Properties

Label 990.2.t.b.131.7
Level $990$
Weight $2$
Character 990.131
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(131,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 131.7
Character \(\chi\) \(=\) 990.131
Dual form 990.2.t.b.461.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.21393 - 1.23547i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(0.462983 - 1.66903i) q^{6} +(1.10421 - 0.637517i) q^{7} -1.00000 q^{8} +(-0.0527607 + 2.99954i) q^{9} +1.00000i q^{10} +(-2.15908 + 2.51761i) q^{11} +(1.67691 - 0.433558i) q^{12} +(-1.12883 - 0.651729i) q^{13} +(1.10421 + 0.637517i) q^{14} +(-0.433558 - 1.67691i) q^{15} +(-0.500000 - 0.866025i) q^{16} -3.37485 q^{17} +(-2.62405 + 1.45408i) q^{18} +5.39364i q^{19} +(-0.866025 + 0.500000i) q^{20} +(-2.12807 - 0.590319i) q^{21} +(-3.25986 - 0.611015i) q^{22} +(1.82924 + 1.05611i) q^{23} +(1.21393 + 1.23547i) q^{24} +(0.500000 + 0.866025i) q^{25} -1.30346i q^{26} +(3.76988 - 3.57603i) q^{27} +1.27503i q^{28} +(2.37826 + 4.11927i) q^{29} +(1.23547 - 1.21393i) q^{30} +(1.73590 - 3.00666i) q^{31} +(0.500000 - 0.866025i) q^{32} +(5.73140 - 0.388719i) q^{33} +(-1.68743 - 2.92271i) q^{34} +1.27503 q^{35} +(-2.57129 - 1.54546i) q^{36} +9.60655 q^{37} +(-4.67103 + 2.69682i) q^{38} +(0.565125 + 2.18578i) q^{39} +(-0.866025 - 0.500000i) q^{40} +(-4.86110 + 8.41967i) q^{41} +(-0.552802 - 2.13812i) q^{42} +(-8.29679 + 4.79015i) q^{43} +(-1.10077 - 3.12863i) q^{44} +(-1.54546 + 2.57129i) q^{45} +2.11222i q^{46} +(-6.51661 + 3.76236i) q^{47} +(-0.462983 + 1.66903i) q^{48} +(-2.68714 + 4.65427i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(4.09682 + 4.16952i) q^{51} +(1.12883 - 0.651729i) q^{52} +5.11769i q^{53} +(4.98188 + 1.47679i) q^{54} +(-3.12863 + 1.10077i) q^{55} +(-1.10421 + 0.637517i) q^{56} +(6.66367 - 6.54749i) q^{57} +(-2.37826 + 4.11927i) q^{58} +(-2.49884 - 1.44271i) q^{59} +(1.66903 + 0.462983i) q^{60} +(-4.52899 + 2.61481i) q^{61} +3.47179 q^{62} +(1.85400 + 3.34576i) q^{63} +1.00000 q^{64} +(-0.651729 - 1.12883i) q^{65} +(3.20234 + 4.76917i) q^{66} +(3.12011 - 5.40419i) q^{67} +(1.68743 - 2.92271i) q^{68} +(-0.915772 - 3.54201i) q^{69} +(0.637517 + 1.10421i) q^{70} -10.3735i q^{71} +(0.0527607 - 2.99954i) q^{72} +14.1623i q^{73} +(4.80327 + 8.31951i) q^{74} +(0.462983 - 1.66903i) q^{75} +(-4.67103 - 2.69682i) q^{76} +(-0.779066 + 4.15643i) q^{77} +(-1.61038 + 1.58230i) q^{78} +(5.22002 - 3.01378i) q^{79} -1.00000i q^{80} +(-8.99443 - 0.316515i) q^{81} -9.72220 q^{82} +(0.809702 + 1.40244i) q^{83} +(1.57526 - 1.54780i) q^{84} +(-2.92271 - 1.68743i) q^{85} +(-8.29679 - 4.79015i) q^{86} +(2.20219 - 7.93877i) q^{87} +(2.15908 - 2.51761i) q^{88} +8.53513i q^{89} +(-2.99954 - 0.0527607i) q^{90} -1.66195 q^{91} +(-1.82924 + 1.05611i) q^{92} +(-5.82188 + 1.50522i) q^{93} +(-6.51661 - 3.76236i) q^{94} +(-2.69682 + 4.67103i) q^{95} +(-1.67691 + 0.433558i) q^{96} +(5.59811 + 9.69621i) q^{97} -5.37429 q^{98} +(-7.43775 - 6.60908i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{2} - 2 q^{3} - 24 q^{4} + 2 q^{6} - 48 q^{8} + 10 q^{9} - 12 q^{11} + 4 q^{12} - 24 q^{13} - 4 q^{15} - 24 q^{16} + 12 q^{17} + 8 q^{18} + 16 q^{21} - 6 q^{22} + 36 q^{23} + 2 q^{24} + 24 q^{25}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.21393 1.23547i −0.700861 0.713298i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0.462983 1.66903i 0.189012 0.681377i
\(7\) 1.10421 0.637517i 0.417353 0.240959i −0.276591 0.960988i \(-0.589205\pi\)
0.693944 + 0.720029i \(0.255871\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.0527607 + 2.99954i −0.0175869 + 0.999845i
\(10\) 1.00000i 0.316228i
\(11\) −2.15908 + 2.51761i −0.650988 + 0.759088i
\(12\) 1.67691 0.433558i 0.484082 0.125157i
\(13\) −1.12883 0.651729i −0.313080 0.180757i 0.335224 0.942139i \(-0.391188\pi\)
−0.648304 + 0.761381i \(0.724521\pi\)
\(14\) 1.10421 + 0.637517i 0.295113 + 0.170384i
\(15\) −0.433558 1.67691i −0.111944 0.432976i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.37485 −0.818521 −0.409261 0.912417i \(-0.634213\pi\)
−0.409261 + 0.912417i \(0.634213\pi\)
\(18\) −2.62405 + 1.45408i −0.618496 + 0.342729i
\(19\) 5.39364i 1.23739i 0.785633 + 0.618693i \(0.212338\pi\)
−0.785633 + 0.618693i \(0.787662\pi\)
\(20\) −0.866025 + 0.500000i −0.193649 + 0.111803i
\(21\) −2.12807 0.590319i −0.464382 0.128818i
\(22\) −3.25986 0.611015i −0.695004 0.130269i
\(23\) 1.82924 + 1.05611i 0.381423 + 0.220215i 0.678437 0.734658i \(-0.262658\pi\)
−0.297014 + 0.954873i \(0.595991\pi\)
\(24\) 1.21393 + 1.23547i 0.247792 + 0.252189i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 1.30346i 0.255629i
\(27\) 3.76988 3.57603i 0.725513 0.688208i
\(28\) 1.27503i 0.240959i
\(29\) 2.37826 + 4.11927i 0.441633 + 0.764930i 0.997811 0.0661329i \(-0.0210661\pi\)
−0.556178 + 0.831063i \(0.687733\pi\)
\(30\) 1.23547 1.21393i 0.225565 0.221632i
\(31\) 1.73590 3.00666i 0.311776 0.540012i −0.666971 0.745084i \(-0.732409\pi\)
0.978747 + 0.205072i \(0.0657428\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 5.73140 0.388719i 0.997708 0.0676673i
\(34\) −1.68743 2.92271i −0.289391 0.501240i
\(35\) 1.27503 0.215520
\(36\) −2.57129 1.54546i −0.428549 0.257577i
\(37\) 9.60655 1.57931 0.789653 0.613553i \(-0.210260\pi\)
0.789653 + 0.613553i \(0.210260\pi\)
\(38\) −4.67103 + 2.69682i −0.757741 + 0.437482i
\(39\) 0.565125 + 2.18578i 0.0904924 + 0.350005i
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) −4.86110 + 8.41967i −0.759176 + 1.31493i 0.184095 + 0.982908i \(0.441065\pi\)
−0.943271 + 0.332023i \(0.892269\pi\)
\(42\) −0.552802 2.13812i −0.0852991 0.329919i
\(43\) −8.29679 + 4.79015i −1.26525 + 0.730492i −0.974085 0.226182i \(-0.927376\pi\)
−0.291164 + 0.956673i \(0.594042\pi\)
\(44\) −1.10077 3.12863i −0.165948 0.471658i
\(45\) −1.54546 + 2.57129i −0.230384 + 0.383306i
\(46\) 2.11222i 0.311430i
\(47\) −6.51661 + 3.76236i −0.950545 + 0.548797i −0.893250 0.449560i \(-0.851581\pi\)
−0.0572947 + 0.998357i \(0.518247\pi\)
\(48\) −0.462983 + 1.66903i −0.0668258 + 0.240903i
\(49\) −2.68714 + 4.65427i −0.383878 + 0.664896i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 4.09682 + 4.16952i 0.573670 + 0.583849i
\(52\) 1.12883 0.651729i 0.156540 0.0903785i
\(53\) 5.11769i 0.702969i 0.936194 + 0.351485i \(0.114323\pi\)
−0.936194 + 0.351485i \(0.885677\pi\)
\(54\) 4.98188 + 1.47679i 0.677947 + 0.200966i
\(55\) −3.12863 + 1.10077i −0.421864 + 0.148428i
\(56\) −1.10421 + 0.637517i −0.147557 + 0.0851918i
\(57\) 6.66367 6.54749i 0.882624 0.867236i
\(58\) −2.37826 + 4.11927i −0.312281 + 0.540887i
\(59\) −2.49884 1.44271i −0.325321 0.187824i 0.328441 0.944525i \(-0.393477\pi\)
−0.653762 + 0.756700i \(0.726810\pi\)
\(60\) 1.66903 + 0.462983i 0.215470 + 0.0597708i
\(61\) −4.52899 + 2.61481i −0.579878 + 0.334793i −0.761085 0.648652i \(-0.775333\pi\)
0.181207 + 0.983445i \(0.442000\pi\)
\(62\) 3.47179 0.440918
\(63\) 1.85400 + 3.34576i 0.233582 + 0.421526i
\(64\) 1.00000 0.125000
\(65\) −0.651729 1.12883i −0.0808370 0.140014i
\(66\) 3.20234 + 4.76917i 0.394181 + 0.587045i
\(67\) 3.12011 5.40419i 0.381182 0.660227i −0.610049 0.792363i \(-0.708850\pi\)
0.991232 + 0.132137i \(0.0421838\pi\)
\(68\) 1.68743 2.92271i 0.204630 0.354430i
\(69\) −0.915772 3.54201i −0.110246 0.426408i
\(70\) 0.637517 + 1.10421i 0.0761979 + 0.131979i
\(71\) 10.3735i 1.23111i −0.788094 0.615555i \(-0.788932\pi\)
0.788094 0.615555i \(-0.211068\pi\)
\(72\) 0.0527607 2.99954i 0.00621791 0.353499i
