Properties

Label 990.2.n.a.181.1
Level $990$
Weight $2$
Character 990.181
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(91,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-1,0,-5,-1,0,4,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 990.181
Dual form 990.2.n.a.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(0.309017 - 0.951057i) q^{5} +(-2.92705 + 2.12663i) q^{7} +(-0.809017 - 0.587785i) q^{8} +1.00000 q^{10} +(-2.80902 - 1.76336i) q^{11} +(0.190983 + 0.587785i) q^{13} +(-2.92705 - 2.12663i) q^{14} +(0.309017 - 0.951057i) q^{16} +(2.00000 - 6.15537i) q^{17} +(0.500000 + 0.363271i) q^{19} +(0.309017 + 0.951057i) q^{20} +(0.809017 - 3.21644i) q^{22} -4.85410 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-0.500000 + 0.363271i) q^{26} +(1.11803 - 3.44095i) q^{28} +(3.00000 - 2.17963i) q^{29} +(-2.85410 - 8.78402i) q^{31} +1.00000 q^{32} +6.47214 q^{34} +(1.11803 + 3.44095i) q^{35} +(0.500000 - 0.363271i) q^{37} +(-0.190983 + 0.587785i) q^{38} +(-0.809017 + 0.587785i) q^{40} +(-7.54508 - 5.48183i) q^{41} +0.763932 q^{43} +(3.30902 - 0.224514i) q^{44} +(-1.50000 - 4.61653i) q^{46} +(-2.11803 - 1.53884i) q^{47} +(1.88197 - 5.79210i) q^{49} +(0.309017 - 0.951057i) q^{50} +(-0.500000 - 0.363271i) q^{52} +(1.88197 + 5.79210i) q^{53} +(-2.54508 + 2.12663i) q^{55} +3.61803 q^{56} +(3.00000 + 2.17963i) q^{58} +(-11.8262 + 8.59226i) q^{59} +(3.47214 - 10.6861i) q^{61} +(7.47214 - 5.42882i) q^{62} +(0.309017 + 0.951057i) q^{64} +0.618034 q^{65} -8.18034 q^{67} +(2.00000 + 6.15537i) q^{68} +(-2.92705 + 2.12663i) q^{70} +(0.0901699 - 0.277515i) q^{71} +(-8.85410 + 6.43288i) q^{73} +(0.500000 + 0.363271i) q^{74} -0.618034 q^{76} +(11.9721 - 0.812299i) q^{77} +(-1.38197 - 4.25325i) q^{79} +(-0.809017 - 0.587785i) q^{80} +(2.88197 - 8.86978i) q^{82} +(1.52786 - 4.70228i) q^{83} +(-5.23607 - 3.80423i) q^{85} +(0.236068 + 0.726543i) q^{86} +(1.23607 + 3.07768i) q^{88} +5.14590 q^{89} +(-1.80902 - 1.31433i) q^{91} +(3.92705 - 2.85317i) q^{92} +(0.809017 - 2.48990i) q^{94} +(0.500000 - 0.363271i) q^{95} +(4.61803 + 14.2128i) q^{97} +6.09017 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - q^{5} - 5 q^{7} - q^{8} + 4 q^{10} - 9 q^{11} + 3 q^{13} - 5 q^{14} - q^{16} + 8 q^{17} + 2 q^{19} - q^{20} + q^{22} - 6 q^{23} - q^{25} - 2 q^{26} + 12 q^{29} + 2 q^{31} + 4 q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.309017 0.951057i 0.138197 0.425325i
\(6\) 0 0
\(7\) −2.92705 + 2.12663i −1.10632 + 0.803789i −0.982080 0.188463i \(-0.939650\pi\)
−0.124241 + 0.992252i \(0.539650\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −2.80902 1.76336i −0.846950 0.531672i
\(12\) 0 0
\(13\) 0.190983 + 0.587785i 0.0529692 + 0.163022i 0.974042 0.226369i \(-0.0726855\pi\)
−0.921073 + 0.389391i \(0.872685\pi\)
\(14\) −2.92705 2.12663i −0.782287 0.568365i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 2.00000 6.15537i 0.485071 1.49290i −0.346806 0.937937i \(-0.612734\pi\)
0.831878 0.554959i \(-0.187266\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.363271i 0.114708 + 0.0833401i 0.643660 0.765311i \(-0.277415\pi\)
−0.528952 + 0.848651i \(0.677415\pi\)
\(20\) 0.309017 + 0.951057i 0.0690983 + 0.212663i
\(21\) 0 0
\(22\) 0.809017 3.21644i 0.172483 0.685747i
\(23\) −4.85410 −1.01215 −0.506075 0.862489i \(-0.668904\pi\)
−0.506075 + 0.862489i \(0.668904\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −0.500000 + 0.363271i −0.0980581 + 0.0712434i
\(27\) 0 0
\(28\) 1.11803 3.44095i 0.211289 0.650279i
\(29\) 3.00000 2.17963i 0.557086 0.404747i −0.273305 0.961927i \(-0.588117\pi\)
0.830391 + 0.557181i \(0.188117\pi\)
\(30\) 0 0
