2.79262i 0.128625 + 0.0934514i
\(894\) 0 0
\(895\) −2.55791 7.87244i −0.0855015 0.263147i
\(896\) 1.16932 + 1.60943i 0.0390642 + 0.0537673i
\(897\) 0 0
\(898\) 19.8996 6.46576i 0.664057 0.215765i
\(899\) 0.498980 1.53570i 0.0166419 0.0512185i
\(900\) 0 0
\(901\) 85.8797i 2.86107i
\(902\) 10.2223 9.88577i 0.340365 0.329160i
\(903\) 0 0
\(904\) −6.76602 + 9.31263i −0.225035 + 0.309733i
\(905\) −8.86051 2.87895i −0.294533 0.0956997i
\(906\) 0 0
\(907\) 13.9380 10.1265i 0.462803 0.336246i −0.331827 0.943340i \(-0.607665\pi\)
0.794630 + 0.607094i \(0.207665\pi\)
\(908\) −16.5182 + 12.0012i −0.548177 + 0.398274i
\(909\) 0 0
\(910\) −6.10101 1.98234i −0.202246 0.0657138i
\(911\) −33.8450 + 46.5836i −1.12133 + 1.54338i −0.317768 + 0.948168i \(0.602933\pi\)
−0.803566 + 0.595216i \(0.797067\pi\)
\(912\) 0 0
\(913\) 5.63453 5.44905i 0.186476 0.180337i
\(914\) 2.56239i 0.0847564i
\(915\) 0 0
\(916\) 0.476544 1.46665i 0.0157455 0.0484595i
\(917\) 30.1924 9.81011i 0.997042 0.323958i
\(918\) 0 0
\(919\) −26.9226 37.0558i −0.888096 1.22236i −0.974112 0.226065i \(-0.927414\pi\)
0.0860164 0.996294i \(-0.472586\pi\)
\(920\) 1.10659 + 3.40574i 0.0364832 + 0.112284i
\(921\) 0 0
\(922\) −17.7673 12.9087i −0.585135 0.425126i
\(923\) −14.7411 −0.485208
\(924\) 0 0
\(925\) 3.52719 0.115973
\(926\) 14.0556 + 10.2120i 0.461896 + 0.335587i
\(927\) 0 0
\(928\) −0.406430 1.25086i −0.0133417 0.0410616i
\(929\) −18.2777 25.1571i −0.599671 0.825376i 0.396007 0.918247i \(-0.370396\pi\)
−0.995678 + 0.0928711i \(0.970396\pi\)
\(930\) 0 0
\(931\) 5.98364 1.94420i 0.196106 0.0637186i
\(932\) 3.99141 12.2843i 0.130743 0.402385i
\(933\) 0 0
\(934\) 33.5252i 1.09698i
\(935\) −21.2745 3.73549i −0.695752 0.122163i
\(936\) 0 0
\(937\) 6.39198 8.79780i 0.208817 0.287412i −0.691743 0.722144i \(-0.743157\pi\)
0.900560 + 0.434732i \(0.143157\pi\)
\(938\) 14.3675 + 4.66829i 0.469116 + 0.152425i
\(939\) 0 0
\(940\) −1.85871 + 1.35043i −0.0606245 + 0.0440463i
\(941\) 4.10103 2.97957i 0.133690 0.0971313i −0.518931 0.854816i \(-0.673670\pi\)
0.652620 + 0.757685i \(0.273670\pi\)
\(942\) 0 0
\(943\) −14.6026 4.74468i −0.475527 0.154508i
\(944\) 3.50778 4.82805i 0.114169 0.157140i
\(945\) 0 0
\(946\) −12.7253 + 23.9745i −0.413736 + 0.779478i
\(947\) 12.1398i 0.394490i −0.980354 0.197245i \(-0.936801\pi\)
0.980354 0.197245i \(-0.0631994\pi\)
\(948\) 0 0
\(949\) 9.39353 28.9103i 0.304927 0.938468i
\(950\) −1.96673 + 0.639030i −0.0638092 + 0.0207329i
\(951\) 0 0