\(73\) 14.1623i 1.65757i 0.559568 + 0.828785i \(0.310967\pi\)
−0.559568 + 0.828785i \(0.689033\pi\)
\(74\) 4.80327 + 8.31951i 0.558369 + 0.967124i
\(75\) 0.462983 1.66903i 0.0534606 0.192722i
\(76\) −4.67103 2.69682i −0.535804 0.309346i
\(77\) −0.779066 + 4.15643i −0.0887828 + 0.473669i
\(78\) −1.61038 + 1.58230i −0.182340 + 0.179161i
\(79\) 5.22002 3.01378i 0.587298 0.339077i −0.176730 0.984259i \(-0.556552\pi\)
0.764028 + 0.645183i \(0.223219\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −8.99443 0.316515i −0.999381 0.0351684i
\(82\) −9.72220 −1.07364
\(83\) 0.809702 + 1.40244i 0.0888763 + 0.153938i 0.907036 0.421052i \(-0.138339\pi\)
−0.818160 + 0.574990i \(0.805006\pi\)
\(84\) 1.57526 1.54780i 0.171875 0.168879i
\(85\) −2.92271 1.68743i −0.317012 0.183027i
\(86\) −8.29679 4.79015i −0.894666 0.516536i
\(87\) 2.20219 7.93877i 0.236100 0.851125i
\(88\) 2.15908 2.51761i 0.230159 0.268378i
\(89\) 8.53513i 0.904722i 0.891835 + 0.452361i \(0.149418\pi\)
−0.891835 + 0.452361i \(0.850582\pi\)
\(90\) −2.99954 0.0527607i −0.316179 0.00556147i
\(91\) −1.66195 −0.174220
\(92\) −1.82924 + 1.05611i −0.190711 + 0.110107i
\(93\) −5.82188 + 1.50522i −0.603701 + 0.156084i
\(94\) −6.51661 3.76236i −0.672137 0.388058i
\(95\) −2.69682 + 4.67103i −0.276688 + 0.479238i
\(96\) −1.67691 + 0.433558i −0.171149 + 0.0442498i
\(97\) 5.59811 + 9.69621i 0.568402 + 0.984501i 0.996724 + 0.0808752i \(0.0257715\pi\)
−0.428322 + 0.903626i \(0.640895\pi\)
\(98\) −5.37429 −0.542885
\(99\) −7.43775 6.60908i −0.747522 0.664237i
\(100\) −1.00000 −0.100000
\(101\) 6.56252 + 11.3666i 0.652995 + 1.13102i 0.982392 + 0.186830i \(0.0598212\pi\)
−0.329397 + 0.944192i \(0.606845\pi\)
\(102\) −1.56250 + 5.63271i −0.154710 + 0.557722i
\(103\) 8.51528 14.7489i 0.839035 1.45325i −0.0516668 0.998664i \(-0.516453\pi\)
0.890702 0.454587i \(-0.150213\pi\)
\(104\) 1.12883 + 0.651729i 0.110691 + 0.0639073i
\(105\) −1.54780 1.57526i −0.151050 0.153730i
\(106\) −4.43205 + 2.55885i −0.430479 + 0.248537i
\(107\) 7.85693 0.759558 0.379779 0.925077i \(-0.376000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(108\) 1.21200 + 5.05283i 0.116625 + 0.486209i
\(109\) 4.20234i 0.402511i −0.979539 0.201255i \(-0.935498\pi\)
0.979539 0.201255i \(-0.0645021\pi\)
\(110\) −2.51761 2.15908i −0.240045 0.205860i
\(111\) −11.6616 11.8686i −1.10687 1.12652i
\(112\) −1.10421 0.637517i −0.104338 0.0602397i
\(113\) −3.80120 2.19462i −0.357587 0.206453i 0.310435 0.950595i \(-0.399525\pi\)
−0.668022 + 0.744142i \(0.732859\pi\)
\(114\) 9.00212 + 2.49716i 0.843126 + 0.233881i
\(115\) 1.05611 + 1.82924i 0.0984829 + 0.170577i
\(116\) −4.75653 −0.441633
\(117\) 2.01444 3.35157i 0.186235 0.309853i
\(118\) 2.88541i 0.265624i
\(119\) −3.72655 + 2.15153i −0.341612 + 0.197230i
\(120\) 0.433558 + 1.67691i 0.0395783 + 0.153080i
\(121\) −1.67672 10.8715i −0.152429 0.988314i
\(122\) −4.52899 2.61481i −0.410036 0.236734i
\(123\) 16.3033 4.21514i 1.47001 0.380066i
\(124\) 1.73590 + 3.00666i 0.155888 + 0.270006i
\(125\) 1.00000i 0.0894427i
\(126\) −1.97052 + 3.27849i −0.175547 + 0.292071i
\(127\) 20.1509i 1.78810i −0.447962 0.894052i \(-0.647850\pi\)
0.447962 0.894052i \(-0.352150\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 15.9898 + 4.43552i 1.40782 + 0.390526i
\(130\) 0.651729 1.12883i 0.0571604 0.0990047i
\(131\) −6.46311 + 11.1944i −0.564684 + 0.978062i 0.432395 + 0.901684i \(0.357669\pi\)
−0.997079 + 0.0763773i \(0.975665\pi\)
\(132\) −2.52906 + 5.15789i −0.220126 + 0.448937i
\(133\) 3.43854 + 5.95572i 0.298159 + 0.516427i
\(134\) 6.24022 0.539073
\(135\) 5.05283 1.21200i 0.434878 0.104312i
\(136\) 3.37485 0.289391
\(137\) 3.20650 1.85128i 0.273950 0.158165i −0.356731 0.934207i \(-0.616109\pi\)
0.630681 + 0.776042i \(0.282775\pi\)
\(138\) 2.60958 2.56409i 0.222143 0.218269i
\(139\) −20.0545 11.5785i −1.70100 0.982075i −0.944747 0.327799i \(-0.893693\pi\)
−0.756256 0.654276i \(-0.772974\pi\)
\(140\) −0.637517 + 1.10421i −0.0538800 + 0.0933230i
\(141\) 12.5590 + 3.48382i 1.05766 + 0.293391i
\(142\) 8.98373 5.18676i 0.753898 0.435263i
\(143\) 4.07803 1.43481i 0.341022 0.119985i
\(144\) 2.62405 1.45408i 0.218671 0.121173i
\(145\) 4.75653i 0.395008i
\(146\) −12.2649 + 7.08114i −1.01505 + 0.586039i
\(147\) 9.01220 2.33007i 0.743313 0.192181i
\(148\) −4.80327 + 8.31951i −0.394827 + 0.683860i
\(149\) 4.27677 7.40758i 0.350367 0.606853i −0.635947 0.771733i \(-0.719390\pi\)
0.986314 + 0.164880i \(0.0527236\pi\)
\(150\) 1.67691 0.433558i 0.136919 0.0353999i
\(151\) 10.0587 5.80738i 0.818564 0.472598i −0.0313571 0.999508i \(-0.509983\pi\)
0.849921 + 0.526910i \(0.176650\pi\)
\(152\) 5.39364i 0.437482i
\(153\) 0.178060 10.1230i 0.0143953 0.818395i
\(154\) −3.98911 + 1.40352i −0.321451 + 0.113099i
\(155\) 3.00666 1.73590i 0.241501 0.139430i
\(156\) −2.17550 0.603478i −0.174180 0.0483169i
\(157\) 7.53844 13.0570i 0.601633 1.04206i −0.390941 0.920416i \(-0.627850\pi\)
0.992574 0.121643i \(-0.0388162\pi\)
\(158\) 5.22002 + 3.01378i 0.415282 + 0.239763i
\(159\) 6.32274 6.21251i 0.501426 0.492684i
\(160\) 0.866025 0.500000i 0.0684653 0.0395285i
\(161\) 2.69316 0.212251
\(162\) −4.22311 7.94766i −0.331799 0.624428i
\(163\) 20.1959 1.58186 0.790931 0.611906i \(-0.209597\pi\)
0.790931 + 0.611906i \(0.209597\pi\)
\(164\) −4.86110 8.41967i −0.379588 0.657466i
\(165\) 5.15789 + 2.52906i 0.401541 + 0.196887i
\(166\) −0.809702 + 1.40244i −0.0628450 + 0.108851i
\(167\) 1.71895 2.97731i 0.133016 0.230391i −0.791822 0.610752i \(-0.790867\pi\)
0.924838 + 0.380361i \(0.124200\pi\)
\(168\) 2.12807 + 0.590319i 0.164184 + 0.0455441i
\(169\) −5.65050 9.78695i −0.434654 0.752842i
\(170\) 3.37485i 0.258839i
\(171\) −16.1784 0.284572i −1.23719 0.0217618i
\(172\) 9.58031i 0.730492i
\(173\) 0.930545 + 1.61175i 0.0707480 + 0.122539i 0.899229 0.437478i \(-0.144128\pi\)
−0.828481 + 0.560017i \(0.810795\pi\)
\(174\) 7.97627 2.06223i 0.604680 0.156337i
\(175\) 1.10421 + 0.637517i 0.0834706 + 0.0481918i
\(176\) 3.25986 + 0.611015i 0.245721 + 0.0460570i
\(177\) 1.25099 + 4.83857i 0.0940304 + 0.363690i
\(178\) −7.39164 + 4.26757i −0.554027 + 0.319868i
\(179\) 8.67688i 0.648540i 0.945965 + 0.324270i \(0.105119\pi\)
−0.945965 + 0.324270i \(0.894881\pi\)
\(180\) −1.45408 2.62405i −0.108380 0.195585i
\(181\) 12.1761 0.905045 0.452523 0.891753i \(-0.350524\pi\)
0.452523 + 0.891753i \(0.350524\pi\)
\(182\) −0.830977 1.43929i −0.0615961 0.106688i
\(183\) 8.72838 + 2.42123i 0.645221 + 0.178982i
\(184\) −1.82924 1.05611i −0.134853 0.0778576i
\(185\) 8.31951 + 4.80327i 0.611663 + 0.353144i
\(186\) −4.21450 4.28929i −0.309022 0.314506i
\(187\) 7.28658 8.49656i 0.532848 0.621330i
\(188\) 7.52473i 0.548797i
\(189\) 1.88296 6.35206i 0.136965 0.462045i
\(190\) −5.39364 −0.391296
\(191\) 5.40786 3.12223i 0.391299 0.225917i −0.291424 0.956594i \(-0.594129\pi\)
0.682723 + 0.730677i \(0.260796\pi\)
\(192\) −1.21393 1.23547i −0.0876077 0.0891622i
\(193\) −20.3959 11.7756i −1.46813 0.847625i −0.468766 0.883322i \(-0.655301\pi\)
−0.999363 + 0.0356977i \(0.988635\pi\)
\(194\) −5.59811 + 9.69621i −0.401921 + 0.696148i
\(195\) −0.603478 + 2.17550i −0.0432160 + 0.155791i
\(196\) −2.68714 4.65427i −0.191939 0.332448i
\(197\) −4.66350 −0.332261 −0.166130 0.986104i \(-0.553127\pi\)
−0.166130 + 0.986104i \(0.553127\pi\)
\(198\) 2.00476 9.74582i 0.142472 0.692605i
\(199\) −14.4153 −1.02187 −0.510936 0.859619i \(-0.670701\pi\)