\(31\) −2.85410 8.78402i −0.512612 1.57766i −0.787586 0.616205i \(-0.788669\pi\)
0.274974 0.961452i \(-0.411331\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.47214 1.10996
\(35\) 1.11803 + 3.44095i 0.188982 + 0.581628i
\(36\) 0 0
\(37\) 0.500000 0.363271i 0.0821995 0.0597214i −0.545927 0.837833i \(-0.683822\pi\)
0.628126 + 0.778112i \(0.283822\pi\)
\(38\) −0.190983 + 0.587785i −0.0309815 + 0.0953514i
\(39\) 0 0
\(40\) −0.809017 + 0.587785i −0.127917 + 0.0929370i
\(41\) −7.54508 5.48183i −1.17834 0.856117i −0.186360 0.982481i \(-0.559669\pi\)
−0.991984 + 0.126364i \(0.959669\pi\)
\(42\) 0 0
\(43\) 0.763932 0.116499 0.0582493 0.998302i \(-0.481448\pi\)
0.0582493 + 0.998302i \(0.481448\pi\)
\(44\) 3.30902 0.224514i 0.498853 0.0338468i
\(45\) 0 0
\(46\) −1.50000 4.61653i −0.221163 0.680670i
\(47\) −2.11803 1.53884i −0.308947 0.224463i 0.422498 0.906364i \(-0.361154\pi\)
−0.731445 + 0.681901i \(0.761154\pi\)
\(48\) 0 0
\(49\) 1.88197 5.79210i 0.268852 0.827442i
\(50\) 0.309017 0.951057i 0.0437016 0.134500i
\(51\) 0 0
\(52\) −0.500000 0.363271i −0.0693375 0.0503767i
\(53\) 1.88197 + 5.79210i 0.258508 + 0.795606i 0.993118 + 0.117116i \(0.0373650\pi\)
−0.734610 + 0.678489i \(0.762635\pi\)
\(54\) 0 0
\(55\) −2.54508 + 2.12663i −0.343179 + 0.286754i
\(56\) 3.61803 0.483480
\(57\) 0 0
\(58\) 3.00000 + 2.17963i 0.393919 + 0.286199i
\(59\) −11.8262 + 8.59226i −1.53965 + 1.11862i −0.589087 + 0.808069i \(0.700513\pi\)
−0.950558 + 0.310548i \(0.899487\pi\)
\(60\) 0 0
\(61\) 3.47214 10.6861i 0.444561 1.36822i −0.438403 0.898779i \(-0.644456\pi\)
0.882964 0.469441i \(-0.155544\pi\)
\(62\) 7.47214 5.42882i 0.948962 0.689461i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 0.618034 0.0766577
\(66\) 0 0
\(67\) −8.18034 −0.999388 −0.499694 0.866202i \(-0.666554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 2.00000 + 6.15537i 0.242536 + 0.746448i
\(69\) 0 0
\(70\) −2.92705 + 2.12663i −0.349850 + 0.254181i
\(71\) 0.0901699 0.277515i 0.0107012 0.0329349i −0.945563 0.325438i \(-0.894488\pi\)
0.956265 + 0.292503i \(0.0944882\pi\)
\(72\) 0 0
\(73\) −8.85410 + 6.43288i −1.03629 + 0.752912i −0.969559 0.244859i \(-0.921258\pi\)
−0.0667355 + 0.997771i \(0.521258\pi\)
\(74\) 0.500000 + 0.363271i 0.0581238 + 0.0422294i
\(75\) 0 0
\(76\) −0.618034 −0.0708934
\(77\) 11.9721 0.812299i 1.36435 0.0925701i
\(78\) 0 0
\(79\) −1.38197 4.25325i −0.155483 0.478528i 0.842726 0.538342i \(-0.180949\pi\)
−0.998210 + 0.0598139i \(0.980949\pi\)
\(80\) −0.809017 0.587785i −0.0904508 0.0657164i
\(81\) 0 0
\(82\) 2.88197 8.86978i 0.318260 0.979503i
\(83\) 1.52786 4.70228i 0.167705 0.516143i −0.831521 0.555494i \(-0.812529\pi\)
0.999225 + 0.0393515i \(0.0125292\pi\)
\(84\) 0 0
\(85\) −5.23607 3.80423i −0.567931 0.412626i
\(86\) 0.236068 + 0.726543i 0.0254559 + 0.0783451i
\(87\) 0 0
\(88\) 1.23607 + 3.07768i 0.131765 + 0.328082i
\(89\) 5.14590 0.545464 0.272732 0.962090i \(-0.412073\pi\)
0.272732 + 0.962090i \(0.412073\pi\)
\(90\) 0 0
\(91\) −1.80902 1.31433i −0.189637 0.137779i
\(92\) 3.92705 2.85317i 0.409423 0.297463i
\(93\) 0 0
\(94\) 0.809017 2.48990i 0.0834437 0.256813i
\(95\) 0.500000 0.363271i 0.0512989 0.0372708i
\(96\) 0 0
\(97\) 4.61803 + 14.2128i 0.468890 + 1.44310i 0.854023 + 0.520235i \(0.174156\pi\)
−0.385133 + 0.922861i \(0.625844\pi\)
\(98\) 6.09017 0.615200
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.23607 3.80423i −0.122993 0.378535i 0.870537 0.492103i \(-0.163772\pi\)
−0.993530 + 0.113569i \(0.963772\pi\)
\(102\) 0 0
\(103\) 7.97214 5.79210i 0.785518 0.570712i −0.121112 0.992639i \(-0.538646\pi\)
0.906630 + 0.421927i \(0.138646\pi\)
\(104\) 0.190983 0.587785i 0.0187274 0.0576371i
\(105\) 0 0