\(952\) 7.61536 + 10.4816i 0.246815 + 0.339712i
\(953\) −2.43202 7.48500i −0.0787810 0.242463i 0.903908 0.427728i \(-0.140686\pi\)
−0.982689 + 0.185265i \(0.940686\pi\)
\(954\) 0 0
\(955\) −19.4541 14.1342i −0.629520 0.457373i
\(956\) 2.26716 0.0733251
\(957\) 0 0
\(958\) −5.98702 −0.193432
\(959\) −1.67168 1.21455i −0.0539813 0.0392197i
\(960\) 0 0
\(961\) −9.11375 28.0492i −0.293992 0.904814i
\(962\) −6.68542 9.20169i −0.215547 0.296674i
\(963\) 0 0
\(964\) 24.4924 7.95807i 0.788847 0.256312i
\(965\) −1.23856 + 3.81191i −0.0398708 + 0.122710i
\(966\) 0 0
\(967\) 39.4912i 1.26995i 0.772532 + 0.634976i \(0.218990\pi\)
−0.772532 + 0.634976i \(0.781010\pi\)
\(968\) 0.368066 10.9938i 0.0118301 0.353355i
\(969\) 0 0
\(970\) 0.160857 0.221400i 0.00516479 0.00710873i
\(971\) −40.3007 13.0945i −1.29331 0.420222i −0.420061 0.907496i \(-0.637991\pi\)
−0.873249 + 0.487274i \(0.837991\pi\)
\(972\) 0 0
\(973\) −9.90219 + 7.19436i −0.317450 + 0.230641i
\(974\) 9.06640 6.58712i 0.290506 0.211065i
\(975\) 0 0
\(976\) −1.91813 0.623237i −0.0613977 0.0199493i
\(977\) −1.68434 + 2.31830i −0.0538869 + 0.0741690i −0.835110 0.550083i \(-0.814596\pi\)
0.781223 + 0.624252i \(0.214596\pi\)
\(978\) 0 0
\(979\) 5.31622 + 37.6303i 0.169907 + 1.20267i
\(980\) 3.04243i 0.0971868i
\(981\) 0 0
\(982\) 4.81643 14.8235i 0.153699 0.473035i
\(983\) 24.8399 8.07099i 0.792271 0.257425i 0.115200 0.993342i \(-0.463249\pi\)
0.677071 + 0.735918i \(0.263249\pi\)
\(984\) 0 0
\(985\) 13.4534 + 18.5171i 0.428663 + 0.590003i
\(986\) −2.64693 8.14642i −0.0842955 0.259435i
\(987\) 0 0
\(988\) 5.39482 + 3.91957i 0.171632 + 0.124698i
\(989\) 29.3060 0.931877
\(990\) 0 0
\(991\) 45.7753 1.45410 0.727050 0.686584i \(-0.240891\pi\)
0.727050 + 0.686584i \(0.240891\pi\)
\(992\) 0.993242 + 0.721632i 0.0315355 + 0.0229118i
\(993\) 0 0
\(994\) −2.81025 8.64906i −0.0891357 0.274331i
\(995\) 9.64170 + 13.2707i 0.305662 + 0.420708i
\(996\) 0 0
\(997\) −54.8625 + 17.8259i −1.73751 + 0.564552i −0.994501 0.104728i \(-0.966603\pi\)
−0.743010 + 0.669280i \(0.766603\pi\)
\(998\) 12.1829 37.4951i 0.385643 1.18689i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.161.3 32
3.2 odd 2 990.2.z.b.161.7 yes 32
11.8 odd 10 990.2.z.b.701.7 yes 32
33.8 even 10 inner 990.2.z.a.701.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.161.3 32 1.1 even 1 trivial
990.2.z.a.701.3 yes 32 33.8 even 10 inner
990.2.z.b.161.7 yes 32 3.2 odd 2
990.2.z.b.701.7 yes 32 11.8 odd 10