−0.510936 + 0.859619i \(0.670701\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) −10.4643 + 2.70550i −0.738094 + 0.190831i
\(202\) −6.56252 + 11.3666i −0.461737 + 0.799753i
\(203\) 5.25222 + 3.03237i 0.368633 + 0.212831i
\(204\) −5.65932 + 1.46319i −0.396232 + 0.102444i
\(205\) −8.41967 + 4.86110i −0.588055 + 0.339514i
\(206\) 17.0306 1.18658
\(207\) −3.26436 + 5.43115i −0.226889 + 0.377491i
\(208\) 1.30346i 0.0903785i
\(209\) −13.5791 11.6453i −0.939285 0.805523i
\(210\) 0.590319 2.12807i 0.0407359 0.146850i
\(211\) −9.37866 5.41477i −0.645653 0.372768i 0.141136 0.989990i \(-0.454925\pi\)
−0.786789 + 0.617222i \(0.788258\pi\)
\(212\) −4.43205 2.55885i −0.304395 0.175742i
\(213\) −12.8161 + 12.5927i −0.878147 + 0.862837i
\(214\) 3.92846 + 6.80430i 0.268544 + 0.465132i
\(215\) −9.58031 −0.653372
\(216\) −3.76988 + 3.57603i −0.256508 + 0.243318i
\(217\) 4.42665i 0.300501i
\(218\) 3.63933 2.10117i 0.246487 0.142309i
\(219\) 17.4970 17.1920i 1.18234 1.16173i
\(220\) 0.611015 3.25986i 0.0411947 0.219779i
\(221\) 3.80962 + 2.19949i 0.256263 + 0.147954i
\(222\) 4.44766 16.0336i 0.298508 1.07610i
\(223\) −1.95126 3.37969i −0.130666 0.226320i 0.793267 0.608873i \(-0.208378\pi\)
−0.923934 + 0.382553i \(0.875045\pi\)
\(224\) 1.27503i 0.0851918i
\(225\) −2.62405 + 1.45408i −0.174937 + 0.0969384i
\(226\) 4.38925i 0.291968i
\(227\) 9.33836 + 16.1745i 0.619809 + 1.07354i 0.989520 + 0.144394i \(0.0461232\pi\)
−0.369711 + 0.929147i \(0.620543\pi\)
\(228\) 2.33846 + 9.04465i 0.154868 + 0.598997i
\(229\) 7.83446 13.5697i 0.517715 0.896709i −0.482073 0.876131i \(-0.660116\pi\)
0.999788 0.0205783i \(-0.00655073\pi\)
\(230\) −1.05611 + 1.82924i −0.0696379 + 0.120616i
\(231\) 6.08086 4.08309i 0.400091 0.268648i
\(232\) −2.37826 4.11927i −0.156141 0.270444i
\(233\) −15.6597 −1.02590 −0.512951 0.858418i \(-0.671448\pi\)
−0.512951 + 0.858418i \(0.671448\pi\)
\(234\) 3.90977 + 0.0687714i 0.255590 + 0.00449573i
\(235\) −7.52473 −0.490859
\(236\) 2.49884 1.44271i 0.162661 0.0939121i
\(237\) −10.0602 2.79066i −0.653477 0.181273i
\(238\) −3.72655 2.15153i −0.241556 0.139463i
\(239\) −4.30431 + 7.45528i −0.278422 + 0.482242i −0.970993 0.239108i \(-0.923145\pi\)
0.692570 + 0.721350i \(0.256478\pi\)
\(240\) −1.23547 + 1.21393i −0.0797491 + 0.0783587i
\(241\) 2.66362 1.53784i 0.171579 0.0990612i −0.411751 0.911296i \(-0.635083\pi\)
0.583330 + 0.812235i \(0.301749\pi\)
\(242\) 8.57660 6.88781i 0.551325 0.442765i
\(243\) 10.5275 + 11.4966i 0.675342 + 0.737504i
\(244\) 5.22963i 0.334793i
\(245\) −4.65427 + 2.68714i −0.297350 + 0.171675i
\(246\) 11.8020 + 12.0115i 0.752471 + 0.765823i
\(247\) 3.51519 6.08849i 0.223666 0.387401i
\(248\) −1.73590 + 3.00666i −0.110229 + 0.190923i
\(249\) 0.749756 2.70283i 0.0475138 0.171285i
\(250\) −0.866025 + 0.500000i −0.0547723 + 0.0316228i
\(251\) 6.03992i 0.381236i 0.981664 + 0.190618i \(0.0610492\pi\)
−0.981664 + 0.190618i \(0.938951\pi\)
\(252\) −3.82451 0.0672717i −0.240922 0.00423772i
\(253\) −6.60836 + 2.32508i −0.415464 + 0.146176i
\(254\) 17.4512 10.0755i 1.09499 0.632191i
\(255\) 1.46319 + 5.65932i 0.0916287 + 0.354400i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 15.4999 + 8.94889i 0.966859 + 0.558216i 0.898277 0.439429i \(-0.144819\pi\)
0.0685820 + 0.997645i \(0.478153\pi\)
\(258\) 4.15362 + 16.0653i 0.258593 + 1.00018i
\(259\) 10.6077 6.12434i 0.659128 0.380548i
\(260\) 1.30346 0.0808370
\(261\) −12.4814 + 6.91635i −0.772579 + 0.428112i
\(262\) −12.9262 −0.798584
\(263\) −12.6011 21.8257i −0.777016 1.34583i −0.933654 0.358175i \(-0.883399\pi\)
0.156638 0.987656i \(-0.449934\pi\)
\(264\) −5.73140 + 0.388719i −0.352743 + 0.0239240i
\(265\) −2.55885 + 4.43205i −0.157189 + 0.272259i
\(266\) −3.43854 + 5.95572i −0.210830 + 0.365169i
\(267\) 10.5449 10.3610i 0.645336 0.634085i
\(268\) 3.12011 + 5.40419i 0.190591 + 0.330113i
\(269\) 14.1266i 0.861314i 0.902516 + 0.430657i \(0.141718\pi\)
−0.902516 + 0.430657i \(0.858282\pi\)
\(270\) 3.57603 + 3.76988i 0.217631 + 0.229427i
\(271\) 13.7320i 0.834157i 0.908870 + 0.417079i \(0.136946\pi\)
−0.908870 + 0.417079i \(0.863054\pi\)
\(272\) 1.68743 + 2.92271i 0.102315 + 0.177215i
\(273\) 2.01749 + 2.05329i 0.122104 + 0.124271i
\(274\) 3.20650 + 1.85128i 0.193712 + 0.111840i
\(275\) −3.25986 0.611015i −0.196577 0.0368456i
\(276\) 3.52536 + 0.977923i 0.212201 + 0.0588640i
\(277\) 11.1494 6.43710i 0.669902 0.386768i −0.126138 0.992013i \(-0.540258\pi\)
0.796039 + 0.605245i \(0.206925\pi\)
\(278\) 23.1570i 1.38886i
\(279\) 8.92699 + 5.36551i 0.534445 + 0.321225i
\(280\) −1.27503 −0.0761979
\(281\) 5.05524 + 8.75593i 0.301570 + 0.522335i 0.976492 0.215554i \(-0.0691559\pi\)
−0.674922 + 0.737890i \(0.735823\pi\)
\(282\) 3.26241 + 12.6183i 0.194274 + 0.751408i
\(283\) 17.2491 + 9.95876i 1.02535 + 0.591987i 0.915649 0.401978i \(-0.131677\pi\)
0.109702 + 0.993965i \(0.465010\pi\)
\(284\) 8.98373 + 5.18676i 0.533086 + 0.307777i
\(285\) 9.04465 2.33846i 0.535759 0.138518i
\(286\) 3.28160 + 2.81427i 0.194045 + 0.166411i
\(287\) 12.3961i 0.731721i
\(288\) 2.57129 + 1.54546i 0.151515 + 0.0910671i
\(289\) −5.61039 −0.330023
\(290\) −4.11927 + 2.37826i −0.241892 + 0.139656i
\(291\) 5.18366 18.6868i 0.303871 1.09544i
\(292\) −12.2649 7.08114i −0.717749 0.414392i
\(293\) 9.53347 16.5125i 0.556951 0.964668i −0.440798 0.897606i \(-0.645304\pi\)
0.997749 0.0670612i \(-0.0213623\pi\)
\(294\) 6.52399 + 6.63976i 0.380487 + 0.387239i
\(295\) −1.44271 2.49884i −0.0839976 0.145488i
\(296\) −9.60655 −0.558369
\(297\) 0.863584 + 17.2120i 0.0501102 + 0.998744i
\(298\) 8.55354 0.495493
\(299\) −1.37660 2.38434i −0.0796107 0.137890i
\(300\) 1.21393 + 1.23547i 0.0700861 + 0.0713298i
\(301\) −6.10761 + 10.5787i −0.352037 + 0.609746i
\(302\) 10.0587 + 5.80738i 0.578812 + 0.334177i
\(303\) 6.07667 21.9060i 0.349096 1.25847i
\(304\) 4.67103 2.69682i 0.267902 0.154673i
\(305\) −5.22963 −0.299448
\(306\) 8.85579 4.90729i 0.506252 0.280531i
\(307\) 30.0696i 1.71616i 0.513516 + 0.858080i \(0.328343\pi\)
−0.513516 + 0.858080i \(0.671657\pi\)
\(308\) −3.21004 2.75291i −0.182909 0.156861i
\(309\) −28.5587 + 7.38374i −1.62465 + 0.420046i
\(310\) 3.00666 + 1.73590i 0.170767 + 0.0985922i
\(311\) −20.3268 11.7357i −1.15263 0.665469i −0.203100 0.979158i \(-0.565102\pi\)
−0.949526 + 0.313690i \(0.898435\pi\)
\(312\) −0.565125 2.18578i −0.0319939 0.123746i
\(313\) −5.64926 9.78481i −0.319315 0.553070i 0.661030 0.750359i \(-0.270119\pi\)
−0.980345 + 0.197289i \(0.936786\pi\)
\(314\) 15.0769 0.850837
\(315\) −0.0672717 + 3.82451i −0.00379033 + 0.215487i
\(316\) 6.02756i 0.339077i
\(317\) 2.70791 1.56341i 0.152092 0.0878101i −0.422023 0.906585i \(-0.638680\pi\)
0.574114 + 0.818775i \(0.305346\pi\)
\(318\) 8.54156 + 2.36940i 0.478987 + 0.132870i
\(319\) −15.5056 2.90631i −0.868147 0.162722i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) −9.53774 9.70698i −0.532345 0.541791i
\(322\) 1.34658 + 2.33234i 0.0750419 + 0.129976i
\(323\) 18.2027i 1.01283i
\(324\) 4.77133 7.63115i 0.265074 0.423953i
\(325\) 1.30346i 0.0723028i
\(326\) 10.0979 + 17.4901i 0.559272 + 0.968688i
\(327\) −5.19185 + 5.10133i −0.287110 + 0.282104i
\(328\) 4.86110 8.41967i 0.268409 0.464899i
\(329\) −4.79715 + 8.30890i −0.264475 + 0.458084i
\(330\) 0.388719 + 5.73140i 0.0213983 + 0.315503i
\(331\) −0.0462278 0.0800689i −0.00254091 0.00440098i 0.864752 0.502199i \(-0.167475\pi\)
−0.867293 + 0.497798i \(0.834142\pi\)
\(332\) −1.61940 −0.0888763
\(333\) −0.506848 + 28.8152i −0.0277751 + 1.57906i