\(106\) −4.92705 + 3.57971i −0.478557 + 0.347692i
\(107\) 14.4721 + 10.5146i 1.39907 + 1.01649i 0.994800 + 0.101849i \(0.0324759\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) −2.80902 1.76336i −0.267829 0.168129i
\(111\) 0 0
\(112\) 1.11803 + 3.44095i 0.105644 + 0.325140i
\(113\) −10.0902 7.33094i −0.949203 0.689637i 0.00141497 0.999999i \(-0.499550\pi\)
−0.950618 + 0.310362i \(0.899550\pi\)
\(114\) 0 0
\(115\) −1.50000 + 4.61653i −0.139876 + 0.430493i
\(116\) −1.14590 + 3.52671i −0.106394 + 0.327447i
\(117\) 0 0
\(118\) −11.8262 8.59226i −1.08869 0.790982i
\(119\) 7.23607 + 22.2703i 0.663329 + 2.04152i
\(120\) 0 0
\(121\) 4.78115 + 9.90659i 0.434650 + 0.900599i
\(122\) 11.2361 1.01727
\(123\) 0 0
\(124\) 7.47214 + 5.42882i 0.671018 + 0.487523i
\(125\) −0.809017 + 0.587785i −0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) 3.89919 12.0005i 0.345997 1.06487i −0.615051 0.788487i \(-0.710865\pi\)
0.961048 0.276382i \(-0.0891354\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 0 0
\(130\) 0.190983 + 0.587785i 0.0167503 + 0.0515522i
\(131\) −20.9443 −1.82991 −0.914955 0.403556i \(-0.867774\pi\)
−0.914955 + 0.403556i \(0.867774\pi\)
\(132\) 0 0
\(133\) −2.23607 −0.193892
\(134\) −2.52786 7.77997i −0.218374 0.672087i
\(135\) 0 0
\(136\) −5.23607 + 3.80423i −0.448989 + 0.326210i
\(137\) −4.76393 + 14.6619i −0.407010 + 1.25265i 0.512195 + 0.858869i \(0.328833\pi\)
−0.919205 + 0.393779i \(0.871167\pi\)
\(138\) 0 0
\(139\) 6.16312 4.47777i 0.522749 0.379799i −0.294890 0.955531i \(-0.595283\pi\)
0.817638 + 0.575732i \(0.195283\pi\)
\(140\) −2.92705 2.12663i −0.247381 0.179733i
\(141\) 0 0
\(142\) 0.291796 0.0244870
\(143\) 0.500000 1.98787i 0.0418121 0.166234i
\(144\) 0 0
\(145\) −1.14590 3.52671i −0.0951617 0.292877i
\(146\) −8.85410 6.43288i −0.732771 0.532389i
\(147\) 0 0
\(148\) −0.190983 + 0.587785i −0.0156987 + 0.0483157i
\(149\) 2.76393 8.50651i 0.226430 0.696880i −0.771713 0.635971i \(-0.780600\pi\)
0.998143 0.0609095i \(-0.0194001\pi\)
\(150\) 0 0
\(151\) 10.0902 + 7.33094i 0.821126 + 0.596583i 0.917035 0.398807i \(-0.130576\pi\)
−0.0959085 + 0.995390i \(0.530576\pi\)
\(152\) −0.190983 0.587785i −0.0154908 0.0476757i
\(153\) 0 0
\(154\) 4.47214 + 11.1352i 0.360375 + 0.897297i
\(155\) −9.23607 −0.741859
\(156\) 0 0
\(157\) 4.54508 + 3.30220i 0.362737 + 0.263544i 0.754193 0.656653i \(-0.228028\pi\)
−0.391456 + 0.920197i \(0.628028\pi\)
\(158\) 3.61803 2.62866i 0.287835 0.209125i
\(159\) 0 0
\(160\) 0.309017 0.951057i 0.0244299 0.0751876i
\(161\) 14.2082 10.3229i 1.11976 0.813556i
\(162\) 0 0
\(163\) 5.52786 + 17.0130i 0.432976 + 1.33256i 0.895147 + 0.445771i \(0.147071\pi\)
−0.462171 + 0.886791i \(0.652929\pi\)
\(164\) 9.32624 0.728257
\(165\) 0 0
\(166\) 4.94427 0.383750
\(167\) 3.57295 + 10.9964i 0.276483 + 0.850927i 0.988823 + 0.149093i \(0.0476354\pi\)
−0.712340 + 0.701834i \(0.752365\pi\)
\(168\) 0 0
\(169\) 10.2082 7.41669i 0.785246 0.570515i
\(170\) 2.00000 6.15537i 0.153393 0.472095i
\(171\) 0 0
\(172\) −0.618034 + 0.449028i −0.0471246 + 0.0342381i
\(173\) −19.8713 14.4374i −1.51079 1.09765i −0.965826 0.259192i \(-0.916544\pi\)
−0.544963 0.838460i \(-0.683456\pi\)
\(174\) 0 0
\(175\) 3.61803 0.273498
\(176\) −2.54508 + 2.12663i −0.191843 + 0.160301i
\(177\) 0 0
\(178\) 1.59017 + 4.89404i 0.119188 + 0.366824i
\(179\) −9.01722 6.55139i −0.673979 0.489674i 0.197376 0.980328i \(-0.436758\pi\)
−0.871355 + 0.490654i \(0.836758\pi\)
\(180\) 0 0
\(181\) −7.52786 + 23.1684i −0.559542 + 1.72209i 0.124095 + 0.992270i \(0.460397\pi\)
−0.683637 + 0.729822i \(0.739603\pi\)
\(182\) 0.690983 2.12663i 0.0512191 0.157636i
\(183\) 0 0
\(184\) 3.92705 + 2.85317i 0.289506 + 0.210338i
