Properties

Label 990.2.n
Level $990$
Weight $2$
Character orbit 990.n
Rep. character $\chi_{990}(91,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $80$
Newform subspaces $13$
Sturm bound $432$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 13 \)
Sturm bound: \(432\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 928 80 848
Cusp forms 800 80 720
Eisenstein series 128 0 128

Trace form

\( 80 q - 2 q^{2} - 20 q^{4} - 2 q^{8} - 8 q^{10} - 20 q^{11} - 8 q^{13} + 2 q^{14} - 20 q^{16} - 16 q^{17} - 14 q^{19} + 10 q^{22} - 32 q^{23} - 20 q^{25} + 32 q^{26} + 16 q^{29} + 28 q^{31} + 8 q^{32} + 36 q^{34}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.n.a 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 330.2.m.d \(-1\) \(0\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
990.2.n.b 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 990.2.n.b \(-1\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
990.2.n.c 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 110.2.g.b \(-1\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
990.2.n.d 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 330.2.m.c \(-1\) \(0\) \(1\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
990.2.n.e 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 330.2.m.b \(1\) \(0\) \(-1\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{4}+\cdots\)
990.2.n.f 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 110.2.g.a \(1\) \(0\) \(-1\) \(1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{4}+\cdots\)
990.2.n.g 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 990.2.n.b \(1\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{4}+\cdots\)
990.2.n.h 990.n 11.c $4$ $7.905$ \(\Q(\zeta_{10})\) None 330.2.m.a \(1\) \(0\) \(1\) \(5\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}-\zeta_{10}^{3}q^{4}+\cdots\)
990.2.n.i 990.n 11.c $8$ $7.905$ 8.0.2769390625.1 None 330.2.m.f \(-2\) \(0\) \(-2\) \(3\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{2}q^{2}+(-1-\beta _{2}+\beta _{3}-\beta _{5})q^{4}+\cdots\)
990.2.n.j 990.n 11.c $8$ $7.905$ 8.0.682515625.5 None 110.2.g.c \(-2\) \(0\) \(2\) \(-1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\beta _{2}-\beta _{3}+\beta _{7})q^{2}-\beta _{2}q^{4}+\cdots\)
990.2.n.k 990.n 11.c $8$ $7.905$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 330.2.m.e \(2\) \(0\) \(2\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{2}q^{2}-\beta _{3}q^{4}+(1-\beta _{2}-\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\)
990.2.n.l 990.n 11.c $12$ $7.905$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 990.2.n.l \(-3\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{3}q^{2}-\beta _{4}q^{4}-\beta _{2}q^{5}-\beta _{6}q^{7}+\cdots\)
990.2.n.m 990.n 11.c $12$ $7.905$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 990.2.n.l \(3\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{3}q^{2}-\beta _{4}q^{4}+\beta _{2}q^{5}-\beta _{6}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)