\(334\) 3.43790 0.188113
\(335\) 5.40419 3.12011i 0.295262 0.170470i
\(336\) 0.552802 + 2.13812i 0.0301578 + 0.116644i
\(337\) 19.5264 + 11.2736i 1.06367 + 0.614111i 0.926445 0.376429i \(-0.122848\pi\)
0.137225 + 0.990540i \(0.456182\pi\)
\(338\) 5.65050 9.78695i 0.307347 0.532340i
\(339\) 1.90299 + 7.36037i 0.103356 + 0.399761i
\(340\) 2.92271 1.68743i 0.158506 0.0915135i
\(341\) 3.82165 + 10.8619i 0.206954 + 0.588207i
\(342\) −7.84276 14.1532i −0.424088 0.765318i
\(343\) 15.7776i 0.851913i
\(344\) 8.29679 4.79015i 0.447333 0.258268i
\(345\) 0.977923 3.52536i 0.0526496 0.189799i
\(346\) −0.930545 + 1.61175i −0.0500264 + 0.0866482i
\(347\) 10.0556 17.4168i 0.539813 0.934984i −0.459101 0.888384i \(-0.651828\pi\)
0.998914 0.0465993i \(-0.0148384\pi\)
\(348\) 5.77408 + 5.87654i 0.309523 + 0.315015i
\(349\) 14.2019 8.19949i 0.760212 0.438909i −0.0691596 0.997606i \(-0.522032\pi\)
0.829372 + 0.558697i \(0.188698\pi\)
\(350\) 1.27503i 0.0681535i
\(351\) −6.58615 + 1.57979i −0.351543 + 0.0843229i
\(352\) 1.10077 + 3.12863i 0.0586714 + 0.166756i
\(353\) −8.17582 + 4.72031i −0.435155 + 0.251237i −0.701540 0.712630i \(-0.747504\pi\)
0.266385 + 0.963867i \(0.414171\pi\)
\(354\) −3.56483 + 3.50268i −0.189469 + 0.186165i
\(355\) 5.18676 8.98373i 0.275284 0.476807i
\(356\) −7.39164 4.26757i −0.391756 0.226181i
\(357\) 7.18190 + 1.99224i 0.380107 + 0.105440i
\(358\) −7.51440 + 4.33844i −0.397148 + 0.229294i
\(359\) 18.5687 0.980021 0.490010 0.871717i \(-0.336993\pi\)
0.490010 + 0.871717i \(0.336993\pi\)
\(360\) 1.54546 2.57129i 0.0814529 0.135519i
\(361\) −10.0914 −0.531124
\(362\) 6.08807 + 10.5448i 0.319982 + 0.554225i
\(363\) −11.3959 + 15.2687i −0.598130 + 0.801399i
\(364\) 0.830977 1.43929i 0.0435550 0.0754395i
\(365\) −7.08114 + 12.2649i −0.370644 + 0.641974i
\(366\) 2.26735 + 8.76962i 0.118516 + 0.458395i
\(367\) 13.6592 + 23.6584i 0.713005 + 1.23496i 0.963724 + 0.266900i \(0.0859995\pi\)
−0.250719 + 0.968060i \(0.580667\pi\)
\(368\) 2.11222i 0.110107i
\(369\) −24.9986 15.0253i −1.30138 0.782184i
\(370\) 9.60655i 0.499421i
\(371\) 3.26262 + 5.65102i 0.169387 + 0.293386i
\(372\) 1.60738 5.79451i 0.0833387 0.300431i
\(373\) 5.63218 + 3.25174i 0.291623 + 0.168369i 0.638674 0.769478i \(-0.279483\pi\)
−0.347051 + 0.937846i \(0.612817\pi\)
\(374\) 11.0015 + 2.06209i 0.568875 + 0.106628i
\(375\) 1.23547 1.21393i 0.0637993 0.0626869i
\(376\) 6.51661 3.76236i 0.336068 0.194029i
\(377\) 6.19994i 0.319313i
\(378\) 6.44253 1.54534i 0.331368 0.0794837i
\(379\) −7.08548 −0.363957 −0.181978 0.983303i \(-0.558250\pi\)
−0.181978 + 0.983303i \(0.558250\pi\)
\(380\) −2.69682 4.67103i −0.138344 0.239619i
\(381\) −24.8958 + 24.4618i −1.27545 + 1.25321i
\(382\) 5.40786 + 3.12223i 0.276690 + 0.159747i
\(383\) −18.6989 10.7958i −0.955471 0.551641i −0.0606948 0.998156i \(-0.519332\pi\)
−0.894776 + 0.446515i \(0.852665\pi\)
\(384\) 0.462983 1.66903i 0.0236265 0.0851721i
\(385\) −2.75291 + 3.21004i −0.140301 + 0.163599i
\(386\) 23.5512i 1.19872i
\(387\) −13.9305 25.1393i −0.708127 1.27790i
\(388\) −11.1962 −0.568402
\(389\) 1.43162 0.826544i 0.0725858 0.0419075i −0.463268 0.886218i \(-0.653323\pi\)
0.535854 + 0.844311i \(0.319990\pi\)
\(390\) −2.18578 + 0.565125i −0.110681 + 0.0286162i
\(391\) −6.17341 3.56422i −0.312203 0.180250i
\(392\) 2.68714 4.65427i 0.135721 0.235076i
\(393\) 21.6761 5.60426i 1.09341 0.282698i
\(394\) −2.33175 4.03871i −0.117472 0.203467i
\(395\) 6.02756 0.303279
\(396\) 9.44250 3.13674i 0.474504 0.157627i
\(397\) 3.84040 0.192744 0.0963721 0.995345i \(-0.469276\pi\)
0.0963721 + 0.995345i \(0.469276\pi\)
\(398\) −7.20764 12.4840i −0.361286 0.625766i
\(399\) 3.18397 11.4780i 0.159398 0.574620i
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) 14.7239 + 8.50085i 0.735276 + 0.424512i 0.820349 0.571863i \(-0.193779\pi\)
−0.0850730 + 0.996375i \(0.527112\pi\)
\(402\) −7.57517 7.70959i −0.377815 0.384519i
\(403\) −3.91905 + 2.26267i −0.195222 + 0.112711i
\(404\) −13.1250 −0.652995
\(405\) −7.63115 4.77133i −0.379195 0.237089i
\(406\) 6.06474i 0.300988i
\(407\) −20.7413 + 24.1855i −1.02811 + 1.19883i
\(408\) −4.09682 4.16952i −0.202823 0.206422i
\(409\) 3.55993 + 2.05533i 0.176027 + 0.101629i 0.585425 0.810727i \(-0.300928\pi\)
−0.409398 + 0.912356i \(0.634261\pi\)
\(410\) −8.41967 4.86110i −0.415818 0.240073i
\(411\) −6.17965 1.71422i −0.304820 0.0845561i
\(412\) 8.51528 + 14.7489i 0.419518 + 0.726626i
\(413\) −3.67900 −0.181032
\(414\) −6.33569 0.111442i −0.311382 0.00547710i
\(415\) 1.61940i 0.0794934i
\(416\) −1.12883 + 0.651729i −0.0553453 + 0.0319536i
\(417\) 10.0399 + 38.8322i 0.491656 + 1.90162i
\(418\) 3.29560 17.5825i 0.161193 0.859988i
\(419\) 17.3548 + 10.0198i 0.847839 + 0.489500i 0.859921 0.510427i \(-0.170513\pi\)
−0.0120824 + 0.999927i \(0.503846\pi\)
\(420\) 2.13812 0.552802i 0.104329 0.0269740i
\(421\) −1.74631 3.02470i −0.0851100 0.147415i 0.820328 0.571893i \(-0.193791\pi\)
−0.905438 + 0.424478i \(0.860458\pi\)
\(422\) 10.8295i 0.527174i
\(423\) −10.9415 19.7453i −0.531995 0.960049i
\(424\) 5.11769i 0.248537i
\(425\) −1.68743 2.92271i −0.0818521 0.141772i
\(426\) −17.3137 4.80276i −0.838850 0.232694i
\(427\) −3.33398 + 5.77462i −0.161343 + 0.279453i
\(428\) −3.92846 + 6.80430i −0.189890 + 0.328898i
\(429\) −6.72310 3.29652i −0.324594 0.159157i
\(430\) −4.79015 8.29679i −0.231002 0.400107i
\(431\) 5.82803 0.280726 0.140363 0.990100i \(-0.455173\pi\)
0.140363 + 0.990100i \(0.455173\pi\)
\(432\) −4.98188 1.47679i −0.239691 0.0710522i
\(433\) −18.0147 −0.865729 −0.432865 0.901459i \(-0.642497\pi\)
−0.432865 + 0.901459i \(0.642497\pi\)
\(434\) 3.83359 2.21333i 0.184018 0.106243i
\(435\) 5.87654 5.77408i 0.281758 0.276846i
\(436\) 3.63933 + 2.10117i 0.174292 + 0.100628i
\(437\) −5.69629 + 9.86626i −0.272490 + 0.471967i
\(438\) 23.6372 + 6.55689i 1.12943 + 0.313300i
\(439\) 0.710007 0.409923i 0.0338868 0.0195645i −0.482961 0.875642i \(-0.660439\pi\)
0.516848 + 0.856077i \(0.327105\pi\)
\(440\) 3.12863 1.10077i 0.149151 0.0524773i
\(441\) −13.8189 8.30575i −0.658042 0.395512i
\(442\) 4.39898i 0.209238i
\(443\) 20.9407 12.0901i 0.994924 0.574420i 0.0881814 0.996104i \(-0.471894\pi\)
0.906742 + 0.421685i \(0.138561\pi\)
\(444\) 16.1093 4.16500i 0.764514 0.197662i
\(445\) −4.26757 + 7.39164i −0.202302 + 0.350398i
\(446\) 1.95126 3.37969i 0.0923949 0.160033i
\(447\) −14.3435 + 3.70846i −0.678425 + 0.175404i
\(448\) 1.10421 0.637517i 0.0521691 0.0301199i
\(449\) 8.84226i 0.417292i 0.977991 + 0.208646i \(0.0669057\pi\)
−0.977991 + 0.208646i \(0.933094\pi\)
\(450\) −2.57129 1.54546i −0.121212 0.0728537i
\(451\) −10.7019 30.4171i −0.503934 1.43229i
\(452\) 3.80120 2.19462i 0.178793 0.103226i
\(453\) −19.3853 5.37744i −0.910803 0.252654i
\(454\) −9.33836 + 16.1745i −0.438271 + 0.759108i
\(455\) −1.43929 0.830977i −0.0674752 0.0389568i
\(456\) −6.66367 + 6.54749i −0.312055 + 0.306614i
\(457\) 13.0231 7.51886i 0.609193 0.351718i −0.163457 0.986550i \(-0.552264\pi\)
0.772649 + 0.634833i \(0.218931\pi\)
\(458\) 15.6689 0.732160
\(459\) −12.7228 + 12.0686i −0.593848 + 0.563313i
\(460\) −2.11222 −0.0984829
\(461\) −4.80589 8.32404i −0.223833 0.387689i 0.732136 0.681158i \(-0.238524\pi\)
−0.955969 + 0.293469i \(0.905190\pi\)
\(462\) 6.57649 + 3.22464i 0.305966 + 0.150024i
\(463\) −13.3284 + 23.0854i −0.619422 + 1.07287i 0.370169 + 0.928964i \(0.379300\pi\)
−0.989591 + 0.143906i \(0.954034\pi\)
\(464\) 2.37826 4.11927i 0.110408 0.191233i