\(185\) −0.190983 0.587785i −0.0140413 0.0432148i
\(186\) 0 0
\(187\) −16.4721 + 13.7638i −1.20456 + 1.00651i
\(188\) 2.61803 0.190940
\(189\) 0 0
\(190\) 0.500000 + 0.363271i 0.0362738 + 0.0263545i
\(191\) −11.0902 + 8.05748i −0.802457 + 0.583019i −0.911634 0.411004i \(-0.865178\pi\)
0.109177 + 0.994022i \(0.465178\pi\)
\(192\) 0 0
\(193\) −1.14590 + 3.52671i −0.0824835 + 0.253858i −0.983790 0.179323i \(-0.942609\pi\)
0.901307 + 0.433182i \(0.142609\pi\)
\(194\) −12.0902 + 8.78402i −0.868024 + 0.630656i
\(195\) 0 0
\(196\) 1.88197 + 5.79210i 0.134426 + 0.413721i
\(197\) −3.61803 −0.257774 −0.128887 0.991659i \(-0.541140\pi\)
−0.128887 + 0.991659i \(0.541140\pi\)
\(198\) 0 0
\(199\) −12.9443 −0.917595 −0.458798 0.888541i \(-0.651720\pi\)
−0.458798 + 0.888541i \(0.651720\pi\)
\(200\) 0.309017 + 0.951057i 0.0218508 + 0.0672499i
\(201\) 0 0
\(202\) 3.23607 2.35114i 0.227689 0.165426i
\(203\) −4.14590 + 12.7598i −0.290985 + 0.895560i
\(204\) 0 0
\(205\) −7.54508 + 5.48183i −0.526972 + 0.382867i
\(206\) 7.97214 + 5.79210i 0.555445 + 0.403554i
\(207\) 0 0
\(208\) 0.618034 0.0428529
\(209\) −0.763932 1.90211i −0.0528423 0.131572i
\(210\) 0 0
\(211\) −7.23607 22.2703i −0.498151 1.53315i −0.811987 0.583675i \(-0.801614\pi\)
0.313836 0.949477i \(-0.398386\pi\)
\(212\) −4.92705 3.57971i −0.338391 0.245856i
\(213\) 0 0
\(214\) −5.52786 + 17.0130i −0.377877 + 1.16299i
\(215\) 0.236068 0.726543i 0.0160997 0.0495498i
\(216\) 0 0
\(217\) 27.0344 + 19.6417i 1.83522 + 1.33336i
\(218\) 1.23607 + 3.80423i 0.0837171 + 0.257655i
\(219\) 0 0
\(220\) 0.809017 3.21644i 0.0545439 0.216852i
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) −6.16312 4.47777i −0.412713 0.299854i 0.361986 0.932183i \(-0.382099\pi\)
−0.774699 + 0.632330i \(0.782099\pi\)
\(224\) −2.92705 + 2.12663i −0.195572 + 0.142091i
\(225\) 0 0
\(226\) 3.85410 11.8617i 0.256371 0.789029i
\(227\) −3.38197 + 2.45714i −0.224469 + 0.163086i −0.694336 0.719651i \(-0.744302\pi\)
0.469867 + 0.882737i \(0.344302\pi\)
\(228\) 0 0
\(229\) −3.56231 10.9637i −0.235404 0.724498i −0.997068 0.0765260i \(-0.975617\pi\)
0.761664 0.647972i \(-0.224383\pi\)
\(230\) −4.85410 −0.320070
\(231\) 0 0
\(232\) −3.70820 −0.243456
\(233\) 5.03444 + 15.4944i 0.329817 + 1.01507i 0.969219 + 0.246200i \(0.0791821\pi\)
−0.639402 + 0.768873i \(0.720818\pi\)
\(234\) 0 0
\(235\) −2.11803 + 1.53884i −0.138165 + 0.100383i
\(236\) 4.51722 13.9026i 0.294046 0.904981i
\(237\) 0 0
\(238\) −18.9443 + 13.7638i −1.22797 + 0.892176i
\(239\) 17.9443 + 13.0373i 1.16072 + 0.843311i 0.989869 0.141986i \(-0.0453487\pi\)
0.170850 + 0.985297i \(0.445349\pi\)
\(240\) 0 0
\(241\) −25.6180 −1.65020 −0.825101 0.564985i \(-0.808882\pi\)
−0.825101 + 0.564985i \(0.808882\pi\)
\(242\) −7.94427 + 7.60845i −0.510677 + 0.489090i
\(243\) 0 0
\(244\) 3.47214 + 10.6861i 0.222281 + 0.684110i
\(245\) −4.92705 3.57971i −0.314778 0.228699i
\(246\) 0 0
\(247\) −0.118034 + 0.363271i −0.00751032 + 0.0231144i
\(248\) −2.85410 + 8.78402i −0.181236 + 0.557786i
\(249\) 0 0
\(250\) −0.809017 0.587785i −0.0511667 0.0371748i
\(251\) −3.55573 10.9434i −0.224436 0.690742i −0.998348 0.0574495i \(-0.981703\pi\)
0.773913 0.633292i \(-0.218297\pi\)
\(252\) 0 0
\(253\) 13.6353 + 8.55951i 0.857241 + 0.538132i
\(254\) 12.6180 0.791726
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −4.09017 + 2.97168i −0.255138 + 0.185368i −0.708001 0.706212i \(-0.750403\pi\)
0.452863 + 0.891580i \(0.350403\pi\)
\(258\) 0 0
\(259\) −0.690983 + 2.12663i −0.0429356 + 0.132142i
\(260\) −0.500000 + 0.363271i −0.0310087 + 0.0225291i
\(261\) 0 0
\(262\) −6.47214 19.9192i −0.399850 1.23061i
\(263\) 8.14590 0.502298 0.251149 0.967948i \(-0.419192\pi\)
