Properties

Label 990.2.n.j.361.1
Level $990$
Weight $2$
Character 990.361
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(91,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,-2,2,0,-1,-2,0,-8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.1
Root \(0.581882 - 1.79085i\) of defining polynomial
Character \(\chi\) \(=\) 990.361
Dual form 990.2.n.j.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-3.17926 - 2.30987i) q^{7} +(-0.809017 + 0.587785i) q^{8} -1.00000 q^{10} +(1.42705 - 2.99391i) q^{11} +(-1.80113 + 5.54330i) q^{13} +(-3.17926 + 2.30987i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-0.332405 - 1.02304i) q^{17} +(-1.22713 + 0.891565i) q^{19} +(-0.309017 + 0.951057i) q^{20} +(-2.40640 - 2.28238i) q^{22} -5.07230 q^{23} +(-0.809017 + 0.587785i) q^{25} +(4.71542 + 3.42595i) q^{26} +(1.21437 + 3.73745i) q^{28} +(0.306281 + 0.222526i) q^{29} +(-2.02891 + 6.24434i) q^{31} +1.00000 q^{32} -1.07569 q^{34} +(-1.21437 + 3.73745i) q^{35} +(0.832405 + 0.604778i) q^{37} +(0.468724 + 1.44258i) q^{38} +(0.809017 + 0.587785i) q^{40} +(3.19992 - 2.32488i) q^{41} -0.446609 q^{43} +(-2.91429 + 1.58333i) q^{44} +(-1.56743 + 4.82405i) q^{46} +(-6.14416 + 4.46399i) q^{47} +(2.60910 + 8.02999i) q^{49} +(0.309017 + 0.951057i) q^{50} +(4.71542 - 3.42595i) q^{52} +(-1.93362 + 5.95106i) q^{53} +(-3.28837 - 0.432036i) q^{55} +3.92979 q^{56} +(0.306281 - 0.222526i) q^{58} +(-8.89194 - 6.46038i) q^{59} +(-3.10121 - 9.54455i) q^{61} +(5.31175 + 3.85921i) q^{62} +(0.309017 - 0.951057i) q^{64} +5.82857 q^{65} -5.98422 q^{67} +(-0.332405 + 1.02304i) q^{68} +(3.17926 + 2.30987i) q^{70} +(-1.55548 - 4.78728i) q^{71} +(-2.86236 - 2.07963i) q^{73} +(0.832405 - 0.604778i) q^{74} +1.51682 q^{76} +(-11.4525 + 6.22214i) q^{77} +(0.218201 - 0.671554i) q^{79} +(0.809017 - 0.587785i) q^{80} +(-1.22226 - 3.76173i) q^{82} +(-3.62801 - 11.1659i) q^{83} +(-0.870248 + 0.632272i) q^{85} +(-0.138010 + 0.424750i) q^{86} +(0.605270 + 3.26093i) q^{88} -0.0446858 q^{89} +(18.5306 - 13.4633i) q^{91} +(4.10358 + 2.98142i) q^{92} +(2.34686 + 7.22289i) q^{94} +(1.22713 + 0.891565i) q^{95} +(-5.05466 + 15.5567i) q^{97} +8.44323 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - q^{7} - 2 q^{8} - 8 q^{10} - 2 q^{11} + q^{13} - q^{14} - 2 q^{16} + 12 q^{17} - 7 q^{19} + 2 q^{20} + 8 q^{22} - 26 q^{23} - 2 q^{25} + 6 q^{26} + 4 q^{28} + 22 q^{29}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) 0 0
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) −3.17926 2.30987i −1.20165 0.873049i −0.207203 0.978298i \(-0.566436\pi\)
−0.994446 + 0.105249i \(0.966436\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.42705 2.99391i 0.430272 0.902699i
\(12\) 0 0
\(13\) −1.80113 + 5.54330i −0.499543 + 1.53744i 0.310212 + 0.950668i \(0.399600\pi\)
−0.809755 + 0.586768i \(0.800400\pi\)
\(14\) −3.17926 + 2.30987i −0.849694 + 0.617339i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −0.332405 1.02304i −0.0806201 0.248123i 0.902620 0.430438i \(-0.141641\pi\)
−0.983240 + 0.182315i \(0.941641\pi\)
\(18\) 0 0
\(19\) −1.22713 + 0.891565i −0.281524 + 0.204539i −0.719582 0.694408i \(-0.755666\pi\)
0.438058 + 0.898947i \(0.355666\pi\)
\(20\) −0.309017 + 0.951057i −0.0690983 + 0.212663i
\(21\) 0 0
\(22\) −2.40640 2.28238i −0.513046 0.486604i
\(23\) −5.07230 −1.05765 −0.528824 0.848731i \(-0.677367\pi\)
−0.528824 + 0.848731i \(0.677367\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 4.71542 + 3.42595i 0.924769 + 0.671884i
\(27\) 0 0
\(28\) 1.21437 + 3.73745i 0.229495 + 0.706312i
\(29\) 0.306281 + 0.222526i 0.0568749 + 0.0413221i 0.615859 0.787856i \(-0.288809\pi\)
−0.558985 + 0.829178i \(0.688809\pi\)
\(30\) 0 0
\(31\) −2.02891 + 6.24434i −0.364403 + 1.12152i 0.585951 + 0.810346i \(0.300721\pi\)
−0.950354 + 0.311170i \(0.899279\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.07569 −0.184478
\(35\) −1.21437 + 3.73745i −0.205266 + 0.631744i
\(36\) 0 0
\(37\) 0.832405 + 0.604778i 0.136847 + 0.0994248i 0.654103 0.756406i \(-0.273046\pi\)
−0.517256 + 0.855831i \(0.673046\pi\)
\(38\) 0.468724 + 1.44258i 0.0760370 + 0.234018i
\(39\) 0 0
\(40\) 0.809017 + 0.587785i 0.127917 + 0.0929370i
\(41\) 3.19992 2.32488i 0.499743 0.363085i −0.309176 0.951005i \(-0.600053\pi\)
0.808919 + 0.587920i \(0.200053\pi\)
\(42\) 0 0
\(43\) −0.446609 −0.0681072 −0.0340536 0.999420i \(-0.510842\pi\)
−0.0340536 + 0.999420i \(0.510842\pi\)
\(44\) −2.91429 + 1.58333i −0.439345 + 0.238696i
\(45\) 0 0
\(46\) −1.56743 + 4.82405i −0.231105 + 0.711267i
\(47\) −6.14416 + 4.46399i −0.896218 + 0.651140i −0.937492 0.348008i \(-0.886858\pi\)
0.0412741 + 0.999148i \(0.486858\pi\)
\(48\) 0 0
\(49\) 2.60910 + 8.02999i 0.372729 + 1.14714i
\(50\) 0.309017 + 0.951057i 0.0437016 + 0.134500i
\(51\) 0 0
\(52\) 4.71542 3.42595i 0.653911 0.475094i
\(53\) −1.93362 + 5.95106i −0.265603 + 0.817441i 0.725951 + 0.687746i \(0.241400\pi\)
−0.991554 + 0.129695i \(0.958600\pi\)
\(54\) 0 0
\(55\) −3.28837 0.432036i −0.443403 0.0582557i
\(56\) 3.92979 0.525140
\(57\) 0 0
\(58\) 0.306281 0.222526i 0.0402166 0.0292191i
\(59\) −8.89194 6.46038i −1.15763 0.841069i −0.168156 0.985760i \(-0.553781\pi\)
−0.989477 + 0.144691i \(0.953781\pi\)
\(60\) 0 0
\(61\) −3.10121 9.54455i −0.397070 1.22205i −0.927338 0.374225i \(-0.877909\pi\)
0.530269 0.847830i \(-0.322091\pi\)
\(62\) 5.31175 + 3.85921i 0.674593 + 0.490121i
\(63\) 0 0
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 5.82857 0.722946
\(66\) 0 0
\(67\) −5.98422 −0.731089 −0.365545 0.930794i \(-0.619117\pi\)
−0.365545 + 0.930794i \(0.619117\pi\)
\(68\) −0.332405 + 1.02304i −0.0403100 + 0.124062i
\(69\) 0 0
\(70\) 3.17926 + 2.30987i 0.379995 + 0.276082i
\(71\) −1.55548 4.78728i −0.184602 0.568146i 0.815340 0.578983i \(-0.196550\pi\)
−0.999941 + 0.0108375i \(0.996550\pi\)
\(72\) 0 0
\(73\) −2.86236 2.07963i −0.335014 0.243402i 0.407541 0.913187i \(-0.366386\pi\)
−0.742555 + 0.669785i \(0.766386\pi\)
\(74\) 0.832405 0.604778i 0.0967651 0.0703040i
\(75\) 0 0
\(76\) 1.51682 0.173991
\(77\) −11.4525 + 6.22214i −1.30514 + 0.709079i
\(78\) 0 0
\(79\) 0.218201 0.671554i 0.0245495 0.0755557i −0.938031 0.346551i \(-0.887353\pi\)