\(465\) −5.79451 1.60738i −0.268714 0.0745404i
\(466\) −7.82986 13.5617i −0.362711 0.628234i
\(467\) 6.89050i 0.318855i −0.987210 0.159427i \(-0.949035\pi\)
0.987210 0.159427i \(-0.0509647\pi\)
\(468\) 1.89533 + 3.42035i 0.0876115 + 0.158106i
\(469\) 7.95649i 0.367397i
\(470\) −3.76236 6.51661i −0.173545 0.300589i
\(471\) −25.2826 + 6.53670i −1.16496 + 0.301195i
\(472\) 2.49884 + 1.44271i 0.115018 + 0.0664059i
\(473\) 5.85372 31.2304i 0.269154 1.43598i
\(474\) −2.61330 10.1077i −0.120033 0.464261i
\(475\) −4.67103 + 2.69682i −0.214322 + 0.123739i
\(476\) 4.30305i 0.197230i
\(477\) −15.3507 0.270013i −0.702861 0.0123631i
\(478\) −8.60861 −0.393749
\(479\) −6.23709 10.8030i −0.284980 0.493600i 0.687624 0.726067i \(-0.258654\pi\)
−0.972604 + 0.232467i \(0.925320\pi\)
\(480\) −1.66903 0.462983i −0.0761803 0.0211322i
\(481\) −10.8441 6.26086i −0.494450 0.285471i
\(482\) 2.66362 + 1.53784i 0.121325 + 0.0700469i
\(483\) −3.26930 3.32731i −0.148758 0.151398i
\(484\) 10.2533 + 3.98364i 0.466060 + 0.181075i
\(485\) 11.1962i 0.508394i
\(486\) −4.69254 + 14.8654i −0.212858 + 0.674308i
\(487\) 21.3546 0.967669 0.483835 0.875160i \(-0.339244\pi\)
0.483835 + 0.875160i \(0.339244\pi\)
\(488\) 4.52899 2.61481i 0.205018 0.118367i
\(489\) −24.5163 24.9513i −1.10867 1.12834i
\(490\) −4.65427 2.68714i −0.210258 0.121393i
\(491\) −10.2802 + 17.8058i −0.463939 + 0.803565i −0.999153 0.0411511i \(-0.986897\pi\)
0.535214 + 0.844716i \(0.320231\pi\)
\(492\) −4.50121 + 16.2266i −0.202930 + 0.731552i
\(493\) −8.02629 13.9019i −0.361486 0.626112i
\(494\) 7.03038 0.316312
\(495\) −3.13674 9.44250i −0.140986 0.424409i
\(496\) −3.47179 −0.155888
\(497\) −6.61329 11.4546i −0.296647 0.513807i
\(498\) 2.71559 0.702105i 0.121689 0.0314621i
\(499\) −8.47693 + 14.6825i −0.379480 + 0.657278i −0.990987 0.133961i \(-0.957230\pi\)
0.611507 + 0.791239i \(0.290564\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) −5.76504 + 1.49053i −0.257563 + 0.0665919i
\(502\) −5.23072 + 3.01996i −0.233459 + 0.134787i
\(503\) −24.5268 −1.09360 −0.546799 0.837264i \(-0.684154\pi\)
−0.546799 + 0.837264i \(0.684154\pi\)
\(504\) −1.85400 3.34576i −0.0825836 0.149032i
\(505\) 13.1250i 0.584057i
\(506\) −5.31776 4.56047i −0.236403 0.202737i
\(507\) −5.23217 + 18.8617i −0.232369 + 0.837676i
\(508\) 17.4512 + 10.0755i 0.774272 + 0.447026i
\(509\) 7.97673 + 4.60537i 0.353562 + 0.204129i 0.666253 0.745726i \(-0.267897\pi\)
−0.312691 + 0.949855i \(0.601230\pi\)
\(510\) −4.16952 + 4.09682i −0.184629 + 0.181410i
\(511\) 9.02870 + 15.6382i 0.399406 + 0.691792i
\(512\) −1.00000 −0.0441942
\(513\) 19.2878 + 20.3334i 0.851579 + 0.897740i
\(514\) 17.8978i 0.789437i
\(515\) 14.7489 8.51528i 0.649914 0.375228i
\(516\) −11.8362 + 11.6298i −0.521058 + 0.511973i
\(517\) 4.59773 24.5295i 0.202208 1.07881i
\(518\) 10.6077 + 6.12434i 0.466074 + 0.269088i
\(519\) 0.861652 3.10621i 0.0378223 0.136347i
\(520\) 0.651729 + 1.12883i 0.0285802 + 0.0495024i
\(521\) 23.9155i 1.04776i 0.851793 + 0.523879i \(0.175516\pi\)
−0.851793 + 0.523879i \(0.824484\pi\)
\(522\) −12.2304 7.35103i −0.535312 0.321746i
\(523\) 11.5018i 0.502939i 0.967865 + 0.251469i \(0.0809138\pi\)
−0.967865 + 0.251469i \(0.919086\pi\)
\(524\) −6.46311 11.1944i −0.282342 0.489031i
\(525\) −0.552802 2.13812i −0.0241262 0.0933151i
\(526\) 12.6011 21.8257i 0.549433 0.951647i
\(527\) −5.85839 + 10.1470i −0.255195 + 0.442011i
\(528\) −3.20234 4.76917i −0.139364 0.207552i
\(529\) −9.26926 16.0548i −0.403011 0.698036i
\(530\) −5.11769 −0.222298
\(531\) 4.45929 7.41924i 0.193517 0.321968i
\(532\) −6.87708 −0.298159
\(533\) 10.9747 6.33624i 0.475366 0.274453i
\(534\) 14.2454 + 3.95162i 0.616457 + 0.171003i
\(535\) 6.80430 + 3.92846i 0.294176 + 0.169842i
\(536\) −3.12011 + 5.40419i −0.134768 + 0.233425i
\(537\) 10.7200 10.5331i 0.462602 0.454537i
\(538\) −12.2340 + 7.06330i −0.527445 + 0.304520i
\(539\) −5.91587 16.8141i −0.254815 0.724236i
\(540\) −1.47679 + 4.98188i −0.0635510 + 0.214386i
\(541\) 17.3878i 0.747562i 0.927517 + 0.373781i \(0.121939\pi\)
−0.927517 + 0.373781i \(0.878061\pi\)
\(542\) −11.8922 + 6.86598i −0.510815 + 0.294919i
\(543\) −14.7809 15.0432i −0.634311 0.645567i
\(544\) −1.68743 + 2.92271i −0.0723478 + 0.125310i
\(545\) 2.10117 3.63933i 0.0900042 0.155892i
\(546\) −0.769456 + 2.77384i −0.0329297 + 0.118710i
\(547\) −7.28532 + 4.20618i −0.311498 + 0.179843i −0.647597 0.761983i \(-0.724226\pi\)
0.336099 + 0.941827i \(0.390892\pi\)
\(548\) 3.70255i 0.158165i
\(549\) −7.60428 13.7228i −0.324543 0.585676i
\(550\) −1.10077 3.12863i −0.0469371 0.133405i
\(551\) −22.2179 + 12.8275i −0.946514 + 0.546470i
\(552\) 0.915772 + 3.54201i 0.0389778 + 0.150758i
\(553\) 3.84267 6.65570i 0.163407 0.283029i
\(554\) 11.1494 + 6.43710i 0.473692 + 0.273486i
\(555\) −4.16500 16.1093i −0.176794 0.683802i
\(556\) 20.0545 11.5785i 0.850502 0.491037i
\(557\) 25.5098 1.08089 0.540443 0.841380i \(-0.318256\pi\)
0.540443 + 0.841380i \(0.318256\pi\)
\(558\) −0.183174 + 10.4138i −0.00775438 + 0.440850i
\(559\) 12.4875 0.528166
\(560\) −0.637517 1.10421i −0.0269400 0.0466615i
\(561\) −19.3426 + 1.31187i −0.816645 + 0.0553871i
\(562\) −5.05524 + 8.75593i −0.213242 + 0.369347i
\(563\) 13.1690 22.8093i 0.555006 0.961299i −0.442897 0.896573i \(-0.646049\pi\)
0.997903 0.0647264i \(-0.0206175\pi\)
\(564\) −9.29656 + 9.13447i −0.391456 + 0.384631i
\(565\) −2.19462 3.80120i −0.0923285 0.159918i
\(566\) 19.9175i 0.837195i
\(567\) −10.1335 + 5.38461i −0.425569 + 0.226132i
\(568\) 10.3735i 0.435263i
\(569\) 14.2692 + 24.7150i 0.598197 + 1.03611i 0.993087 + 0.117380i \(0.0374495\pi\)
−0.394890 + 0.918729i \(0.629217\pi\)
\(570\) 6.54749 + 6.66367i 0.274244 + 0.279110i
\(571\) 32.0431 + 18.5001i 1.34096 + 0.774205i 0.986949 0.161036i \(-0.0514834\pi\)
0.354013 + 0.935240i \(0.384817\pi\)
\(572\) −0.796433 + 4.24908i −0.0333005 + 0.177663i
\(573\) −10.4222 2.89108i −0.435392 0.120777i
\(574\) −10.7354 + 6.19807i −0.448086 + 0.258702i
\(575\) 2.11222i 0.0880858i
\(576\) −0.0527607 + 2.99954i −0.00219836 + 0.124981i
\(577\) −27.7269 −1.15429 −0.577144 0.816643i \(-0.695833\pi\)
−0.577144 + 0.816643i \(0.695833\pi\)
\(578\) −2.80519 4.85874i −0.116681 0.202097i
\(579\) 10.2108 + 39.4932i 0.424346 + 1.64128i
\(580\) −4.11927 2.37826i −0.171044 0.0987521i
\(581\) 1.78816 + 1.03240i 0.0741856 + 0.0428311i
\(582\) 18.7751 4.85421i 0.778251 0.201214i
\(583\) −12.8844 11.0495i −0.533616 0.457625i
\(584\) 14.1623i 0.586039i
\(585\) 3.42035 1.89533i 0.141414 0.0783621i
\(586\) 19.0669 0.787648
\(587\) 13.5447 7.82004i 0.559050 0.322768i −0.193714 0.981058i \(-0.562053\pi\)
0.752764 + 0.658290i \(0.228720\pi\)
\(588\) −2.48820 + 8.96982i −0.102612 + 0.369909i
\(589\) 16.2168 + 9.36279i 0.668203 + 0.385787i
\(590\) 1.44271 2.49884i 0.0593952 0.102876i
\(591\) 5.66115 + 5.76161i 0.232869 + 0.237001i
\(592\) −4.80327 8.31951i −0.197413 0.341930i
\(593\) −40.5045 −1.66332 −0.831660 0.555286i \(-0.812609\pi\)
−0.831660 + 0.555286i \(0.812609\pi\)
\(594\) −14.4743 + 9.35390i −0.593886 + 0.383795i
\(595\) −4.30305 −0.176408
\(596\) 4.27677 + 7.40758i 0.175183 + 0.303426i
\(597\) 17.4991 + 17.8096i 0.716190 + 0.728899i
\(598\) 1.37660 2.38434i 0.0562932 0.0975028i
\(599\) −23.7343 13.7030i −0.969757 0.559890i −0.0705950 0.997505i \(-0.522490\pi\)
−0.899162 + 0.437615i \(0.855823\pi\)
\(600\) −0.462983 + 1.66903i −0.0189012 + 0.0681377i
\(601\) 26.3874 15.2348i 1.07636 0.621438i 0.146450 0.989218i \(-0.453215\pi\)