0.251149 + 0.967948i \(0.419192\pi\)
\(264\) 0 0
\(265\) 6.09017 0.374116
\(266\) −0.690983 2.12663i −0.0423669 0.130392i
\(267\) 0 0
\(268\) 6.61803 4.80828i 0.404261 0.293713i
\(269\) 7.65248 23.5519i 0.466580 1.43598i −0.390405 0.920643i \(-0.627665\pi\)
0.856985 0.515341i \(-0.172335\pi\)
\(270\) 0 0
\(271\) −0.527864 + 0.383516i −0.0320655 + 0.0232969i −0.603703 0.797210i \(-0.706309\pi\)
0.571637 + 0.820507i \(0.306309\pi\)
\(272\) −5.23607 3.80423i −0.317483 0.230665i
\(273\) 0 0
\(274\) −15.4164 −0.931339
\(275\) 1.23607 + 3.07768i 0.0745377 + 0.185591i
\(276\) 0 0
\(277\) −2.55573 7.86572i −0.153559 0.472605i 0.844453 0.535629i \(-0.179926\pi\)
−0.998012 + 0.0630239i \(0.979926\pi\)
\(278\) 6.16312 + 4.47777i 0.369639 + 0.268559i
\(279\) 0 0
\(280\) 1.11803 3.44095i 0.0668153 0.205636i
\(281\) −2.43769 + 7.50245i −0.145421 + 0.447559i −0.997065 0.0765616i \(-0.975606\pi\)
0.851644 + 0.524120i \(0.175606\pi\)
\(282\) 0 0
\(283\) −3.00000 2.17963i −0.178331 0.129565i 0.495039 0.868871i \(-0.335154\pi\)
−0.673370 + 0.739306i \(0.735154\pi\)
\(284\) 0.0901699 + 0.277515i 0.00535060 + 0.0164675i
\(285\) 0 0
\(286\) 2.04508 0.138757i 0.120928 0.00820489i
\(287\) 33.7426 1.99177
\(288\) 0 0
\(289\) −20.1353 14.6291i −1.18443 0.860536i
\(290\) 3.00000 2.17963i 0.176166 0.127992i
\(291\) 0 0
\(292\) 3.38197 10.4086i 0.197915 0.609118i
\(293\) 8.92705 6.48588i 0.521524 0.378909i −0.295654 0.955295i \(-0.595537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(294\) 0 0
\(295\) 4.51722 + 13.9026i 0.263003 + 0.809439i
\(296\) −0.618034 −0.0359225
\(297\) 0 0
\(298\) 8.94427 0.518128
\(299\) −0.927051 2.85317i −0.0536127 0.165003i
\(300\) 0 0
\(301\) −2.23607 + 1.62460i −0.128885 + 0.0936403i
\(302\) −3.85410 + 11.8617i −0.221779 + 0.682564i
\(303\) 0 0
\(304\) 0.500000 0.363271i 0.0286770 0.0208350i
\(305\) −9.09017 6.60440i −0.520502 0.378167i
\(306\) 0 0
\(307\) 26.8328 1.53143 0.765715 0.643180i \(-0.222385\pi\)
0.765715 + 0.643180i \(0.222385\pi\)
\(308\) −9.20820 + 7.69421i −0.524686 + 0.438418i
\(309\) 0 0
\(310\) −2.85410 8.78402i −0.162102 0.498899i
\(311\) −22.5623 16.3925i −1.27939 0.929532i −0.279857 0.960042i \(-0.590287\pi\)
−0.999534 + 0.0305099i \(0.990287\pi\)
\(312\) 0 0
\(313\) 1.76393 5.42882i 0.0997033 0.306855i −0.888748 0.458397i \(-0.848424\pi\)
0.988451 + 0.151542i \(0.0484238\pi\)
\(314\) −1.73607 + 5.34307i −0.0979720 + 0.301527i
\(315\) 0 0
\(316\) 3.61803 + 2.62866i 0.203530 + 0.147873i
\(317\) −3.37132 10.3759i −0.189352 0.582767i 0.810644 0.585540i \(-0.199117\pi\)
−0.999996 + 0.00277297i \(0.999117\pi\)
\(318\) 0 0
\(319\) −12.2705 + 0.832544i −0.687017 + 0.0466135i
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 14.2082 + 10.3229i 0.791792 + 0.575271i
\(323\) 3.23607 2.35114i 0.180060 0.130821i
\(324\) 0 0
\(325\) 0.190983 0.587785i 0.0105938 0.0326045i
\(326\) −14.4721 + 10.5146i −0.801537 + 0.582351i
\(327\) 0 0
\(328\) 2.88197 + 8.86978i 0.159130 + 0.489752i
\(329\) 9.47214 0.522216
\(330\) 0 0
\(331\) 7.67376 0.421788 0.210894 0.977509i \(-0.432362\pi\)
0.210894 + 0.977509i \(0.432362\pi\)
\(332\) 1.52786 + 4.70228i 0.0838524 + 0.258071i
\(333\) 0 0
\(334\) −9.35410 + 6.79615i −0.511834 + 0.371869i
\(335\) −2.52786 + 7.77997i −0.138112 + 0.425065i
\(336\) 0 0
\(337\) 16.1803 11.7557i 0.881399 0.640374i −0.0522220 0.998635i \(-0.516630\pi\)
0.933621 + 0.358261i \(0.116630\pi\)
\(338\) 10.2082 + 7.41669i 0.555253 + 0.403415i
\(339\) 0 0
\(340\) 6.47214 0.351001
\(341\) −7.47214 + 29.7073i −0.404639 + 1.60874i
\(342\) 0 0
\(343\) −1.01722 3.13068i −0.0549248 0.169041i
\(344\) −0.618034 0.449028i −0.0333222 0.0242100i
\(345\) 0 0