0.962581 + 0.270995i \(0.0873528\pi\)
\(80\) 0.809017 0.587785i 0.0904508 0.0657164i
\(81\) 0 0
\(82\) −1.22226 3.76173i −0.134976 0.415413i
\(83\) −3.62801 11.1659i −0.398226 1.22561i −0.926420 0.376490i \(-0.877131\pi\)
0.528194 0.849123i \(-0.322869\pi\)
\(84\) 0 0
\(85\) −0.870248 + 0.632272i −0.0943916 + 0.0685795i
\(86\) −0.138010 + 0.424750i −0.0148820 + 0.0458020i
\(87\) 0 0
\(88\) 0.605270 + 3.26093i 0.0645220 + 0.347616i
\(89\) −0.0446858 −0.00473668 −0.00236834 0.999997i \(-0.500754\pi\)
−0.00236834 + 0.999997i \(0.500754\pi\)
\(90\) 0 0
\(91\) 18.5306 13.4633i 1.94253 1.41133i
\(92\) 4.10358 + 2.98142i 0.427828 + 0.310835i
\(93\) 0 0
\(94\) 2.34686 + 7.22289i 0.242060 + 0.744984i
\(95\) 1.22713 + 0.891565i 0.125901 + 0.0914727i
\(96\) 0 0
\(97\) −5.05466 + 15.5567i −0.513223 + 1.57954i 0.273268 + 0.961938i \(0.411895\pi\)
−0.786491 + 0.617601i \(0.788105\pi\)
\(98\) 8.44323 0.852895
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.00000 + 3.07768i −0.0995037 + 0.306241i −0.988401 0.151865i \(-0.951472\pi\)
0.888897 + 0.458106i \(0.151472\pi\)
\(102\) 0 0
\(103\) 9.26324 + 6.73014i 0.912734 + 0.663140i 0.941705 0.336440i \(-0.109223\pi\)
−0.0289709 + 0.999580i \(0.509223\pi\)
\(104\) −1.80113 5.54330i −0.176615 0.543566i
\(105\) 0 0
\(106\) 5.06228 + 3.67796i 0.491692 + 0.357235i
\(107\) 5.83345 4.23825i 0.563941 0.409727i −0.268958 0.963152i \(-0.586679\pi\)
0.832899 + 0.553425i \(0.186679\pi\)
\(108\) 0 0
\(109\) 1.56360 0.149766 0.0748828 0.997192i \(-0.476142\pi\)
0.0748828 + 0.997192i \(0.476142\pi\)
\(110\) −1.42705 + 2.99391i −0.136064 + 0.285459i
\(111\) 0 0
\(112\) 1.21437 3.73745i 0.114747 0.353156i
\(113\) 5.05954 3.67597i 0.475961 0.345806i −0.323799 0.946126i \(-0.604960\pi\)
0.799760 + 0.600320i \(0.204960\pi\)
\(114\) 0 0
\(115\) 1.56743 + 4.82405i 0.146163 + 0.449845i
\(116\) −0.116989 0.360055i −0.0108621 0.0334302i
\(117\) 0 0
\(118\) −8.89194 + 6.46038i −0.818570 + 0.594726i
\(119\) −1.30628 + 4.02032i −0.119747 + 0.368542i
\(120\) 0 0
\(121\) −6.92705 8.54494i −0.629732 0.776813i
\(122\) −10.0357 −0.908593
\(123\) 0 0
\(124\) 5.31175 3.85921i 0.477010 0.346568i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) −5.86577 18.0530i −0.520503 1.60194i −0.773041 0.634357i \(-0.781265\pi\)
0.252538 0.967587i \(-0.418735\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 0 0
\(130\) 1.80113 5.54330i 0.157969 0.486180i
\(131\) 6.34749 0.554582 0.277291 0.960786i \(-0.410563\pi\)
0.277291 + 0.960786i \(0.410563\pi\)
\(132\) 0 0
\(133\) 5.96079 0.516866
\(134\) −1.84923 + 5.69133i −0.159749 + 0.491656i
\(135\) 0 0
\(136\) 0.870248 + 0.632272i 0.0746231 + 0.0542169i
\(137\) 1.44767 + 4.45548i 0.123683 + 0.380657i 0.993659 0.112437i \(-0.0358657\pi\)
−0.869976 + 0.493094i \(0.835866\pi\)
\(138\) 0 0
\(139\) −6.79392 4.93607i −0.576252 0.418672i 0.261119 0.965307i \(-0.415909\pi\)
−0.837371 + 0.546635i \(0.815909\pi\)
\(140\) 3.17926 2.30987i 0.268697 0.195220i
\(141\) 0 0
\(142\) −5.03364 −0.422414
\(143\) 14.0259 + 13.3030i 1.17290 + 1.11245i
\(144\) 0 0
\(145\) 0.116989 0.360055i 0.00971540 0.0299009i
\(146\) −2.86236 + 2.07963i −0.236891 + 0.172111i
\(147\) 0 0
\(148\) −0.317950 0.978551i −0.0261354 0.0804364i
\(149\) −7.13695 21.9653i −0.584681 1.79946i −0.600546 0.799590i \(-0.705050\pi\)
0.0158647 0.999874i \(-0.494950\pi\)
\(150\) 0 0
\(151\) 4.67028 3.39316i 0.380062 0.276131i −0.381309 0.924448i \(-0.624527\pi\)
0.761371 + 0.648316i \(0.224527\pi\)
\(152\) 0.468724 1.44258i 0.0380185 0.117009i
\(153\) 0 0
\(154\) 2.37858 + 12.8148i 0.191672 + 1.03264i
\(155\) 6.56569 0.527369
\(156\) 0 0
\(157\) −8.73047 + 6.34306i −0.696767 + 0.506231i −0.878878 0.477047i \(-0.841707\pi\)
0.182111 + 0.983278i \(0.441707\pi\)
\(158\) −0.571258 0.415043i −0.0454468 0.0330191i
\(159\) 0 0
\(160\) −0.309017 0.951057i −0.0244299 0.0751876i
\(161\) 16.1262 + 11.7164i 1.27092 + 0.923379i
\(162\) 0 0
\(163\) 5.14311 15.8289i 0.402840 1.23981i −0.519846 0.854260i \(-0.674011\pi\)
0.922686 0.385553i \(-0.125989\pi\)
\(164\) −3.95531 −0.308858
\(165\) 0 0
\(166\) −11.7405 −0.911239
\(167\) 2.67439 8.23092i 0.206950 0.636928i −0.792677 0.609642i \(-0.791313\pi\)
0.999628 0.0272864i \(-0.00868662\pi\)
\(168\) 0 0
\(169\) −16.9669 12.3272i −1.30515 0.948246i
\(170\) 0.332405 + 1.02304i 0.0254943 + 0.0784634i
\(171\) 0 0
\(172\) 0.361314 + 0.262510i 0.0275499 + 0.0200162i
\(173\) −10.3196 + 7.49762i −0.784584 + 0.570034i −0.906351 0.422525i \(-0.861144\pi\)
0.121767 + 0.992559i \(0.461144\pi\)
\(174\) 0 0
\(175\) 3.92979 0.297064
\(176\) 3.28837 + 0.432036i 0.247870 + 0.0325659i
\(177\) 0 0
\(178\) −0.0138087 + 0.0424987i −0.00103500 + 0.00318541i
\(179\) 15.2533 11.0822i 1.14008 0.828320i 0.152953 0.988233i \(-0.451122\pi\)
0.987131 + 0.159914i \(0.0511216\pi\)
\(180\) 0 0
\(181\) 7.34066 + 22.5922i 0.545627 + 1.67927i 0.719494 + 0.694498i \(0.244374\pi\)
−0.173867 + 0.984769i \(0.555626\pi\)
\(182\) −7.07805 21.7840i −0.524660 1.61474i
\(183\) 0 0
\(184\) 4.10358 2.98142i 0.302520 0.219794i
\(185\) 0.317950 0.978551i 0.0233762 0.0719445i
\(186\) 0 0
\(187\) −3.53725 0.464734i −0.258669 0.0339847i
\(188\) 7.59460 0.553893
\(189\) 0 0
\(190\) 1.22713 0.891565i 0.0890257 0.0646810i
\(191\) −5.97109 4.33825i −0.432053 0.313905i 0.350416 0.936594i \(-0.386040\pi\)
−0.782469 + 0.622689i \(0.786040\pi\)
\(192\) 0 0
\(193\) 2.14590 + 6.60440i 0.154465 + 0.475395i 0.998106 0.0615126i \(-0.0195924\pi\)
−0.843641 + 0.536907i \(0.819592\pi\)
\(194\) 13.2333 + 9.61454i 0.950094 + 0.690284i
\(195\) 0 0
\(196\) 2.60910 8.02999i 0.186364 0.573570i
\(197\) −2.58485 −0.184163 −0.0920813 0.995751i \(-0.529352\pi\)
−0.0920813 + 0.995751i \(0.529352\pi\)
\(198\) 0 0
\(199\) −4.44587 −0.315159 −0.157580 0.987506i \(-0.550369\pi\)
−0.157580 + 0.987506i \(0.550369\pi\)
\(200\) 0.309017 0.951057i 0.0218508 0.0672499i
\(201\) 0 0
\(202\) 2.61803 + 1.90211i 0.184204 + 0.133832i
\(203\) −0.459741 1.41494i −0.0322675 0.0993092i
\(204\) 0 0
\(205\) −3.19992 2.32488i −0.223492 0.162376i
\(206\) 9.26324 6.73014i 0.645400 0.468911i
\(207\) 0 0
\(208\) −5.82857 −0.404139