0.929913 + 0.367780i \(0.119882\pi\)
\(602\) −12.2152 −0.497855
\(603\) 16.0454 + 9.64401i 0.653421 + 0.392734i
\(604\) 11.6148i 0.472598i
\(605\) 3.98364 10.2533i 0.161958 0.416857i
\(606\) 22.0095 5.69047i 0.894076 0.231160i
\(607\) −15.9618 9.21558i −0.647871 0.374049i 0.139769 0.990184i \(-0.455364\pi\)
−0.787640 + 0.616135i \(0.788697\pi\)
\(608\) 4.67103 + 2.69682i 0.189435 + 0.109370i
\(609\) −2.62942 10.1700i −0.106549 0.412110i
\(610\) −2.61481 4.52899i −0.105871 0.183373i
\(611\) 9.80817 0.396796
\(612\) 8.67773 + 5.21570i 0.350777 + 0.210832i
\(613\) 42.1721i 1.70332i 0.524097 + 0.851659i \(0.324403\pi\)
−0.524097 + 0.851659i \(0.675597\pi\)
\(614\) −26.0410 + 15.0348i −1.05093 + 0.606754i
\(615\) 16.2266 + 4.50121i 0.654320 + 0.181506i
\(616\) 0.779066 4.15643i 0.0313895 0.167467i
\(617\) −22.2411 12.8409i −0.895394 0.516956i −0.0196907 0.999806i \(-0.506268\pi\)
−0.875703 + 0.482850i \(0.839601\pi\)
\(618\) −20.6739 21.0407i −0.831625 0.846381i
\(619\) −13.8445 23.9795i −0.556459 0.963816i −0.997788 0.0664705i \(-0.978826\pi\)
0.441329 0.897345i \(-0.354507\pi\)
\(620\) 3.47179i 0.139430i
\(621\) 10.6727 2.56001i 0.428281 0.102730i
\(622\) 23.4713i 0.941115i
\(623\) 5.44130 + 9.42460i 0.218001 + 0.377589i
\(624\) 1.61038 1.58230i 0.0644668 0.0633428i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 5.64926 9.78481i 0.225790 0.391080i
\(627\) 2.09661 + 30.9131i 0.0837305 + 1.23455i
\(628\) 7.53844 + 13.0570i 0.300816 + 0.521029i
\(629\) −32.4207 −1.29270
\(630\) −3.34576 + 1.85400i −0.133298 + 0.0738650i
\(631\) 23.6658 0.942119 0.471060 0.882101i \(-0.343872\pi\)
0.471060 + 0.882101i \(0.343872\pi\)
\(632\) −5.22002 + 3.01378i −0.207641 + 0.119882i
\(633\) 4.69523 + 18.1602i 0.186619 + 0.721802i
\(634\) 2.70791 + 1.56341i 0.107545 + 0.0620911i
\(635\) 10.0755 17.4512i 0.399832 0.692530i
\(636\) 2.21882 + 8.58191i 0.0879818 + 0.340295i
\(637\) 6.06664 3.50258i 0.240369 0.138777i
\(638\) −5.23586 14.8814i −0.207290 0.589160i
\(639\) 31.1157 + 0.547314i 1.23092 + 0.0216514i
\(640\) 1.00000i 0.0395285i
\(641\) 16.7978 9.69820i 0.663472 0.383056i −0.130126 0.991497i \(-0.541538\pi\)
0.793599 + 0.608442i \(0.208205\pi\)
\(642\) 3.63762 13.1134i 0.143566 0.517545i
\(643\) 5.73872 9.93976i 0.226313 0.391986i −0.730399 0.683020i \(-0.760666\pi\)
0.956713 + 0.291034i \(0.0939994\pi\)
\(644\) −1.34658 + 2.33234i −0.0530626 + 0.0919072i
\(645\) 11.6298 + 11.8362i 0.457923 + 0.466048i
\(646\) 15.7640 9.10136i 0.620227 0.358088i
\(647\) 2.45185i 0.0963924i 0.998838 + 0.0481962i \(0.0153473\pi\)
−0.998838 + 0.0481962i \(0.984653\pi\)
\(648\) 8.99443 + 0.316515i 0.353335 + 0.0124339i
\(649\) 9.02737 3.17618i 0.354355 0.124676i
\(650\) 1.12883 0.651729i 0.0442763 0.0255629i
\(651\) −5.46899 + 5.37364i −0.214346 + 0.210609i
\(652\) −10.0979 + 17.4901i −0.395465 + 0.684966i
\(653\) −20.5412 11.8594i −0.803838 0.464096i 0.0409734 0.999160i \(-0.486954\pi\)
−0.844811 + 0.535064i \(0.820287\pi\)
\(654\) −7.01381 1.94561i −0.274262 0.0760794i
\(655\) −11.1944 + 6.46311i −0.437402 + 0.252534i
\(656\) 9.72220 0.379588
\(657\) −42.4803 0.747212i −1.65731 0.0291515i
\(658\) −9.59429 −0.374024
\(659\) −12.4162 21.5054i −0.483665 0.837732i 0.516159 0.856493i \(-0.327361\pi\)
−0.999824 + 0.0187609i \(0.994028\pi\)
\(660\) −4.76917 + 3.20234i −0.185640 + 0.124651i
\(661\) −16.4988 + 28.5768i −0.641729 + 1.11151i 0.343318 + 0.939219i \(0.388449\pi\)
−0.985047 + 0.172288i \(0.944884\pi\)
\(662\) 0.0462278 0.0800689i 0.00179669 0.00311197i
\(663\) −1.90721 7.37669i −0.0740700 0.286487i
\(664\) −0.809702 1.40244i −0.0314225 0.0544254i
\(665\) 6.87708i 0.266682i
\(666\) −25.2081 + 13.9686i −0.976794 + 0.541274i
\(667\) 10.0469i 0.389016i
\(668\) 1.71895 + 2.97731i 0.0665081 + 0.115195i
\(669\) −1.80680 + 6.51341i −0.0698550 + 0.251823i
\(670\) 5.40419 + 3.12011i 0.208782 + 0.120540i
\(671\) 3.19538 17.0478i 0.123356 0.658124i
\(672\) −1.57526 + 1.54780i −0.0607671 + 0.0597077i
\(673\) 24.5268 14.1605i 0.945438 0.545849i 0.0537768 0.998553i \(-0.482874\pi\)
0.891661 + 0.452704i \(0.149541\pi\)
\(674\) 22.5471i 0.868484i
\(675\) 4.98188 + 1.47679i 0.191752 + 0.0568418i
\(676\) 11.3010 0.434654
\(677\) −5.30072 9.18112i −0.203723 0.352859i 0.746002 0.665944i \(-0.231971\pi\)
−0.949725 + 0.313085i \(0.898638\pi\)
\(678\) −5.42277 + 5.32823i −0.208260 + 0.204629i
\(679\) 12.3630 + 7.13779i 0.474449 + 0.273923i
\(680\) 2.92271 + 1.68743i 0.112081 + 0.0647098i
\(681\) 8.64700 31.1719i 0.331354 1.19451i
\(682\) −7.49588 + 8.74062i −0.287032 + 0.334695i
\(683\) 7.15826i 0.273903i −0.990578 0.136952i \(-0.956269\pi\)
0.990578 0.136952i \(-0.0437305\pi\)
\(684\) 8.33566 13.8686i 0.318722 0.530281i
\(685\) 3.70255 0.141467
\(686\) −13.6638 + 7.88882i −0.521688 + 0.301197i
\(687\) −26.2754 + 6.79338i −1.00247 + 0.259184i
\(688\) 8.29679 + 4.79015i 0.316312 + 0.182623i
\(689\) 3.33535 5.77699i 0.127067 0.220086i
\(690\) 3.54201 0.915772i 0.134842 0.0348628i
\(691\) 24.5817 + 42.5767i 0.935132 + 1.61970i 0.774399 + 0.632697i \(0.218052\pi\)
0.160732 + 0.986998i \(0.448614\pi\)
\(692\) −1.86109 −0.0707480
\(693\) −12.4263 2.55613i −0.472034 0.0970994i
\(694\) 20.1112 0.763411
\(695\) −11.5785 20.0545i −0.439197 0.760712i
\(696\) −2.20219 + 7.93877i −0.0834738 + 0.300918i
\(697\) 16.4055 28.4151i 0.621402 1.07630i
\(698\) 14.2019 + 8.19949i 0.537551 + 0.310355i
\(699\) 19.0098 + 19.3471i 0.719015 + 0.731774i
\(700\) −1.10421 + 0.637517i −0.0417353 + 0.0240959i
\(701\) 6.48029 0.244757 0.122379 0.992483i \(-0.460948\pi\)
0.122379 + 0.992483i \(0.460948\pi\)
\(702\) −4.66121 4.91388i −0.175926 0.185462i
\(703\) 51.8143i 1.95421i
\(704\) −2.15908 + 2.51761i −0.0813735 + 0.0948860i
\(705\) 9.13447 + 9.29656i 0.344024 + 0.350129i
\(706\) −8.17582 4.72031i −0.307701 0.177651i
\(707\) 14.4928 + 8.36744i 0.545059 + 0.314690i
\(708\) −4.81582 1.33590i −0.180990 0.0502060i
\(709\) 25.2075 + 43.6606i 0.946686 + 1.63971i 0.752340 + 0.658775i \(0.228925\pi\)
0.194346 + 0.980933i \(0.437741\pi\)
\(710\) 10.3735 0.389311
\(711\) 8.76453 + 15.8166i 0.328695 + 0.593170i
\(712\) 8.53513i 0.319868i
\(713\) 6.35074 3.66660i 0.237837 0.137315i
\(714\) 1.86562 + 7.21583i 0.0698192 + 0.270046i
\(715\) 4.24908 + 0.796433i 0.158907 + 0.0297849i
\(716\) −7.51440 4.33844i −0.280826 0.162135i
\(717\) 14.4359 3.73233i 0.539117 0.139387i
\(718\) 9.28437 + 16.0810i 0.346490 + 0.600138i
\(719\) 27.7203i 1.03379i 0.856048 + 0.516896i \(0.172913\pi\)
−0.856048 + 0.516896i \(0.827087\pi\)
\(720\) 2.99954 + 0.0527607i 0.111786 + 0.00196628i
\(721\) 21.7145i 0.808692i
\(722\) −5.04568 8.73937i −0.187781 0.325246i
\(723\) −5.13340 1.42399i −0.190913 0.0529588i
\(724\) −6.08807 + 10.5448i −0.226261 + 0.391896i
\(725\) −2.37826 + 4.11927i −0.0883265 + 0.152986i
\(726\) −18.9210 2.23480i −0.702226 0.0829413i
\(727\) 11.8138 + 20.4620i 0.438148 + 0.758895i 0.997547 0.0700040i \(-0.0223012\pi\)
−0.559399 + 0.828899i \(0.688968\pi\)
\(728\) 1.66195 0.0615961
\(729\) 1.42395 26.9624i 0.0527390 0.998608i
\(730\) −14.1623 −0.524169
\(731\) 28.0004 16.1661i 1.03563 0.597923i
\(732\) −6.46104 + 6.34839i −0.238807 + 0.234643i
\(733\) −21.4597 12.3898i −0.792634 0.457627i 0.0482553 0.998835i \(-0.484634\pi\)
−0.840889 + 0.541208i \(0.817967\pi\)
\(734\) −13.6592 + 23.6584i −0.504170 + 0.873249i
\(735\) 8.96982 + 2.48820i 0.330857 + 0.0917787i
\(736\) 1.82924 1.05611i 0.0674267 0.0389288i