\(346\) 7.59017 23.3601i 0.408050 1.25585i
\(347\) −1.18034 + 3.63271i −0.0633640 + 0.195014i −0.977727 0.209881i \(-0.932692\pi\)
0.914363 + 0.404896i \(0.132692\pi\)
\(348\) 0 0
\(349\) −8.09017 5.87785i −0.433057 0.314634i 0.349813 0.936819i \(-0.386245\pi\)
−0.782870 + 0.622185i \(0.786245\pi\)
\(350\) 1.11803 + 3.44095i 0.0597614 + 0.183927i
\(351\) 0 0
\(352\) −2.80902 1.76336i −0.149721 0.0939872i
\(353\) 24.6525 1.31212 0.656059 0.754709i \(-0.272222\pi\)
0.656059 + 0.754709i \(0.272222\pi\)
\(354\) 0 0
\(355\) −0.236068 0.171513i −0.0125292 0.00910299i
\(356\) −4.16312 + 3.02468i −0.220645 + 0.160308i
\(357\) 0 0
\(358\) 3.44427 10.6004i 0.182035 0.560247i
\(359\) 20.4164 14.8334i 1.07754 0.782876i 0.100285 0.994959i \(-0.468025\pi\)
0.977252 + 0.212082i \(0.0680245\pi\)
\(360\) 0 0
\(361\) −5.75329 17.7068i −0.302805 0.931937i
\(362\) −24.3607 −1.28037
\(363\) 0 0
\(364\) 2.23607 0.117202
\(365\) 3.38197 + 10.4086i 0.177020 + 0.544812i
\(366\) 0 0
\(367\) −6.76393 + 4.91428i −0.353074 + 0.256524i −0.750158 0.661259i \(-0.770022\pi\)
0.397083 + 0.917783i \(0.370022\pi\)
\(368\) −1.50000 + 4.61653i −0.0781929 + 0.240653i
\(369\) 0 0
\(370\) 0.500000 0.363271i 0.0259938 0.0188856i
\(371\) −17.8262 12.9515i −0.925492 0.672409i
\(372\) 0 0
\(373\) −13.8541 −0.717338 −0.358669 0.933465i \(-0.616769\pi\)
−0.358669 + 0.933465i \(0.616769\pi\)
\(374\) −18.1803 11.4127i −0.940083 0.590136i
\(375\) 0 0
\(376\) 0.809017 + 2.48990i 0.0417219 + 0.128407i
\(377\) 1.85410 + 1.34708i 0.0954911 + 0.0693784i
\(378\) 0 0
\(379\) −10.1180 + 31.1401i −0.519728 + 1.59956i 0.254782 + 0.966999i \(0.417996\pi\)
−0.774510 + 0.632561i \(0.782004\pi\)
\(380\) −0.190983 + 0.587785i −0.00979722 + 0.0301527i
\(381\) 0 0
\(382\) −11.0902 8.05748i −0.567422 0.412257i
\(383\) 8.79180 + 27.0584i 0.449240 + 1.38262i 0.877766 + 0.479089i \(0.159033\pi\)
−0.428527 + 0.903529i \(0.640967\pi\)
\(384\) 0 0
\(385\) 2.92705 11.6372i 0.149176 0.593086i
\(386\) −3.70820 −0.188743
\(387\) 0 0
\(388\) −12.0902 8.78402i −0.613785 0.445941i
\(389\) 2.85410 2.07363i 0.144709 0.105137i −0.513075 0.858344i \(-0.671494\pi\)
0.657784 + 0.753206i \(0.271494\pi\)
\(390\) 0 0
\(391\) −9.70820 + 29.8788i −0.490965 + 1.51103i
\(392\) −4.92705 + 3.57971i −0.248854 + 0.180803i
\(393\) 0 0
\(394\) −1.11803 3.44095i −0.0563257 0.173353i
\(395\) −4.47214 −0.225018
\(396\) 0 0
\(397\) 12.6738 0.636078 0.318039 0.948078i \(-0.396976\pi\)
0.318039 + 0.948078i \(0.396976\pi\)
\(398\) −4.00000 12.3107i −0.200502 0.617081i
\(399\) 0 0
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) 0.517221 1.59184i 0.0258288 0.0794928i −0.937311 0.348493i \(-0.886693\pi\)
0.963140 + 0.269001i \(0.0866934\pi\)
\(402\) 0 0
\(403\) 4.61803 3.35520i 0.230041 0.167134i
\(404\) 3.23607 + 2.35114i 0.161000 + 0.116974i
\(405\) 0 0
\(406\) −13.4164 −0.665845
\(407\) −2.04508 + 0.138757i −0.101371 + 0.00687794i
\(408\) 0 0
\(409\) 4.39261 + 13.5191i 0.217201 + 0.668475i 0.998990 + 0.0449321i \(0.0143071\pi\)
−0.781790 + 0.623542i \(0.785693\pi\)
\(410\) −7.54508 5.48183i −0.372625 0.270728i
\(411\) 0 0
\(412\) −3.04508 + 9.37181i −0.150021 + 0.461716i
\(413\) 16.3435 50.3000i 0.804209 2.47510i
\(414\) 0 0
\(415\) −4.00000 2.90617i −0.196352 0.142658i
\(416\) 0.190983 + 0.587785i 0.00936371 + 0.0288185i
\(417\) 0 0
\(418\) 1.57295 1.31433i 0.0769355 0.0642859i
\(419\) 11.2016 0.547235 0.273618 0.961839i \(-0.411780\pi\)
0.273618 + 0.961839i \(0.411780\pi\)
\(420\) 0 0
\(421\) −21.7984 15.8374i −1.06239 0.771870i −0.0878591 0.996133i \(-0.528003\pi\)
−0.974529 + 0.224263i \(0.928003\pi\)
\(422\) 18.9443 13.7638i 0.922193 0.670012i
\(423\) 0 0