\(209\) 0.918087 + 4.94625i 0.0635054 + 0.342139i
\(210\) 0 0
\(211\) 3.39194 10.4393i 0.233511 0.718673i −0.763804 0.645448i \(-0.776671\pi\)
0.997315 0.0732254i \(-0.0233292\pi\)
\(212\) 5.06228 3.67796i 0.347679 0.252603i
\(213\) 0 0
\(214\) −2.22818 6.85763i −0.152315 0.468778i
\(215\) 0.138010 + 0.424750i 0.00941219 + 0.0289677i
\(216\) 0 0
\(217\) 20.8741 15.1659i 1.41702 1.02953i
\(218\) 0.483178 1.48707i 0.0327250 0.100717i
\(219\) 0 0
\(220\) 2.40640 + 2.28238i 0.162239 + 0.153878i
\(221\) 6.26971 0.421746
\(222\) 0 0
\(223\) 21.6246 15.7112i 1.44809 1.05210i 0.461816 0.886976i \(-0.347198\pi\)
0.986273 0.165123i \(-0.0528020\pi\)
\(224\) −3.17926 2.30987i −0.212424 0.154335i
\(225\) 0 0
\(226\) −1.93257 5.94785i −0.128553 0.395645i
\(227\) −14.4359 10.4883i −0.958147 0.696134i −0.00542711 0.999985i \(-0.501728\pi\)
−0.952720 + 0.303851i \(0.901728\pi\)
\(228\) 0 0
\(229\) 4.83833 14.8908i 0.319726 0.984014i −0.654040 0.756460i \(-0.726927\pi\)
0.973765 0.227554i \(-0.0730728\pi\)
\(230\) 5.07230 0.334458
\(231\) 0 0
\(232\) −0.378584 −0.0248553
\(233\) 5.16692 15.9021i 0.338496 1.04178i −0.626478 0.779439i \(-0.715504\pi\)
0.964974 0.262345i \(-0.0844958\pi\)
\(234\) 0 0
\(235\) 6.14416 + 4.46399i 0.400801 + 0.291199i
\(236\) 3.39642 + 10.4531i 0.221088 + 0.680439i
\(237\) 0 0
\(238\) 3.41989 + 2.48469i 0.221678 + 0.161059i
\(239\) −15.4900 + 11.2541i −1.00196 + 0.727970i −0.962509 0.271251i \(-0.912563\pi\)
−0.0394564 + 0.999221i \(0.512563\pi\)
\(240\) 0 0
\(241\) −6.59386 −0.424748 −0.212374 0.977188i \(-0.568119\pi\)
−0.212374 + 0.977188i \(0.568119\pi\)
\(242\) −10.2673 + 3.94749i −0.660007 + 0.253754i
\(243\) 0 0
\(244\) −3.10121 + 9.54455i −0.198535 + 0.611027i
\(245\) 6.83071 4.96280i 0.436398 0.317062i
\(246\) 0 0
\(247\) −2.73199 8.40820i −0.173832 0.535001i
\(248\) −2.02891 6.24434i −0.128836 0.396516i
\(249\) 0 0
\(250\) 0.809017 0.587785i 0.0511667 0.0371748i
\(251\) −6.30583 + 19.4074i −0.398021 + 1.22498i 0.528563 + 0.848894i \(0.322731\pi\)
−0.926584 + 0.376088i \(0.877269\pi\)
\(252\) 0 0
\(253\) −7.23844 + 15.1860i −0.455077 + 0.954738i
\(254\) −18.9820 −1.19104
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −21.0516 15.2948i −1.31316 0.954066i −0.999990 0.00436917i \(-0.998609\pi\)
−0.313169 0.949697i \(-0.601391\pi\)
\(258\) 0 0
\(259\) −1.24948 3.84550i −0.0776388 0.238948i
\(260\) −4.71542 3.42595i −0.292438 0.212468i
\(261\) 0 0
\(262\) 1.96148 6.03682i 0.121181 0.372956i
\(263\) −21.5368 −1.32801 −0.664007 0.747726i \(-0.731146\pi\)
−0.664007 + 0.747726i \(0.731146\pi\)
\(264\) 0 0
\(265\) 6.25732 0.384384
\(266\) 1.84198 5.66904i 0.112939 0.347591i
\(267\) 0 0
\(268\) 4.84134 + 3.51744i 0.295732 + 0.214862i
\(269\) 5.16112 + 15.8843i 0.314679 + 0.968483i 0.975886 + 0.218279i \(0.0700444\pi\)
−0.661207 + 0.750203i \(0.729956\pi\)
\(270\) 0 0
\(271\) 10.0233 + 7.28238i 0.608874 + 0.442373i 0.849018 0.528364i \(-0.177194\pi\)
−0.240143 + 0.970737i \(0.577194\pi\)
\(272\) 0.870248 0.632272i 0.0527665 0.0383371i
\(273\) 0 0
\(274\) 4.68477 0.283017
\(275\) 0.605270 + 3.26093i 0.0364992 + 0.196641i
\(276\) 0 0
\(277\) −6.63207 + 20.4114i −0.398483 + 1.22640i 0.527734 + 0.849410i \(0.323042\pi\)
−0.926216 + 0.376993i \(0.876958\pi\)
\(278\) −6.79392 + 4.93607i −0.407472 + 0.296046i
\(279\) 0 0
\(280\) −1.21437 3.73745i −0.0725725 0.223355i
\(281\) −0.0891435 0.274356i −0.00531786 0.0163667i 0.948362 0.317189i \(-0.102739\pi\)
−0.953680 + 0.300822i \(0.902739\pi\)
\(282\) 0 0
\(283\) −21.8829 + 15.8989i −1.30080 + 0.945090i −0.999963 0.00858475i \(-0.997267\pi\)
−0.300841 + 0.953674i \(0.597267\pi\)
\(284\) −1.55548 + 4.78728i −0.0923008 + 0.284073i
\(285\) 0 0
\(286\) 16.9861 9.22855i 1.00441 0.545695i
\(287\) −15.5435 −0.917506
\(288\) 0 0
\(289\) 12.8172 9.31222i 0.753952 0.547778i
\(290\) −0.306281 0.222526i −0.0179854 0.0130672i
\(291\) 0 0
\(292\) 1.09332 + 3.36491i 0.0639819 + 0.196916i
\(293\) −9.88747 7.18367i −0.577632 0.419674i 0.260238 0.965545i \(-0.416199\pi\)
−0.837870 + 0.545870i \(0.816199\pi\)
\(294\) 0 0
\(295\) −3.39642 + 10.4531i −0.197747 + 0.608603i
\(296\) −1.02891 −0.0598041
\(297\) 0 0
\(298\) −23.0956 −1.33789
\(299\) 9.13587 28.1173i 0.528341 1.62607i
\(300\) 0 0
\(301\) 1.41989 + 1.03161i 0.0818410 + 0.0594609i
\(302\) −1.78389 5.49025i −0.102651 0.315928i
\(303\) 0 0
\(304\) −1.22713 0.891565i −0.0703810 0.0511348i
\(305\) −8.11908 + 5.89886i −0.464897 + 0.337768i
\(306\) 0 0
\(307\) −28.6957 −1.63775 −0.818875 0.573971i \(-0.805402\pi\)
−0.818875 + 0.573971i \(0.805402\pi\)
\(308\) 12.9226 + 1.69781i 0.736332 + 0.0967416i
\(309\) 0 0
\(310\) 2.02891 6.24434i 0.115234 0.354655i
\(311\) 21.6936 15.7613i 1.23013 0.893744i 0.233232 0.972421i \(-0.425070\pi\)
0.996900 + 0.0786775i \(0.0250697\pi\)
\(312\) 0 0
\(313\) −7.92965 24.4049i −0.448210 1.37945i −0.878925 0.476961i \(-0.841738\pi\)
0.430715 0.902488i \(-0.358262\pi\)
\(314\) 3.33474 + 10.2633i 0.188190 + 0.579190i
\(315\) 0 0
\(316\) −0.571258 + 0.415043i −0.0321358 + 0.0233480i
\(317\) −4.45573 + 13.7133i −0.250259 + 0.770218i 0.744468 + 0.667658i \(0.232703\pi\)
−0.994727 + 0.102559i \(0.967297\pi\)
\(318\) 0 0
\(319\) 1.10330 0.599423i 0.0617731 0.0335612i
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 16.1262 11.7164i 0.898678 0.652928i
\(323\) 1.32001 + 0.959044i 0.0734473 + 0.0533626i
\(324\) 0 0
\(325\) −1.80113 5.54330i −0.0999086 0.307487i
\(326\) −13.4648 9.78278i −0.745749 0.541818i
\(327\) 0 0
\(328\) −1.22226 + 3.76173i −0.0674880 + 0.207707i
\(329\) 29.8451 1.64542
\(330\) 0 0
\(331\) 19.0365 1.04634 0.523171 0.852228i \(-0.324749\pi\)
0.523171 + 0.852228i \(0.324749\pi\)
\(332\) −3.62801 + 11.1659i −0.199113 + 0.612807i
\(333\) 0 0
\(334\) −7.00164 5.08699i −0.383113 0.278348i
\(335\) 1.84923 + 5.69133i 0.101034 + 0.310951i
\(336\) 0 0
\(337\) 2.45390 + 1.78286i 0.133672 + 0.0971187i 0.652612 0.757692i \(-0.273673\pi\)
−0.518940 + 0.854811i \(0.673673\pi\)
\(338\) −16.9669 + 12.3272i −0.922880 + 0.670511i
\(339\) 0 0
\(340\) 1.07569 0.0583372
\(341\) 15.7997 + 14.9854i 0.855600 + 0.811503i
\(342\) 0 0
\(343\) 1.75261 5.39399i 0.0946322 0.291248i