\(737\) 6.86906 + 19.5233i 0.253025 + 0.719150i
\(738\) 0.512950 29.1621i 0.0188820 1.07347i
\(739\) 13.2395i 0.487021i 0.969898 + 0.243511i \(0.0782991\pi\)
−0.969898 + 0.243511i \(0.921701\pi\)
\(740\) −8.31951 + 4.80327i −0.305831 + 0.176572i
\(741\) −11.7893 + 3.04808i −0.433092 + 0.111974i
\(742\) −3.26262 + 5.65102i −0.119774 + 0.207455i
\(743\) 15.3959 26.6664i 0.564819 0.978296i −0.432247 0.901755i \(-0.642279\pi\)
0.997066 0.0765407i \(-0.0243875\pi\)
\(744\) 5.82188 1.50522i 0.213440 0.0551842i
\(745\) 7.40758 4.27677i 0.271393 0.156689i
\(746\) 6.50348i 0.238109i
\(747\) −4.24940 + 2.35474i −0.155478 + 0.0861552i
\(748\) 3.71494 + 10.5586i 0.135832 + 0.386062i
\(749\) 8.67572 5.00893i 0.317004 0.183022i
\(750\) 1.66903 + 0.462983i 0.0609442 + 0.0169057i
\(751\) −7.84780 + 13.5928i −0.286370 + 0.496008i −0.972941 0.231056i \(-0.925782\pi\)
0.686570 + 0.727063i \(0.259115\pi\)
\(752\) 6.51661 + 3.76236i 0.237636 + 0.137199i
\(753\) 7.46213 7.33202i 0.271935 0.267194i
\(754\) 5.36930 3.09997i 0.195538 0.112894i
\(755\) 11.6148 0.422705
\(756\) 4.55957 + 4.80672i 0.165830 + 0.174819i
\(757\) 12.4907 0.453982 0.226991 0.973897i \(-0.427111\pi\)
0.226991 + 0.973897i \(0.427111\pi\)
\(758\) −3.54274 6.13621i −0.128678 0.222877i
\(759\) 10.8946 + 5.34193i 0.395450 + 0.193900i
\(760\) 2.69682 4.67103i 0.0978239 0.169436i
\(761\) −15.4599 + 26.7773i −0.560421 + 0.970678i 0.437039 + 0.899443i \(0.356027\pi\)
−0.997460 + 0.0712348i \(0.977306\pi\)
\(762\) −33.6324 9.32953i −1.21837 0.337973i
\(763\) −2.67906 4.64027i −0.0969886 0.167989i
\(764\) 6.24446i 0.225917i
\(765\) 5.21570 8.67773i 0.188574 0.313744i
\(766\) 21.5917i 0.780139i
\(767\) 1.88051 + 3.25713i 0.0679011 + 0.117608i
\(768\) 1.67691 0.433558i 0.0605103 0.0156447i
\(769\) 36.0224 + 20.7976i 1.29900 + 0.749979i 0.980232 0.197853i \(-0.0633968\pi\)
0.318770 + 0.947832i \(0.396730\pi\)
\(770\) −4.15643 0.779066i −0.149787 0.0280756i
\(771\) −7.75973 30.0130i −0.279460 1.08089i
\(772\) 20.3959 11.7756i 0.734064 0.423812i
\(773\) 39.4393i 1.41853i 0.704940 + 0.709267i \(0.250974\pi\)
−0.704940 + 0.709267i \(0.749026\pi\)
\(774\) 14.8060 24.6338i 0.532190 0.885443i
\(775\) 3.47179 0.124710
\(776\) −5.59811 9.69621i −0.200961 0.348074i
\(777\) −20.4434 5.67093i −0.733401 0.203443i
\(778\) 1.43162 + 0.826544i 0.0513259 + 0.0296330i
\(779\) −45.4127 26.2190i −1.62708 0.939394i
\(780\) −1.58230 1.61038i −0.0566555 0.0576609i
\(781\) 26.1165 + 22.3973i 0.934521 + 0.801437i
\(782\) 7.12844i 0.254912i
\(783\) 23.6964 + 7.02441i 0.846841 + 0.251032i
\(784\) 5.37429 0.191939
\(785\) 13.0570 7.53844i 0.466023 0.269058i
\(786\) 15.6915 + 15.9699i 0.559697 + 0.569628i
\(787\) −18.1102 10.4559i −0.645560 0.372714i 0.141193 0.989982i \(-0.454906\pi\)
−0.786753 + 0.617268i \(0.788240\pi\)
\(788\) 2.33175 4.03871i 0.0830652 0.143873i
\(789\) −11.6682 + 42.0631i −0.415398 + 1.49748i
\(790\) 3.01378 + 5.22002i 0.107225 + 0.185720i
\(791\) −5.59644 −0.198987
\(792\) 7.43775 + 6.60908i 0.264289 + 0.234843i
\(793\) 6.81660 0.242065
\(794\) 1.92020 + 3.32589i 0.0681454 + 0.118031i
\(795\) 8.58191 2.21882i 0.304369 0.0786933i
\(796\) 7.20764 12.4840i 0.255468 0.442483i
\(797\) 10.1775 + 5.87596i 0.360504 + 0.208137i 0.669302 0.742991i \(-0.266593\pi\)
−0.308798 + 0.951128i \(0.599927\pi\)
\(798\) 11.5322 2.98161i 0.408237 0.105548i
\(799\) 21.9926 12.6974i 0.778041 0.449202i
\(800\) 1.00000 0.0353553
\(801\) −25.6014 0.450320i −0.904583 0.0159113i
\(802\) 17.0017i 0.600351i
\(803\) −35.6551 30.5775i −1.25824 1.07906i
\(804\) 2.88911 10.4151i 0.101891 0.367312i
\(805\) 2.33234 + 1.34658i 0.0822043 + 0.0474607i
\(806\) −3.91905 2.26267i −0.138043 0.0796990i
\(807\) 17.4530 17.1487i 0.614373 0.603662i
\(808\) −6.56252 11.3666i −0.230869 0.399876i
\(809\) 50.3042 1.76860 0.884300 0.466919i \(-0.154636\pi\)
0.884300 + 0.466919i \(0.154636\pi\)
\(810\) 0.316515 8.99443i 0.0111212 0.316032i
\(811\) 35.9519i 1.26244i −0.775603 0.631220i \(-0.782554\pi\)
0.775603 0.631220i \(-0.217446\pi\)
\(812\) −5.25222 + 3.03237i −0.184317 + 0.106415i
\(813\) 16.9654 16.6696i 0.595002 0.584628i
\(814\) −31.3160 5.86975i −1.09762 0.205735i
\(815\) 17.4901 + 10.0979i 0.612652 + 0.353715i
\(816\) 1.56250 5.63271i 0.0546983 0.197184i
\(817\) −25.8364 44.7499i −0.903900 1.56560i
\(818\) 4.11065i 0.143726i
\(819\) 0.0876859 4.98509i 0.00306399 0.174193i
\(820\) 9.72220i 0.339514i
\(821\) 24.1294 + 41.7934i 0.842123 + 1.45860i 0.888096 + 0.459657i \(0.152028\pi\)
−0.0459732 + 0.998943i \(0.514639\pi\)
\(822\) −1.60527 6.20885i −0.0559903 0.216558i
\(823\) −10.8929 + 18.8670i −0.379702 + 0.657663i −0.991019 0.133723i \(-0.957307\pi\)
0.611317 + 0.791386i \(0.290640\pi\)
\(824\) −8.51528 + 14.7489i −0.296644 + 0.513802i
\(825\) 3.20234 + 4.76917i 0.111491 + 0.166041i
\(826\) −1.83950 3.18611i −0.0640044 0.110859i
\(827\) −39.9482 −1.38914 −0.694568 0.719427i \(-0.744404\pi\)
−0.694568 + 0.719427i \(0.744404\pi\)
\(828\) −3.07133 5.54259i −0.106736 0.192618i
\(829\) 13.3365 0.463197 0.231599 0.972811i \(-0.425604\pi\)
0.231599 + 0.972811i \(0.425604\pi\)
\(830\) −1.40244 + 0.809702i −0.0486796 + 0.0281052i
\(831\) −21.4874 5.96053i −0.745389 0.206769i
\(832\) −1.12883 0.651729i −0.0391351 0.0225946i
\(833\) 9.06871 15.7075i 0.314212 0.544231i
\(834\) −28.6097 + 28.1109i −0.990673 + 0.973401i
\(835\) 2.97731 1.71895i 0.103034 0.0594867i
\(836\) 16.8747 5.93717i 0.583623 0.205341i
\(837\) −4.20780 17.5424i −0.145443 0.606353i
\(838\) 20.0396i 0.692257i
\(839\) −39.3269 + 22.7054i −1.35772 + 0.783878i −0.989316 0.145789i \(-0.953428\pi\)
−0.368401 + 0.929667i \(0.620095\pi\)
\(840\) 1.54780 + 1.57526i 0.0534042 + 0.0543518i
\(841\) 3.18772 5.52129i 0.109921 0.190389i
\(842\) 1.74631 3.02470i 0.0601819 0.104238i
\(843\) 4.68098 16.8747i 0.161221 0.581194i
\(844\) 9.37866 5.41477i 0.322827 0.186384i
\(845\) 11.3010i 0.388766i
\(846\) 11.6292 19.3483i 0.399819 0.665208i
\(847\) −8.78220 10.9355i −0.301760 0.375747i
\(848\) 4.43205 2.55885i 0.152197 0.0878712i
\(849\) −8.63540 33.3999i −0.296366 1.14628i
\(850\) 1.68743 2.92271i 0.0578782 0.100248i
\(851\) 17.5727 + 10.1456i 0.602383 + 0.347786i
\(852\) −4.49752 17.3954i −0.154083 0.595958i
\(853\) −10.0615 + 5.80903i −0.344500 + 0.198897i −0.662260 0.749274i \(-0.730403\pi\)
0.317760 + 0.948171i \(0.397069\pi\)
\(854\) −6.66796 −0.228173
\(855\) −13.8686 8.33566i −0.474297 0.285073i
\(856\) −7.85693 −0.268544
\(857\) 7.32841 + 12.6932i 0.250334 + 0.433591i 0.963618 0.267284i \(-0.0861263\pi\)
−0.713284 + 0.700875i \(0.752793\pi\)
\(858\) −0.506679 7.47063i −0.0172977 0.255043i
\(859\) −12.3209 + 21.3405i −0.420385 + 0.728128i −0.995977 0.0896090i \(-0.971438\pi\)
0.575592 + 0.817737i \(0.304772\pi\)
\(860\) 4.79015 8.29679i 0.163343 0.282918i
\(861\) 15.3150 15.0480i 0.521935 0.512835i
\(862\) 2.91401 + 5.04722i 0.0992517 + 0.171909i
\(863\) 43.3057i 1.47414i −0.675816 0.737071i \(-0.736208\pi\)
0.675816 0.737071i \(-0.263792\pi\)
\(864\) −1.21200 5.05283i −0.0412330 0.171901i
\(865\) 1.86109i 0.0632789i
\(866\) −9.00733 15.6012i −0.306081 0.530149i
\(867\) 6.81060 + 6.93145i 0.231300 + 0.235404i
\(868\) 3.83359 + 2.21333i 0.130121 + 0.0751252i
\(869\) −3.68293 + 19.6490i −0.124935 + 0.666546i
\(870\) 7.93877 + 2.20219i 0.269149 + 0.0746613i
\(871\) −7.04413 + 4.06693i −0.238681 + 0.137803i
\(872\) 4.20234i 0.142309i
\(873\) −29.3795 + 16.2802i −0.994346 + 0.551000i
