Defining parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.n (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 928 | 80 | 848 |
Cusp forms | 800 | 80 | 720 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)