\(344\) 0.361314 0.262510i 0.0194808 0.0141536i
\(345\) 0 0
\(346\) 3.94173 + 12.1314i 0.211909 + 0.652189i
\(347\) 1.08056 + 3.32562i 0.0580075 + 0.178529i 0.975862 0.218388i \(-0.0700800\pi\)
−0.917854 + 0.396917i \(0.870080\pi\)
\(348\) 0 0
\(349\) 13.7784 10.0106i 0.737542 0.535855i −0.154399 0.988009i \(-0.549344\pi\)
0.891940 + 0.452153i \(0.149344\pi\)
\(350\) 1.21437 3.73745i 0.0649109 0.199775i
\(351\) 0 0
\(352\) 1.42705 2.99391i 0.0760621 0.159576i
\(353\) −17.3965 −0.925920 −0.462960 0.886379i \(-0.653213\pi\)
−0.462960 + 0.886379i \(0.653213\pi\)
\(354\) 0 0
\(355\) −4.07230 + 2.95870i −0.216135 + 0.157032i
\(356\) 0.0361516 + 0.0262656i 0.00191603 + 0.00139208i
\(357\) 0 0
\(358\) −5.82624 17.9313i −0.307926 0.947700i
\(359\) 0.789459 + 0.573576i 0.0416661 + 0.0302722i 0.608423 0.793613i \(-0.291802\pi\)
−0.566757 + 0.823885i \(0.691802\pi\)
\(360\) 0 0
\(361\) −5.16035 + 15.8819i −0.271598 + 0.835891i
\(362\) 23.7549 1.24853
\(363\) 0 0
\(364\) −22.9051 −1.20055
\(365\) −1.09332 + 3.36491i −0.0572272 + 0.176127i
\(366\) 0 0
\(367\) 28.1390 + 20.4442i 1.46885 + 1.06718i 0.980946 + 0.194279i \(0.0622367\pi\)
0.487899 + 0.872900i \(0.337763\pi\)
\(368\) −1.56743 4.82405i −0.0817078 0.251471i
\(369\) 0 0
\(370\) −0.832405 0.604778i −0.0432747 0.0314409i
\(371\) 19.8937 14.4536i 1.03283 0.750393i
\(372\) 0 0
\(373\) 29.2364 1.51380 0.756902 0.653528i \(-0.226712\pi\)
0.756902 + 0.653528i \(0.226712\pi\)
\(374\) −1.53506 + 3.22051i −0.0793759 + 0.166529i
\(375\) 0 0
\(376\) 2.34686 7.22289i 0.121030 0.372492i
\(377\) −1.78518 + 1.29701i −0.0919415 + 0.0667994i
\(378\) 0 0
\(379\) 3.90786 + 12.0272i 0.200733 + 0.617794i 0.999862 + 0.0166333i \(0.00529479\pi\)
−0.799128 + 0.601161i \(0.794705\pi\)
\(380\) −0.468724 1.44258i −0.0240450 0.0740030i
\(381\) 0 0
\(382\) −5.97109 + 4.33825i −0.305508 + 0.221964i
\(383\) 0.468306 1.44130i 0.0239293 0.0736468i −0.938379 0.345609i \(-0.887672\pi\)
0.962308 + 0.271962i \(0.0876725\pi\)
\(384\) 0 0
\(385\) 9.45664 + 8.96925i 0.481955 + 0.457116i
\(386\) 6.94427 0.353454
\(387\) 0 0
\(388\) 13.2333 9.61454i 0.671818 0.488104i
\(389\) 5.53897 + 4.02429i 0.280837 + 0.204040i 0.719282 0.694718i \(-0.244471\pi\)
−0.438446 + 0.898758i \(0.644471\pi\)
\(390\) 0 0
\(391\) 1.68606 + 5.18916i 0.0852677 + 0.262427i
\(392\) −6.83071 4.96280i −0.345003 0.250659i
\(393\) 0 0
\(394\) −0.798762 + 2.45834i −0.0402410 + 0.123849i
\(395\) −0.706114 −0.0355284
\(396\) 0 0
\(397\) −4.56861 −0.229292 −0.114646 0.993406i \(-0.536573\pi\)
−0.114646 + 0.993406i \(0.536573\pi\)
\(398\) −1.37385 + 4.22827i −0.0688649 + 0.211944i
\(399\) 0 0
\(400\) −0.809017 0.587785i −0.0404508 0.0293893i
\(401\) 0.155249 + 0.477808i 0.00775278 + 0.0238606i 0.954858 0.297062i \(-0.0960069\pi\)
−0.947105 + 0.320923i \(0.896007\pi\)
\(402\) 0 0
\(403\) −30.9600 22.4937i −1.54222 1.12049i
\(404\) 2.61803 1.90211i 0.130252 0.0946337i
\(405\) 0 0
\(406\) −1.48775 −0.0738360
\(407\) 2.99854 1.62910i 0.148632 0.0807515i
\(408\) 0 0
\(409\) 4.07979 12.5563i 0.201733 0.620870i −0.798099 0.602526i \(-0.794161\pi\)
0.999832 0.0183432i \(-0.00583915\pi\)
\(410\) −3.19992 + 2.32488i −0.158033 + 0.114817i
\(411\) 0 0
\(412\) −3.53824 10.8896i −0.174317 0.536492i
\(413\) 13.3472 + 41.0785i 0.656773 + 2.02134i
\(414\) 0 0
\(415\) −9.49826 + 6.90089i −0.466251 + 0.338751i
\(416\) −1.80113 + 5.54330i −0.0883076 + 0.271783i
\(417\) 0 0
\(418\) 4.98786 + 0.655321i 0.243964 + 0.0320528i
\(419\) −12.6691 −0.618925 −0.309463 0.950912i \(-0.600149\pi\)
−0.309463 + 0.950912i \(0.600149\pi\)
\(420\) 0 0
\(421\) −15.4576 + 11.2306i −0.753355 + 0.547344i −0.896865 0.442304i \(-0.854161\pi\)
0.143510 + 0.989649i \(0.454161\pi\)
\(422\) −8.88023 6.45186i −0.432283 0.314072i
\(423\) 0 0
\(424\) −1.93362 5.95106i −0.0939048 0.289009i
\(425\) 0.870248 + 0.632272i 0.0422132 + 0.0306697i
\(426\) 0 0
\(427\) −12.1871 + 37.5080i −0.589775 + 1.81514i
\(428\) −7.21054 −0.348535
\(429\) 0 0
\(430\) 0.446609 0.0215374
\(431\) −4.12720 + 12.7022i −0.198800 + 0.611844i 0.801111 + 0.598516i \(0.204243\pi\)
−0.999911 + 0.0133279i \(0.995757\pi\)
\(432\) 0 0
\(433\) 6.96927 + 5.06347i 0.334922 + 0.243335i 0.742516 0.669828i \(-0.233632\pi\)
−0.407594 + 0.913163i \(0.633632\pi\)
\(434\) −7.97318 24.5389i −0.382725 1.17791i
\(435\) 0 0
\(436\) −1.26498 0.919060i −0.0605814 0.0440150i
\(437\) 6.22440 4.52229i 0.297753 0.216330i
\(438\) 0 0
\(439\) −11.3874 −0.543493 −0.271746 0.962369i \(-0.587601\pi\)
−0.271746 + 0.962369i \(0.587601\pi\)
\(440\) 2.91429 1.58333i 0.138933 0.0754822i
\(441\) 0 0
\(442\) 1.93745 5.96285i 0.0921550 0.283624i
\(443\) 22.5127 16.3565i 1.06961 0.777119i 0.0937702 0.995594i \(-0.470108\pi\)
0.975843 + 0.218475i \(0.0701081\pi\)
\(444\) 0 0
\(445\) 0.0138087 + 0.0424987i 0.000654593 + 0.00201463i
\(446\) −8.25986 25.4212i −0.391115 1.20373i
\(447\) 0 0
\(448\) −3.17926 + 2.30987i −0.150206 + 0.109131i
\(449\) −6.64270 + 20.4441i −0.313488 + 0.964817i 0.662884 + 0.748722i \(0.269332\pi\)
−0.976372 + 0.216095i \(0.930668\pi\)
\(450\) 0 0
\(451\) −2.39403 12.8980i −0.112731 0.607343i
\(452\) −6.25393 −0.294160
\(453\) 0 0
\(454\) −14.4359 + 10.4883i −0.677512 + 0.492241i
\(455\) −18.5306 13.4633i −0.868727 0.631167i
\(456\) 0 0
\(457\) 4.29411 + 13.2159i 0.200870 + 0.618215i 0.999858 + 0.0168673i \(0.00536929\pi\)
−0.798988 + 0.601348i \(0.794631\pi\)
\(458\) −12.6669 9.20304i −0.591885 0.430030i
\(459\) 0 0
\(460\) 1.56743 4.82405i 0.0730817 0.224922i
\(461\) 14.9375 0.695709 0.347855 0.937549i \(-0.386910\pi\)
0.347855 + 0.937549i \(0.386910\pi\)
\(462\) 0 0
\(463\) −38.5141 −1.78990 −0.894951 0.446165i \(-0.852789\pi\)
−0.894951 + 0.446165i \(0.852789\pi\)
\(464\) −0.116989 + 0.360055i −0.00543107 + 0.0167151i
\(465\) 0 0
\(466\) −13.5272 9.82806i −0.626634 0.455276i
\(467\) 4.86514 + 14.9734i 0.225132 + 0.692885i 0.998278 + 0.0586572i \(0.0186819\pi\)
−0.773146 + 0.634228i \(0.781318\pi\)
\(468\) 0 0
\(469\) 19.0254 + 13.8228i 0.878513 + 0.638277i
\(470\) 6.14416 4.46399i 0.283409 0.205909i
\(471\) 0 0
\(472\) 10.9910 0.505904
\(473\) −0.637334 + 1.33711i −0.0293046 + 0.0614803i
\(474\) 0 0