\(424\) 1.88197 5.79210i 0.0913963 0.281289i
\(425\) −5.23607 + 3.80423i −0.253987 + 0.184532i
\(426\) 0 0
\(427\) 12.5623 + 38.6628i 0.607933 + 1.87102i
\(428\) −17.8885 −0.864675
\(429\) 0 0
\(430\) 0.763932 0.0368401
\(431\) −0.673762 2.07363i −0.0324540 0.0998831i 0.933517 0.358532i \(-0.116723\pi\)
−0.965971 + 0.258649i \(0.916723\pi\)
\(432\) 0 0
\(433\) 26.7984 19.4702i 1.28785 0.935676i 0.288088 0.957604i \(-0.406980\pi\)
0.999760 + 0.0219278i \(0.00698040\pi\)
\(434\) −10.3262 + 31.7809i −0.495675 + 1.52553i
\(435\) 0 0
\(436\) −3.23607 + 2.35114i −0.154980 + 0.112599i
\(437\) −2.42705 1.76336i −0.116102 0.0843527i
\(438\) 0 0
\(439\) 20.1803 0.963155 0.481578 0.876403i \(-0.340064\pi\)
0.481578 + 0.876403i \(0.340064\pi\)
\(440\) 3.30902 0.224514i 0.157751 0.0107033i
\(441\) 0 0
\(442\) 1.23607 + 3.80423i 0.0587938 + 0.180949i
\(443\) 23.3262 + 16.9475i 1.10826 + 0.805200i 0.982389 0.186846i \(-0.0598266\pi\)
0.125874 + 0.992046i \(0.459827\pi\)
\(444\) 0 0
\(445\) 1.59017 4.89404i 0.0753813 0.232000i
\(446\) 2.35410 7.24518i 0.111470 0.343069i
\(447\) 0 0
\(448\) −2.92705 2.12663i −0.138290 0.100474i
\(449\) 5.75329 + 17.7068i 0.271514 + 0.835636i 0.990121 + 0.140218i \(0.0447805\pi\)
−0.718606 + 0.695417i \(0.755220\pi\)
\(450\) 0 0
\(451\) 11.5279 + 28.7032i 0.542826 + 1.35158i
\(452\) 12.4721 0.586640
\(453\) 0 0
\(454\) −3.38197 2.45714i −0.158724 0.115319i
\(455\) −1.80902 + 1.31433i −0.0848080 + 0.0616166i
\(456\) 0 0
\(457\) 3.05573 9.40456i 0.142941 0.439927i −0.853800 0.520602i \(-0.825708\pi\)
0.996740 + 0.0806750i \(0.0257076\pi\)
\(458\) 9.32624 6.77591i 0.435786 0.316617i
\(459\) 0 0
\(460\) −1.50000 4.61653i −0.0699379 0.215247i
\(461\) 24.7639 1.15337 0.576686 0.816966i \(-0.304346\pi\)
0.576686 + 0.816966i \(0.304346\pi\)
\(462\) 0 0
\(463\) −3.38197 −0.157173 −0.0785866 0.996907i \(-0.525041\pi\)
−0.0785866 + 0.996907i \(0.525041\pi\)
\(464\) −1.14590 3.52671i −0.0531970 0.163723i
\(465\) 0 0
\(466\) −13.1803 + 9.57608i −0.610567 + 0.443603i
\(467\) −2.18034 + 6.71040i −0.100894 + 0.310520i −0.988745 0.149611i \(-0.952198\pi\)
0.887851 + 0.460131i \(0.152198\pi\)
\(468\) 0 0
\(469\) 23.9443 17.3965i 1.10564 0.803297i
\(470\) −2.11803 1.53884i −0.0976976 0.0709815i
\(471\) 0 0
\(472\) 14.6180 0.672850
\(473\) −2.14590 1.34708i −0.0986685 0.0619390i
\(474\) 0 0
\(475\) −0.190983 0.587785i −0.00876290 0.0269694i
\(476\) −18.9443 13.7638i −0.868309 0.630864i
\(477\) 0 0
\(478\) −6.85410 + 21.0948i −0.313499 + 0.964852i
\(479\) 12.0557 37.1037i 0.550840 1.69531i −0.155843 0.987782i \(-0.549809\pi\)
0.706683 0.707530i \(-0.250191\pi\)
\(480\) 0 0
\(481\) 0.309017 + 0.224514i 0.0140900 + 0.0102370i
\(482\) −7.91641 24.3642i −0.360582 1.10976i
\(483\) 0 0
\(484\) −9.69098 5.20431i −0.440499 0.236560i
\(485\) 14.9443 0.678584
\(486\) 0 0
\(487\) −32.6525 23.7234i −1.47962 1.07501i −0.977677 0.210112i \(-0.932617\pi\)
−0.501948 0.864898i \(-0.667383\pi\)
\(488\) −9.09017 + 6.60440i −0.411493 + 0.298967i
\(489\) 0 0
\(490\) 1.88197 5.79210i 0.0850186 0.261660i
\(491\) −1.88197 + 1.36733i −0.0849319 + 0.0617067i −0.629441 0.777048i \(-0.716716\pi\)
0.544509 + 0.838755i \(0.316716\pi\)
\(492\) 0 0
\(493\) −7.41641 22.8254i −0.334018 1.02800i
\(494\) −0.381966 −0.0171855
\(495\) 0 0
\(496\) −9.23607 −0.414712
\(497\) 0.326238 + 1.00406i 0.0146338 + 0.0450381i
\(498\) 0 0
\(499\) 27.2533 19.8007i 1.22002 0.886400i 0.223923 0.974607i \(-0.428114\pi\)
0.996102 + 0.0882071i \(0.0281137\pi\)
\(500\) 0.309017 0.951057i 0.0138197 0.0425325i
\(501\) 0 0
\(502\) 9.30902 6.76340i 0.415482 0.301865i
\(503\) −3.88197 2.82041i −0.173088 0.125756i 0.497868 0.867253i \(-0.334116\pi\)