\(874\) −11.3926 −0.385360
\(875\) 0.637517 + 1.10421i 0.0215520 + 0.0373292i
\(876\) 6.14017 + 23.7489i 0.207457 + 0.802400i
\(877\) −9.65616 5.57499i −0.326065 0.188254i 0.328028 0.944668i \(-0.393616\pi\)
−0.654093 + 0.756414i \(0.726949\pi\)
\(878\) 0.710007 + 0.409923i 0.0239616 + 0.0138342i
\(879\) −31.9735 + 8.26662i −1.07844 + 0.278826i
\(880\) 2.51761 + 2.15908i 0.0848686 + 0.0727827i
\(881\) 4.07884i 0.137419i 0.997637 + 0.0687097i \(0.0218882\pi\)
−0.997637 + 0.0687097i \(0.978112\pi\)
\(882\) 0.283551 16.1204i 0.00954767 0.542801i
\(883\) 16.7916 0.565081 0.282541 0.959255i \(-0.408823\pi\)
0.282541 + 0.959255i \(0.408823\pi\)
\(884\) −3.80962 + 2.19949i −0.128132 + 0.0739768i
\(885\) −1.33590 + 4.81582i −0.0449056 + 0.161882i
\(886\) 20.9407 + 12.0901i 0.703517 + 0.406176i
\(887\) 27.5638 47.7419i 0.925503 1.60302i 0.134752 0.990879i \(-0.456976\pi\)
0.790751 0.612138i \(-0.209690\pi\)
\(888\) 11.6616 + 11.8686i 0.391339 + 0.398283i
\(889\) −12.8466 22.2509i −0.430860 0.746271i
\(890\) −8.53513 −0.286098
\(891\) 20.2166 21.9611i 0.677281 0.735724i
\(892\) 3.90252 0.130666
\(893\) −20.2928 35.1482i −0.679074 1.17619i
\(894\) −10.3834 10.5676i −0.347272 0.353434i
\(895\) −4.33844 + 7.51440i −0.145018 + 0.251179i
\(896\) 1.10421 + 0.637517i 0.0368891 + 0.0212980i
\(897\) −1.27468 + 4.59515i −0.0425604 + 0.153428i
\(898\) −7.65762 + 4.42113i −0.255538 + 0.147535i
\(899\) 16.5137 0.550762
\(900\) 0.0527607 2.99954i 0.00175869 0.0999845i
\(901\) 17.2714i 0.575395i
\(902\) 20.9910 24.4767i 0.698925 0.814985i
\(903\) 20.4838 5.29601i 0.681659 0.176240i
\(904\) 3.80120 + 2.19462i 0.126426 + 0.0729921i
\(905\) 10.5448 + 6.08807i 0.350522 + 0.202374i
\(906\) −5.03568 19.4769i −0.167299 0.647077i
\(907\) 23.9876 + 41.5477i 0.796494 + 1.37957i 0.921886 + 0.387461i \(0.126648\pi\)
−0.125392 + 0.992107i \(0.540019\pi\)
\(908\) −18.6767 −0.619809
\(909\) −34.4408 + 19.0848i −1.14233 + 0.633003i
\(910\) 1.66195i 0.0550932i
\(911\) −12.6947 + 7.32930i −0.420595 + 0.242830i −0.695332 0.718689i \(-0.744743\pi\)
0.274737 + 0.961519i \(0.411409\pi\)
\(912\) −9.00212 2.49716i −0.298090 0.0826893i
\(913\) −5.27902 0.989480i −0.174710 0.0327470i
\(914\) 13.0231 + 7.51886i 0.430764 + 0.248702i
\(915\) 6.34839 + 6.46104i 0.209871 + 0.213595i
\(916\) 7.83446 + 13.5697i 0.258858 + 0.448355i
\(917\) 16.4814i 0.544263i
\(918\) −16.8131 4.98395i −0.554914 0.164495i
\(919\) 4.48996i 0.148110i −0.997254 0.0740551i \(-0.976406\pi\)
0.997254 0.0740551i \(-0.0235941\pi\)
\(920\) −1.05611 1.82924i −0.0348190 0.0603082i
\(921\) 37.1500 36.5023i 1.22413 1.20279i
\(922\) 4.80589 8.32404i 0.158273 0.274138i
\(923\) −6.76072 + 11.7099i −0.222532 + 0.385436i
\(924\) 0.495630 + 7.30773i 0.0163050 + 0.240407i
\(925\) 4.80327 + 8.31951i 0.157931 + 0.273544i
\(926\) −26.6568 −0.875995
\(927\) 43.7906 + 26.3200i 1.43827 + 0.864464i
\(928\) 4.75653 0.156141
\(929\) 43.8038 25.2902i 1.43716 0.829743i 0.439506 0.898240i \(-0.355153\pi\)
0.997651 + 0.0684962i \(0.0218201\pi\)
\(930\) −1.50522 5.82188i −0.0493582 0.190907i
\(931\) −25.1035 14.4935i −0.822732 0.475005i
\(932\) 7.82986 13.5617i 0.256476 0.444229i
\(933\) 10.1762 + 39.3593i 0.333153 + 1.28857i
\(934\) 5.96735 3.44525i 0.195258 0.112732i
\(935\) 10.5586 3.71494i 0.345305 0.121492i
\(936\) −2.01444 + 3.35157i −0.0658441 + 0.109550i
\(937\) 26.2722i 0.858277i −0.903239 0.429138i \(-0.858817\pi\)
0.903239 0.429138i \(-0.141183\pi\)
\(938\) 6.89053 3.97825i 0.224984 0.129894i
\(939\) −5.23102 + 18.8575i −0.170708 + 0.615392i
\(940\) 3.76236 6.51661i 0.122715 0.212548i
\(941\) 24.7419 42.8542i 0.806562 1.39701i −0.108670 0.994078i \(-0.534659\pi\)
0.915232 0.402928i \(-0.132007\pi\)
\(942\) −18.3022 18.6270i −0.596319 0.606900i
\(943\) −17.7842 + 10.2677i −0.579134 + 0.334363i
\(944\) 2.88541i 0.0939121i
\(945\) 4.80672 4.55957i 0.156363 0.148323i
\(946\) 29.9732 10.5457i 0.974513 0.342872i
\(947\) 16.5015 9.52717i 0.536228 0.309592i −0.207321 0.978273i \(-0.566474\pi\)
0.743549 + 0.668681i \(0.233141\pi\)
\(948\) 7.44685 7.31702i 0.241863 0.237646i
\(949\) 9.22997 15.9868i 0.299617 0.518953i
\(950\) −4.67103 2.69682i −0.151548 0.0874964i
\(951\) −5.21876 1.44767i −0.169230 0.0469439i
\(952\) 3.72655 2.15153i 0.120778 0.0697313i
\(953\) −37.2153 −1.20552 −0.602760 0.797922i \(-0.705933\pi\)
−0.602760 + 0.797922i \(0.705933\pi\)
\(954\) −7.44151 13.4291i −0.240928 0.434783i
\(955\) 6.24446 0.202066
\(956\) −4.30431 7.45528i −0.139211 0.241121i
\(957\) 15.2320 + 22.6847i 0.492381 + 0.733293i
\(958\) 6.23709 10.8030i 0.201511 0.349028i
\(959\) 2.36044 4.08840i 0.0762226 0.132021i
\(960\) −0.433558 1.67691i −0.0139930 0.0541220i
\(961\) 9.47333 + 16.4083i 0.305591 + 0.529300i
\(962\) 12.5217i 0.403717i
\(963\) −0.414537 + 23.5671i −0.0133583 + 0.759441i
\(964\) 3.07569i 0.0990612i
\(965\) −11.7756 20.3959i −0.379069 0.656567i
\(966\) 1.24689 4.49495i 0.0401179 0.144623i
\(967\) 51.8749 + 29.9500i 1.66818 + 0.963127i 0.968616 + 0.248562i \(0.0799579\pi\)
0.699569 + 0.714565i \(0.253375\pi\)
\(968\) 1.67672 + 10.8715i 0.0538919 + 0.349422i
\(969\) −22.4889 + 22.0968i −0.722447 + 0.709851i
\(970\) −9.69621 + 5.59811i −0.311327 + 0.179745i
\(971\) 21.4402i 0.688049i −0.938961 0.344024i \(-0.888210\pi\)
0.938961 0.344024i \(-0.111790\pi\)
\(972\) −15.2201 + 3.36884i −0.488184 + 0.108056i
\(973\) −29.5260 −0.946559
\(974\) 10.6773 + 18.4936i 0.342123 + 0.592574i
\(975\) −1.61038 + 1.58230i −0.0515734 + 0.0506743i
\(976\) 4.52899 + 2.61481i 0.144969 + 0.0836982i
\(977\) −39.4138 22.7556i −1.26096 0.728015i −0.287699 0.957721i \(-0.592890\pi\)
−0.973260 + 0.229705i \(0.926224\pi\)
\(978\) 9.35033 33.7074i 0.298991 1.07784i
\(979\) −21.4881 18.4281i −0.686764 0.588963i
\(980\) 5.37429i 0.171675i
\(981\) 12.6051 + 0.221718i 0.402449 + 0.00707892i
\(982\) −20.5604 −0.656108
\(983\) 3.55891 2.05474i 0.113512 0.0655360i −0.442169 0.896932i \(-0.645791\pi\)
0.555681 + 0.831396i \(0.312458\pi\)
\(984\) −16.3033 + 4.21514i −0.519729 + 0.134374i
\(985\) −4.03871 2.33175i −0.128684 0.0742958i
\(986\) 8.02629 13.9019i 0.255609 0.442728i
\(987\) 16.0888 4.15968i 0.512111 0.132404i
\(988\) 3.51519 + 6.08849i 0.111833 + 0.193701i
\(989\) −20.2358 −0.643460
\(990\) 6.60908 7.43775i 0.210050 0.236387i
\(991\) 4.65948 0.148013 0.0740066 0.997258i \(-0.476421\pi\)
0.0740066 + 0.997258i \(0.476421\pi\)
\(992\) −1.73590 3.00666i −0.0551147 0.0954615i
\(993\) −0.0428053 + 0.154311i −0.00135839 + 0.00489690i
\(994\) 6.61329 11.4546i 0.209761 0.363317i
\(995\) −12.4840 7.20764i −0.395769 0.228497i
\(996\) 1.96584 + 2.00072i 0.0622900 + 0.0633952i
\(997\) −7.97296 + 4.60319i −0.252506 + 0.145784i −0.620911 0.783881i \(-0.713237\pi\)
0.368405 + 0.929665i \(0.379904\pi\)
\(998\) −16.9539 −0.536665
\(999\) 36.2155 34.3533i 1.14581 1.08689i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.t.b.131.7 yes 48
3.2 odd 2 2970.2.t.a.2771.7 48
9.2 odd 6 990.2.t.a.461.7 yes 48
9.7 even 3 2970.2.t.b.791.7 48
11.10 odd 2 990.2.t.a.131.7 48
33.32 even 2 2970.2.t.b.2771.7 48
99.43 odd 6 2970.2.t.a.791.7 48
99.65 even 6 inner 990.2.t.b.461.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.7 48 11.10 odd 2
990.2.t.a.461.7 yes 48 9.2 odd 6
990.2.t.b.131.7 yes 48 1.1 even 1 trivial
990.2.t.b.461.7 yes 48 99.65 even 6 inner
2970.2.t.a.791.7 48 99.43 odd 6
2970.2.t.a.2771.7 48 3.2 odd 2
2970.2.t.b.791.7 48 9.7 even 3
2970.2.t.b.2771.7 48 33.32 even 2