\(475\) 0.468724 1.44258i 0.0215065 0.0661903i
\(476\) 3.41989 2.48469i 0.156750 0.113886i
\(477\) 0 0
\(478\) 5.91665 + 18.2096i 0.270621 + 0.832887i
\(479\) 5.01996 + 15.4498i 0.229368 + 0.705921i 0.997819 + 0.0660126i \(0.0210278\pi\)
−0.768451 + 0.639909i \(0.778972\pi\)
\(480\) 0 0
\(481\) −4.85173 + 3.52499i −0.221220 + 0.160726i
\(482\) −2.03761 + 6.27113i −0.0928108 + 0.285642i
\(483\) 0 0
\(484\) 0.581513 + 10.9846i 0.0264324 + 0.499301i
\(485\) 16.3572 0.742744
\(486\) 0 0
\(487\) 8.51344 6.18538i 0.385781 0.280286i −0.377944 0.925829i \(-0.623369\pi\)
0.763724 + 0.645542i \(0.223369\pi\)
\(488\) 8.11908 + 5.89886i 0.367533 + 0.267029i
\(489\) 0 0
\(490\) −2.60910 8.02999i −0.117867 0.362758i
\(491\) −3.44984 2.50646i −0.155689 0.113115i 0.507213 0.861821i \(-0.330676\pi\)
−0.662903 + 0.748706i \(0.730676\pi\)
\(492\) 0 0
\(493\) 0.125843 0.387306i 0.00566769 0.0174434i
\(494\) −8.84091 −0.397771
\(495\) 0 0
\(496\) −6.56569 −0.294808
\(497\) −6.11271 + 18.8130i −0.274193 + 0.843878i
\(498\) 0 0
\(499\) −0.884781 0.642831i −0.0396082 0.0287771i 0.567805 0.823163i \(-0.307793\pi\)
−0.607413 + 0.794386i \(0.707793\pi\)
\(500\) −0.309017 0.951057i −0.0138197 0.0425325i
\(501\) 0 0
\(502\) 16.5089 + 11.9944i 0.736828 + 0.535337i
\(503\) 13.7746 10.0078i 0.614178 0.446227i −0.236705 0.971582i \(-0.576067\pi\)
0.850883 + 0.525355i \(0.176067\pi\)
\(504\) 0 0
\(505\) 3.23607 0.144003
\(506\) 12.2060 + 11.5769i 0.542622 + 0.514656i
\(507\) 0 0
\(508\) −5.86577 + 18.0530i −0.260252 + 0.800972i
\(509\) −19.9574 + 14.4999i −0.884596 + 0.642697i −0.934463 0.356059i \(-0.884120\pi\)
0.0498671 + 0.998756i \(0.484120\pi\)
\(510\) 0 0
\(511\) 4.29653 + 13.2234i 0.190067 + 0.584967i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) −21.0516 + 15.2948i −0.928544 + 0.674627i
\(515\) 3.53824 10.8896i 0.155914 0.479853i
\(516\) 0 0
\(517\) 4.59679 + 24.7654i 0.202166 + 1.08918i
\(518\) −4.04339 −0.177657
\(519\) 0 0
\(520\) −4.71542 + 3.42595i −0.206785 + 0.150238i
\(521\) 10.7212 + 7.78944i 0.469706 + 0.341262i 0.797327 0.603548i \(-0.206247\pi\)
−0.327621 + 0.944809i \(0.606247\pi\)
\(522\) 0 0
\(523\) 0.300114 + 0.923655i 0.0131231 + 0.0403886i 0.957404 0.288753i \(-0.0932406\pi\)
−0.944281 + 0.329142i \(0.893241\pi\)
\(524\) −5.13522 3.73096i −0.224333 0.162988i
\(525\) 0 0
\(526\) −6.65523 + 20.4827i −0.290182 + 0.893088i
\(527\) 7.06261 0.307652
\(528\) 0 0
\(529\) 2.72826 0.118620
\(530\) 1.93362 5.95106i 0.0839910 0.258498i
\(531\) 0 0
\(532\) −4.82238 3.50366i −0.209077 0.151903i
\(533\) 7.12403 + 21.9255i 0.308576 + 0.949699i
\(534\) 0 0
\(535\) −5.83345 4.23825i −0.252202 0.183236i
\(536\) 4.84134 3.51744i 0.209114 0.151930i
\(537\) 0 0
\(538\) 16.7017 0.720063
\(539\) 27.7644 + 3.64777i 1.19590 + 0.157121i
\(540\) 0 0
\(541\) −11.1569 + 34.3374i −0.479673 + 1.47628i 0.359878 + 0.932999i \(0.382818\pi\)
−0.839551 + 0.543281i \(0.817182\pi\)
\(542\) 10.0233 7.28238i 0.430539 0.312805i
\(543\) 0 0
\(544\) −0.332405 1.02304i −0.0142517 0.0438624i
\(545\) −0.483178 1.48707i −0.0206971 0.0636991i
\(546\) 0 0
\(547\) −15.7856 + 11.4689i −0.674944 + 0.490375i −0.871677 0.490082i \(-0.836967\pi\)
0.196733 + 0.980457i \(0.436967\pi\)
\(548\) 1.44767 4.45548i 0.0618415 0.190329i
\(549\) 0 0
\(550\) 3.28837 + 0.432036i 0.140216 + 0.0184221i
\(551\) −0.574244 −0.0244636
\(552\) 0 0
\(553\) −2.24492 + 1.63103i −0.0954638 + 0.0693585i
\(554\) 17.3630 + 12.6149i 0.737683 + 0.535958i
\(555\) 0 0
\(556\) 2.59505 + 7.98673i 0.110054 + 0.338713i
\(557\) −16.9694 12.3290i −0.719014 0.522395i 0.167055 0.985948i \(-0.446574\pi\)
−0.886069 + 0.463553i \(0.846574\pi\)
\(558\) 0 0
\(559\) 0.804400 2.47569i 0.0340225 0.104710i
\(560\) −3.92979 −0.166064
\(561\) 0 0
\(562\) −0.288474 −0.0121686
\(563\) 6.88278 21.1830i 0.290075 0.892758i −0.694757 0.719245i \(-0.744488\pi\)
0.984832 0.173513i \(-0.0555120\pi\)
\(564\) 0 0
\(565\) −5.05954 3.67597i −0.212856 0.154649i
\(566\) 8.35853 + 25.7249i 0.351335 + 1.08130i
\(567\) 0 0
\(568\) 4.07230 + 2.95870i 0.170870 + 0.124144i
\(569\) −0.161029 + 0.116994i −0.00675068 + 0.00490465i −0.591155 0.806558i \(-0.701328\pi\)
0.584405 + 0.811462i \(0.301328\pi\)
\(570\) 0 0
\(571\) 32.7720 1.37146 0.685732 0.727854i \(-0.259482\pi\)
0.685732 + 0.727854i \(0.259482\pi\)
\(572\) −3.52786 19.0066i −0.147507 0.794704i
\(573\) 0 0
\(574\) −4.80322 + 14.7828i −0.200482 + 0.617022i
\(575\) 4.10358 2.98142i 0.171131 0.124334i
\(576\) 0 0
\(577\) 2.15889 + 6.64438i 0.0898758 + 0.276609i 0.985884 0.167427i \(-0.0535460\pi\)
−0.896009 + 0.444037i \(0.853546\pi\)
\(578\) −4.89573 15.0675i −0.203635 0.626725i
\(579\) 0 0
\(580\) −0.306281 + 0.222526i −0.0127176 + 0.00923989i
\(581\) −14.2573 + 43.8795i −0.591493 + 1.82043i
\(582\) 0 0
\(583\) 15.0576 + 14.2816i 0.623622 + 0.591482i
\(584\) 3.53807 0.146406
\(585\) 0 0
\(586\) −9.88747 + 7.18367i −0.408448 + 0.296755i
\(587\) 18.9135 + 13.7415i 0.780645 + 0.567172i 0.905173 0.425044i \(-0.139741\pi\)
−0.124527 + 0.992216i \(0.539741\pi\)
\(588\) 0 0
\(589\) −3.07749 9.47155i −0.126806 0.390268i
\(590\) 8.89194 + 6.46038i 0.366076 + 0.265969i
\(591\) 0 0
\(592\) −0.317950 + 0.978551i −0.0130677 + 0.0402182i
\(593\) 30.7990 1.26476 0.632382 0.774657i \(-0.282077\pi\)
0.632382 + 0.774657i \(0.282077\pi\)
\(594\) 0 0
\(595\) 4.22721 0.173299
\(596\) −7.13695 + 21.9653i −0.292341 + 0.899732i
\(597\) 0 0
\(598\) −23.9180 17.3775i −0.978081 0.710617i
\(599\) −7.32833 22.5543i −0.299427 0.921543i −0.981698 0.190443i \(-0.939008\pi\)
0.682271 0.731100i \(-0.260992\pi\)
\(600\) 0 0
\(601\) −6.68382 4.85608i −0.272639 0.198084i 0.443062 0.896491i \(-0.353892\pi\)
−0.715700 + 0.698408i \(0.753892\pi\)
\(602\) 1.41989 1.03161i 0.0578703 0.0420452i
\(603\) 0 0
\(604\) −5.77279 −0.234891
\(605\) −5.98614 + 9.22855i −0.243371 + 0.375194i
\(606\) 0 0
\(607\) 12.8809 39.6433i 0.522819 1.60907i −0.245770 0.969328i \(-0.579041\pi\)
0.768589 0.639743i \(-0.220959\pi\)
\(608\) −1.22713 + 0.891565i −0.0497669 + 0.0361578i
\(609\) 0 0
\(610\) 3.10121 + 9.54455i 0.125564 + 0.386448i
\(611\) −13.6788 42.0992i −0.553387 1.70315i
\(612\) 0 0
\(613\) 26.7817 19.4580i 1.08170 0.785903i 0.103724 0.994606i \(-0.466924\pi\)
0.977979 + 0.208703i \(0.0669242\pi\)
\(614\) −8.86746 + 27.2912i −0.357862 + 1.10138i
\(615\) 0 0
\(616\) 5.60801 11.7654i 0.225953 0.474043i
\(617\) −30.3874 −1.22335 −0.611675 0.791109i \(-0.709504\pi\)
−0.611675 + 0.791109i \(0.709504\pi\)
\(618\) 0 0
\(619\) −32.8059 + 23.8349i −1.31858 + 0.958004i −0.318630 + 0.947879i \(0.603223\pi\)
−0.999949 + 0.0101243i \(0.996777\pi\)
\(620\) −5.31175 3.85921i −0.213325 0.154990i
\(621\) 0 0
\(622\) −8.28623 25.5024i −0.332247 1.02255i
\(623\) 0.142068 + 0.103218i 0.00569183 + 0.00413536i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) −25.6609 −1.02561
\(627\) 0 0
\(628\) 10.7915 0.430626
\(629\) 0.342015 1.05261i 0.0136370 0.0419704i
\(630\) 0 0
\(631\) −13.1880 9.58164i −0.525006 0.381439i 0.293480 0.955965i \(-0.405186\pi\)
−0.818486 + 0.574526i \(0.805186\pi\)
\(632\) 0.218201 + 0.671554i 0.00867958 + 0.0267130i
\(633\) 0 0
\(634\) 11.6653 + 8.47531i 0.463287 + 0.336597i
\(635\) −15.3568 + 11.1574i −0.609416 + 0.442766i
\(636\) 0 0
\(637\) −49.2120 −1.94985
\(638\) −0.229146 1.23453i −0.00907196 0.0488757i
\(639\) 0 0
\(640\) −0.309017 + 0.951057i −0.0122150 + 0.0375938i
\(641\) −18.1070 + 13.1555i −0.715183 + 0.519611i −0.884842 0.465892i \(-0.845734\pi\)
0.169658 + 0.985503i \(0.445734\pi\)
\(642\) 0 0
\(643\) −0.722400 2.22332i −0.0284887 0.0876792i 0.935801 0.352528i \(-0.114678\pi\)
−0.964290 + 0.264849i \(0.914678\pi\)
\(644\) −6.15966 18.9575i −0.242725 0.747029i
\(645\) 0 0
\(646\) 1.32001 0.959044i 0.0519351 0.0377331i
\(647\) −2.18034 + 6.71040i −0.0857180 + 0.263813i −0.984724 0.174124i \(-0.944291\pi\)
0.899006 + 0.437937i \(0.144291\pi\)
\(648\) 0 0
\(649\) −32.0311 + 17.4024i −1.25733 + 0.683105i
\(650\) −5.82857 −0.228616
\(651\) 0 0
\(652\) −13.4648 + 9.78278i −0.527324 + 0.383123i
\(653\) 11.7511 + 8.53771i 0.459858 + 0.334106i 0.793476 0.608602i \(-0.208269\pi\)
−0.333618 + 0.942709i \(0.608269\pi\)
\(654\) 0 0
\(655\) −1.96148 6.03682i −0.0766414 0.235878i
\(656\) 3.19992 + 2.32488i 0.124936 + 0.0907711i
\(657\) 0 0
\(658\) 9.22266 28.3844i 0.359537 1.10654i
\(659\) −28.5069 −1.11047 −0.555235 0.831693i \(-0.687372\pi\)
−0.555235 + 0.831693i \(0.687372\pi\)
\(660\) 0 0
\(661\) 2.00856 0.0781238 0.0390619 0.999237i \(-0.487563\pi\)
0.0390619 + 0.999237i \(0.487563\pi\)
\(662\) 5.88261 18.1048i 0.228634 0.703664i
\(663\) 0 0
\(664\) 9.49826 + 6.90089i 0.368604 + 0.267806i
\(665\) −1.84198 5.66904i −0.0714291 0.219836i
\(666\) 0 0
\(667\) −1.55355 1.12872i −0.0601537 0.0437042i
\(668\) −7.00164 + 5.08699i −0.270902 + 0.196822i
\(669\) 0 0
\(670\) 5.98422 0.231191
\(671\) −33.0012 4.33579i −1.27400 0.167381i
\(672\) 0 0
\(673\) 5.28692 16.2715i 0.203796 0.627219i −0.795965 0.605343i \(-0.793036\pi\)
0.999761 0.0218762i \(-0.00696397\pi\)
\(674\) 2.45390 1.78286i 0.0945207 0.0686733i
\(675\) 0 0
\(676\) 6.48079 + 19.9458i 0.249261 + 0.767147i
\(677\) 7.28887 + 22.4328i 0.280134 + 0.862164i 0.987815 + 0.155632i \(0.0497414\pi\)
−0.707681 + 0.706532i \(0.750259\pi\)
\(678\) 0 0
\(679\) 52.0040 37.7831i 1.99573 1.44998i
\(680\) 0.332405 1.02304i 0.0127471 0.0392317i
\(681\) 0 0
\(682\) 19.1343 10.3956i 0.732690 0.398070i
\(683\) −31.7728 −1.21575 −0.607876 0.794032i \(-0.707978\pi\)
−0.607876 + 0.794032i \(0.707978\pi\)
\(684\) 0 0
\(685\) 3.79006 2.75364i 0.144811 0.105211i
\(686\) −4.58840 3.33367i −0.175186 0.127280i
\(687\) 0 0
\(688\) −0.138010 0.424750i −0.00526157 0.0161935i
\(689\) −29.5059 21.4373i −1.12408 0.816694i
\(690\) 0 0
\(691\) −6.50338 + 20.0154i −0.247400 + 0.761420i 0.747832 + 0.663888i \(0.231095\pi\)
−0.995232 + 0.0975319i \(0.968905\pi\)
\(692\) 12.7557 0.484900
\(693\) 0 0
\(694\) 3.49677 0.132735
\(695\) −2.59505 + 7.98673i −0.0984357 + 0.302954i
\(696\) 0 0
\(697\) −3.44210 2.50083i −0.130379 0.0947258i
\(698\) −5.26289 16.1975i −0.199203 0.613084i
\(699\) 0 0
\(700\) −3.17926 2.30987i −0.120165 0.0873049i
\(701\) −7.98896 + 5.80432i −0.301739 + 0.219226i −0.728344 0.685212i \(-0.759710\pi\)
0.426605 + 0.904438i \(0.359710\pi\)
\(702\) 0 0
\(703\) −1.56067 −0.0588619
\(704\) −2.40640 2.28238i −0.0906946 0.0860203i
\(705\) 0 0
\(706\) −5.37580 + 16.5450i −0.202321 + 0.622680i
\(707\) 10.2883 7.47490i 0.386932 0.281123i
\(708\) 0 0
\(709\) 2.09620 + 6.45143i 0.0787243 + 0.242288i 0.982672 0.185356i \(-0.0593437\pi\)
−0.903947 + 0.427644i \(0.859344\pi\)
\(710\) 1.55548 + 4.78728i 0.0583762 + 0.179663i
\(711\) 0 0
\(712\) 0.0361516 0.0262656i 0.00135484 0.000984346i
\(713\) 10.2912 31.6732i 0.385410 1.18617i
\(714\) 0 0
\(715\) 8.31767 17.4503i 0.311063 0.652603i
\(716\) −18.8541 −0.704611
\(717\) 0 0
\(718\) 0.789459 0.573576i 0.0294624 0.0214057i
\(719\) 37.9662 + 27.5840i 1.41590 + 1.02871i 0.992432 + 0.122799i \(0.0391872\pi\)
0.423467 + 0.905911i \(0.360813\pi\)
\(720\) 0 0
\(721\) −13.9045 42.7938i −0.517832 1.59372i
\(722\) 13.5100 + 9.81557i 0.502789 + 0.365298i
\(723\) 0 0
\(724\) 7.34066 22.5922i 0.272814 0.839634i
\(725\) −0.378584 −0.0140603
\(726\) 0 0
\(727\) 1.32849 0.0492708 0.0246354 0.999697i \(-0.492158\pi\)
0.0246354 + 0.999697i \(0.492158\pi\)
\(728\) −7.07805 + 21.7840i −0.262330 + 0.807369i
\(729\) 0 0
\(730\) 2.86236 + 2.07963i 0.105941 + 0.0769704i
\(731\) 0.148455 + 0.456898i 0.00549081 + 0.0168990i
\(732\) 0 0
\(733\) −14.9732 10.8787i −0.553047 0.401812i 0.275861 0.961198i \(-0.411037\pi\)
−0.828908 + 0.559385i \(0.811037\pi\)
\(734\) 28.1390 20.4442i 1.03863 0.754609i
\(735\) 0 0
\(736\) −5.07230 −0.186968
\(737\) −8.53979 + 17.9163i −0.314567 + 0.659954i
\(738\) 0 0
\(739\) 7.54121 23.2094i 0.277408 0.853773i −0.711165 0.703026i \(-0.751832\pi\)
0.988572 0.150748i \(-0.0481681\pi\)
\(740\) −0.832405 + 0.604778i −0.0305998 + 0.0222321i
\(741\) 0 0
\(742\) −7.59870 23.3864i −0.278957 0.858542i
\(743\) −5.92122 18.2236i −0.217229 0.668561i −0.998988 0.0449805i \(-0.985677\pi\)
0.781759 0.623580i \(-0.214323\pi\)
\(744\) 0 0
\(745\) −18.6848 + 13.5753i −0.684557 + 0.497360i
\(746\) 9.03455 27.8055i 0.330778 1.01803i
\(747\) 0 0
\(748\) 2.58853 + 2.45512i 0.0946460 + 0.0897680i
\(749\) −28.3359 −1.03537
\(750\) 0 0
\(751\) −0.131474 + 0.0955212i −0.00479754 + 0.00348562i −0.590181 0.807271i \(-0.700944\pi\)
0.585384 + 0.810756i \(0.300944\pi\)
\(752\) −6.14416 4.46399i −0.224054 0.162785i
\(753\) 0 0
\(754\) 0.681878 + 2.09861i 0.0248325 + 0.0764267i
\(755\) −4.67028 3.39316i −0.169969 0.123490i
\(756\) 0 0
\(757\) 0.747984 2.30206i 0.0271860 0.0836698i −0.936543 0.350553i \(-0.885994\pi\)
0.963729 + 0.266883i \(0.0859937\pi\)
\(758\) 12.6461 0.459327
\(759\) 0 0
\(760\) −1.51682 −0.0550209
\(761\) 1.83739 5.65489i 0.0666052 0.204990i −0.912215 0.409712i \(-0.865629\pi\)
0.978820 + 0.204722i \(0.0656292\pi\)
\(762\) 0 0
\(763\) −4.97109 3.61171i −0.179966 0.130753i
\(764\) 2.28075 + 7.01944i 0.0825148 + 0.253954i
\(765\) 0 0
\(766\) −1.22604 0.890771i −0.0442986 0.0321849i
\(767\) 51.8274 37.6548i 1.87138 1.35964i
\(768\) 0 0
\(769\) 46.4619 1.67546 0.837730 0.546085i \(-0.183882\pi\)
0.837730 + 0.546085i \(0.183882\pi\)
\(770\) 11.4525 6.22214i 0.412721 0.224230i
\(771\) 0 0
\(772\) 2.14590 6.60440i 0.0772326 0.237697i
\(773\) 24.5256 17.8189i 0.882123 0.640900i −0.0516893 0.998663i \(-0.516461\pi\)
0.933812 + 0.357763i \(0.116461\pi\)
\(774\) 0 0
\(775\) −2.02891 6.24434i −0.0728806 0.224303i
\(776\) −5.05466 15.5567i −0.181452 0.558451i
\(777\) 0 0
\(778\) 5.53897 4.02429i 0.198582 0.144278i
\(779\) −1.85395 + 5.70587i −0.0664246 + 0.204434i
\(780\) 0 0
\(781\) −16.5525 2.17471i −0.592294 0.0778174i
\(782\) 5.45620 0.195113
\(783\) 0 0
\(784\) −6.83071 + 4.96280i −0.243954 + 0.177243i
\(785\) 8.73047 + 6.34306i 0.311604 + 0.226393i
\(786\) 0 0
\(787\) 14.0130 + 43.1276i 0.499509 + 1.53733i 0.809810 + 0.586693i \(0.199570\pi\)
−0.310300 + 0.950639i \(0.600430\pi\)
\(788\) 2.09118 + 1.51933i 0.0744954 + 0.0541241i
\(789\) 0 0
\(790\) −0.218201 + 0.671554i −0.00776325 + 0.0238928i
\(791\) −24.5766 −0.873844
\(792\) 0 0
\(793\) 58.4940 2.07718
\(794\) −1.41178 + 4.34501i −0.0501022 + 0.154199i
\(795\) 0 0
\(796\) 3.59679 + 2.61322i 0.127485 + 0.0926230i
\(797\) 13.3783 + 41.1742i 0.473884 + 1.45847i 0.847457 + 0.530865i \(0.178133\pi\)
−0.373572 + 0.927601i \(0.621867\pi\)
\(798\) 0 0
\(799\) 6.60918 + 4.80185i 0.233816 + 0.169877i
\(800\) −0.809017 + 0.587785i −0.0286031 + 0.0207813i
\(801\) 0 0
\(802\) 0.502397 0.0177403
\(803\) −10.3110 + 5.60193i −0.363866 + 0.197688i
\(804\) 0 0
\(805\) 6.15966 18.9575i 0.217099 0.668163i
\(806\) −30.9600 + 22.4937i −1.09052 + 0.792308i
\(807\) 0 0
\(808\) −1.00000 3.07768i −0.0351799 0.108273i
\(809\) −15.2113 46.8156i −0.534801 1.64595i −0.744078 0.668092i \(-0.767111\pi\)
0.209277 0.977856i \(-0.432889\pi\)
\(810\) 0 0
\(811\) 1.47255 1.06987i 0.0517084 0.0375683i −0.561631 0.827388i \(-0.689826\pi\)
0.613339 + 0.789820i \(0.289826\pi\)
\(812\) −0.459741 + 1.41494i −0.0161338 + 0.0496546i
\(813\) 0 0
\(814\) −0.622768 3.35520i −0.0218280 0.117600i
\(815\) −16.6435 −0.582995
\(816\) 0 0
\(817\) 0.548049 0.398181i 0.0191738 0.0139306i
\(818\) −10.6810 7.76023i −0.373454 0.271330i
\(819\) 0 0
\(820\) 1.22226 + 3.76173i 0.0426831 + 0.131365i
\(821\) −22.5912 16.4135i −0.788439 0.572834i 0.119061 0.992887i \(-0.462012\pi\)
−0.907500 + 0.420053i \(0.862012\pi\)
\(822\) 0 0
\(823\) −5.48381 + 16.8774i −0.191153 + 0.588310i 0.808847 + 0.588020i \(0.200092\pi\)
−1.00000 0.000289980i \(0.999908\pi\)
\(824\) −11.4500 −0.398879
\(825\) 0 0
\(826\) 43.1925 1.50286
\(827\) −10.4642 + 32.2054i −0.363875 + 1.11989i 0.586808 + 0.809726i \(0.300384\pi\)
−0.950683 + 0.310165i \(0.899616\pi\)
\(828\) 0 0
\(829\) −20.3888 14.8133i −0.708132 0.514488i 0.174439 0.984668i \(-0.444189\pi\)
−0.882571 + 0.470180i \(0.844189\pi\)
\(830\) 3.62801 + 11.1659i 0.125930 + 0.387573i
\(831\) 0 0
\(832\) 4.71542 + 3.42595i 0.163478 + 0.118773i
\(833\) 7.34770 5.33841i 0.254583 0.184965i
\(834\) 0 0
\(835\) −8.65451 −0.299502
\(836\) 2.16458 4.54123i 0.0748636 0.157062i
\(837\) 0 0
\(838\) −3.91496 + 12.0490i −0.135240 + 0.416226i
\(839\) −6.84982 + 4.97669i −0.236482 + 0.171814i −0.699715 0.714422i \(-0.746690\pi\)
0.463232 + 0.886237i \(0.346690\pi\)
\(840\) 0 0
\(841\) −8.91720 27.4443i −0.307490 0.946356i
\(842\) 5.90426 + 18.1714i 0.203474 + 0.626229i
\(843\) 0 0
\(844\) −8.88023 + 6.45186i −0.305670 + 0.222082i
\(845\) −6.48079 + 19.9458i −0.222946 + 0.686157i
\(846\) 0 0
\(847\) 2.28522 + 43.1672i 0.0785212 + 1.48324i
\(848\) −6.25732 −0.214877
\(849\) 0 0
\(850\) 0.870248 0.632272i 0.0298492 0.0216867i
\(851\) −4.22221 3.06762i −0.144736 0.105157i
\(852\) 0 0
\(853\) −1.53299 4.71805i −0.0524884 0.161543i 0.921376 0.388672i \(-0.127066\pi\)
−0.973865 + 0.227129i \(0.927066\pi\)
\(854\) 31.9063 + 23.1812i 1.09181 + 0.793246i
\(855\) 0 0
\(856\) −2.22818 + 6.85763i −0.0761576 + 0.234389i
\(857\) 49.4733 1.68998 0.844988 0.534786i \(-0.179608\pi\)
0.844988 + 0.534786i \(0.179608\pi\)
\(858\) 0 0
\(859\) 21.9002 0.747224 0.373612 0.927585i \(-0.378119\pi\)
0.373612 + 0.927585i \(0.378119\pi\)
\(860\) 0.138010 0.424750i 0.00470609 0.0144839i
\(861\) 0 0
\(862\) 10.8051 + 7.85039i 0.368024 + 0.267385i
\(863\) −7.22276 22.2294i −0.245866 0.756697i −0.995493 0.0948366i \(-0.969767\pi\)
0.749627 0.661860i \(-0.230233\pi\)
\(864\) 0 0
\(865\) 10.3196 + 7.49762i 0.350877 + 0.254927i
\(866\) 6.96927 5.06347i 0.236825 0.172064i
\(867\) 0 0
\(868\) −25.8018 −0.875769
\(869\) −1.69919 1.61162i −0.0576411 0.0546704i
\(870\) 0 0
\(871\) 10.7784 33.1724i 0.365211 1.12400i
\(872\) −1.26498 + 0.919060i −0.0428375 + 0.0311233i
\(873\) 0 0
\(874\) −2.37751 7.31722i −0.0804204 0.247509i
\(875\) −1.21437 3.73745i −0.0410532 0.126349i
\(876\) 0 0
\(877\) 34.6618 25.1833i 1.17045 0.850378i 0.179383 0.983779i \(-0.442590\pi\)
0.991062 + 0.133401i \(0.0425899\pi\)
\(878\) −3.51891 + 10.8301i −0.118758 + 0.365498i
\(879\) 0 0
\(880\) −0.605270 3.26093i −0.0204037 0.109926i
\(881\) 5.99014 0.201813 0.100906 0.994896i \(-0.467826\pi\)
0.100906 + 0.994896i \(0.467826\pi\)
\(882\) 0 0
\(883\) −7.45841 + 5.41885i −0.250995 + 0.182359i −0.706168 0.708044i \(-0.749578\pi\)
0.455172 + 0.890403i \(0.349578\pi\)
\(884\) −5.07230 3.68524i −0.170600 0.123948i
\(885\) 0 0
\(886\) −8.59910 26.4653i −0.288893 0.889120i
\(887\) 9.95768 + 7.23468i 0.334346 + 0.242917i 0.742273 0.670098i \(-0.233748\pi\)
−0.407926 + 0.913015i \(0.633748\pi\)
\(888\) 0 0
\(889\) −23.0512 + 70.9444i −0.773114 + 2.37940i
\(890\) 0.0446858 0.00149787
\(891\) 0 0
\(892\) −26.7295 −0.894968
\(893\) 3.55977 10.9558i 0.119123 0.366623i
\(894\) 0 0
\(895\) −15.2533 11.0822i −0.509861 0.370436i
\(896\) 1.21437 + 3.73745i 0.0405693 + 0.124859i
\(897\) 0 0
\(898\) 17.3908 + 12.6352i 0.580339 + 0.421641i
\(899\) −2.01094 + 1.46104i −0.0670688 + 0.0487283i
\(900\) 0 0
\(901\) 6.73090 0.224239
\(902\) −13.0065 1.70884i −0.433070 0.0568980i
\(903\) 0 0
\(904\) −1.93257 + 5.94785i −0.0642764 + 0.197822i
\(905\) 19.2181 13.9628i 0.638831 0.464138i
\(906\) 0 0
\(907\) −7.98882 24.5870i −0.265264 0.816400i −0.991632 0.129094i \(-0.958793\pi\)
0.726368 0.687306i \(-0.241207\pi\)
\(908\) 5.51404 + 16.9705i 0.182990 + 0.563184i
\(909\) 0 0
\(910\) −18.5306 + 13.4633i −0.614283 + 0.446303i
\(911\) −2.70009 + 8.31002i −0.0894579 + 0.275323i −0.985770 0.168101i \(-0.946236\pi\)
0.896312 + 0.443424i \(0.146236\pi\)
\(912\) 0 0
\(913\) −38.6070 5.07231i −1.27771 0.167869i
\(914\) 13.8960 0.459640
\(915\) 0 0
\(916\) −12.6669 + 9.20304i −0.418526 + 0.304077i
\(917\) −20.1803 14.6619i −0.666414 0.484178i
\(918\) 0 0
\(919\) −2.39854 7.38195i −0.0791206 0.243508i 0.903671 0.428228i \(-0.140862\pi\)
−0.982791 + 0.184720i \(0.940862\pi\)
\(920\) −4.10358 2.98142i −0.135291 0.0982947i
\(921\) 0 0
\(922\) 4.61594 14.2064i 0.152018 0.467863i
\(923\) 29.3390 0.965704
\(924\) 0 0
\(925\) −1.02891 −0.0338303
\(926\) −11.9015 + 36.6291i −0.391108 + 1.20371i
\(927\) 0 0
\(928\) 0.306281 + 0.222526i 0.0100542 + 0.00730478i
\(929\) −7.01463 21.5888i −0.230143 0.708306i −0.997729 0.0673604i \(-0.978542\pi\)
0.767586 0.640946i \(-0.221458\pi\)
\(930\) 0 0
\(931\) −10.3610 7.52769i −0.339567 0.246710i
\(932\) −13.5272 + 9.82806i −0.443097 + 0.321929i
\(933\) 0 0
\(934\) 15.7439 0.515157
\(935\) 0.651080 + 3.50773i 0.0212926 + 0.114715i
\(936\) 0 0
\(937\) 9.35316 28.7861i 0.305554 0.940400i −0.673915 0.738809i \(-0.735389\pi\)
0.979470 0.201591i \(-0.0646113\pi\)
\(938\) 19.0254 13.8228i 0.621202 0.451330i
\(939\) 0 0
\(940\) −2.34686 7.22289i −0.0765461 0.235585i
\(941\) −5.67714 17.4725i −0.185070 0.569586i 0.814880 0.579630i \(-0.196803\pi\)
−0.999950 + 0.0100441i \(0.996803\pi\)
\(942\) 0 0
\(943\) −16.2309 + 11.7925i −0.528552 + 0.384016i
\(944\) 3.39642 10.4531i 0.110544 0.340220i
\(945\) 0 0
\(946\) 1.07472 + 1.01933i 0.0349421 + 0.0331413i
\(947\) 34.5692 1.12335 0.561674 0.827358i \(-0.310157\pi\)
0.561674 + 0.827358i \(0.310157\pi\)
\(948\) 0 0
\(949\) 16.6835 12.1213i 0.541569 0.393473i
\(950\) −1.22713 0.891565i −0.0398135 0.0289262i
\(951\) 0 0
\(952\) −1.30628 4.02032i −0.0423368 0.130299i
\(953\) −14.2979 10.3881i −0.463155 0.336502i 0.331612 0.943416i \(-0.392407\pi\)
−0.794768 + 0.606914i \(0.792407\pi\)
\(954\) 0 0
\(955\) −2.28075 + 7.01944i −0.0738035 + 0.227144i
\(956\) 19.1467 0.619248
\(957\) 0 0
\(958\) 16.2449 0.524850
\(959\) 5.68905 17.5091i 0.183709 0.565398i
\(960\) 0 0
\(961\) −9.79579 7.11706i −0.315993 0.229582i
\(962\) 1.85320 + 5.70356i 0.0597495 + 0.183890i
\(963\) 0 0
\(964\) 5.33454 + 3.87577i 0.171814 + 0.124830i
\(965\) 5.61803 4.08174i 0.180851 0.131396i
\(966\) 0 0
\(967\) 17.1334 0.550973 0.275487 0.961305i \(-0.411161\pi\)
0.275487 + 0.961305i \(0.411161\pi\)
\(968\) 10.6267 + 2.84138i 0.341555 + 0.0913255i
\(969\) 0 0
\(970\) 5.05466 15.5567i 0.162295 0.499494i
\(971\) 44.0566 32.0090i 1.41384 1.02722i 0.421094 0.907017i \(-0.361646\pi\)
0.992750 0.120201i \(-0.0383538\pi\)
\(972\) 0 0
\(973\) 10.1980 + 31.3861i 0.326932 + 1.00619i
\(974\) −3.25184 10.0081i −0.104196 0.320682i
\(975\) 0 0
\(976\) 8.11908 5.89886i 0.259885 0.188818i
\(977\) 17.3469 53.3884i 0.554978 1.70805i −0.141025 0.990006i \(-0.545040\pi\)
0.696003 0.718039i \(-0.254960\pi\)
\(978\) 0 0
\(979\) −0.0637689 + 0.133785i −0.00203806 + 0.00427580i
\(980\) −8.44323 −0.269709
\(981\) 0 0
\(982\) −3.44984 + 2.50646i −0.110089 + 0.0799843i
\(983\) −26.5241 19.2709i −0.845988 0.614646i 0.0780492 0.996950i \(-0.475131\pi\)
−0.924037 + 0.382304i \(0.875131\pi\)
\(984\) 0 0
\(985\) 0.798762 + 2.45834i 0.0254507 + 0.0783291i
\(986\) −0.329462 0.239368i −0.0104922 0.00762303i
\(987\) 0 0
\(988\) −2.73199 + 8.40820i −0.0869162 + 0.267501i
\(989\) 2.26534 0.0720335
\(990\) 0 0
\(991\) −9.43591 −0.299742 −0.149871 0.988706i \(-0.547886\pi\)
−0.149871 + 0.988706i \(0.547886\pi\)
\(992\) −2.02891 + 6.24434i −0.0644179 + 0.198258i
\(993\) 0 0
\(994\) 16.0033 + 11.6271i 0.507593 + 0.368788i
\(995\) 1.37385 + 4.22827i 0.0435540 + 0.134045i
\(996\) 0 0
\(997\) −27.1877 19.7531i −0.861044 0.625585i 0.0671244 0.997745i \(-0.478618\pi\)
−0.928169 + 0.372159i \(0.878618\pi\)
\(998\) −0.884781 + 0.642831i −0.0280073 + 0.0203485i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.j.361.1 8
3.2 odd 2 110.2.g.c.31.1 8
11.5 even 5 inner 990.2.n.j.181.1 8
12.11 even 2 880.2.bo.g.801.2 8
15.2 even 4 550.2.ba.f.449.2 16
15.8 even 4 550.2.ba.f.449.3 16
15.14 odd 2 550.2.h.l.251.2 8
33.5 odd 10 110.2.g.c.71.1 yes 8
33.26 odd 10 1210.2.a.u.1.4 4
33.29 even 10 1210.2.a.v.1.4 4
132.59 even 10 9680.2.a.cj.1.1 4
132.71 even 10 880.2.bo.g.401.2 8
132.95 odd 10 9680.2.a.ci.1.1 4
165.29 even 10 6050.2.a.cy.1.1 4
165.38 even 20 550.2.ba.f.49.2 16
165.59 odd 10 6050.2.a.dh.1.1 4
165.104 odd 10 550.2.h.l.401.2 8
165.137 even 20 550.2.ba.f.49.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.c.31.1 8 3.2 odd 2
110.2.g.c.71.1 yes 8 33.5 odd 10
550.2.h.l.251.2 8 15.14 odd 2
550.2.h.l.401.2 8 165.104 odd 10
550.2.ba.f.49.2 16 165.38 even 20
550.2.ba.f.49.3 16 165.137 even 20
550.2.ba.f.449.2 16 15.2 even 4
550.2.ba.f.449.3 16 15.8 even 4
880.2.bo.g.401.2 8 132.71 even 10
880.2.bo.g.801.2 8 12.11 even 2
990.2.n.j.181.1 8 11.5 even 5 inner
990.2.n.j.361.1 8 1.1 even 1 trivial
1210.2.a.u.1.4 4 33.26 odd 10
1210.2.a.v.1.4 4 33.29 even 10
6050.2.a.cy.1.1 4 165.29 even 10
6050.2.a.dh.1.1 4 165.59 odd 10
9680.2.a.ci.1.1 4 132.95 odd 10
9680.2.a.cj.1.1 4 132.59 even 10