−0.670957 + 0.741497i \(0.734116\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) −3.92705 + 15.6129i −0.174579 + 0.694079i
\(507\) 0 0
\(508\) 3.89919 + 12.0005i 0.172998 + 0.532434i
\(509\) −20.5623 14.9394i −0.911408 0.662177i 0.0299624 0.999551i \(-0.490461\pi\)
−0.941371 + 0.337374i \(0.890461\pi\)
\(510\) 0 0
\(511\) 12.2361 37.6587i 0.541292 1.66592i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 0 0
\(514\) −4.09017 2.97168i −0.180410 0.131075i
\(515\) −3.04508 9.37181i −0.134182 0.412971i
\(516\) 0 0
\(517\) 3.23607 + 8.05748i 0.142322 + 0.354368i
\(518\) −2.23607 −0.0982472
\(519\) 0 0
\(520\) −0.500000 0.363271i −0.0219265 0.0159305i
\(521\) 30.1976 21.9398i 1.32298 0.961201i 0.323089 0.946369i \(-0.395279\pi\)
0.999890 0.0148321i \(-0.00472138\pi\)
\(522\) 0 0
\(523\) 0.708204 2.17963i 0.0309676 0.0953085i −0.934378 0.356283i \(-0.884044\pi\)
0.965346 + 0.260975i \(0.0840439\pi\)
\(524\) 16.9443 12.3107i 0.740214 0.537797i
\(525\) 0 0
\(526\) 2.51722 + 7.74721i 0.109756 + 0.337794i
\(527\) −59.7771 −2.60393
\(528\) 0 0
\(529\) 0.562306 0.0244481
\(530\) 1.88197 + 5.79210i 0.0817474 + 0.251593i
\(531\) 0 0
\(532\) 1.80902 1.31433i 0.0784308 0.0569833i
\(533\) 1.78115 5.48183i 0.0771503 0.237444i
\(534\) 0 0
\(535\) 14.4721 10.5146i 0.625685 0.454587i
\(536\) 6.61803 + 4.80828i 0.285856 + 0.207686i
\(537\) 0 0
\(538\) 24.7639 1.06765
\(539\) −15.5000 + 12.9515i −0.667632 + 0.557861i
\(540\) 0 0
\(541\) −4.65248 14.3188i −0.200026 0.615615i −0.999881 0.0154228i \(-0.995091\pi\)
0.799856 0.600193i \(-0.204909\pi\)
\(542\) −0.527864 0.383516i −0.0226737 0.0164734i
\(543\) 0 0
\(544\) 2.00000 6.15537i 0.0857493 0.263909i
\(545\) 1.23607 3.80423i 0.0529473 0.162955i
\(546\) 0 0
\(547\) 15.5623 + 11.3067i 0.665396 + 0.483439i 0.868481 0.495723i \(-0.165097\pi\)
−0.203085 + 0.979161i \(0.565097\pi\)
\(548\) −4.76393 14.6619i −0.203505 0.626324i
\(549\) 0 0
\(550\) −2.54508 + 2.12663i −0.108523 + 0.0906797i
\(551\) 2.29180 0.0976338
\(552\) 0 0
\(553\) 13.0902 + 9.51057i 0.556651 + 0.404430i
\(554\) 6.69098 4.86128i 0.284273 0.206536i
\(555\) 0 0
\(556\) −2.35410 + 7.24518i −0.0998362 + 0.307264i
\(557\) 11.0623 8.03724i 0.468725 0.340549i −0.328219 0.944602i \(-0.606448\pi\)
0.796944 + 0.604053i \(0.206448\pi\)
\(558\) 0 0
\(559\) 0.145898 + 0.449028i 0.00617083 + 0.0189919i
\(560\) 3.61803 0.152890
\(561\) 0 0
\(562\) −7.88854 −0.332758
\(563\) −14.0000 43.0876i −0.590030 1.81592i −0.578057 0.815996i \(-0.696189\pi\)
−0.0119724 0.999928i \(-0.503811\pi\)
\(564\) 0 0
\(565\) −10.0902 + 7.33094i −0.424497 + 0.308415i
\(566\) 1.14590 3.52671i 0.0481657 0.148239i
\(567\) 0 0
\(568\) −0.236068 + 0.171513i −0.00990519 + 0.00719654i
\(569\) 12.0172 + 8.73102i 0.503788 + 0.366023i 0.810462 0.585791i \(-0.199216\pi\)
−0.306674 + 0.951815i \(0.599216\pi\)
\(570\) 0 0
\(571\) −21.5066 −0.900022 −0.450011 0.893023i \(-0.648580\pi\)
−0.450011 + 0.893023i \(0.648580\pi\)
\(572\) 0.763932 + 1.90211i 0.0319416 + 0.0795313i
\(573\) 0 0
\(574\) 10.4271 + 32.0912i 0.435217 + 1.33946i
\(575\) 3.92705 + 2.85317i 0.163769 + 0.118985i
\(576\) 0 0
\(577\) −2.20163 + 6.77591i −0.0916549 + 0.282085i −0.986367 0.164558i \(-0.947380\pi\)
0.894713 + 0.446642i \(0.147380\pi\)
\(578\) 7.69098 23.6704i 0.319903 0.984559i
\(579\) 0 0
\(580\) 3.00000 + 2.17963i 0.124568 + 0.0905041i
\(581\) 5.52786 + 17.0130i 0.229334 + 0.705819i
\(582\) 0 0
\(583\) 4.92705 19.5887i 0.204058 0.811280i
\(584\) 10.9443 0.452877
\(585\) 0 0
\(586\) 8.92705 + 6.48588i 0.368773 + 0.267929i
\(587\) 28.1803 20.4742i 1.16313 0.845061i 0.172957 0.984929i \(-0.444668\pi\)
0.990170 + 0.139868i \(0.0446678\pi\)
\(588\) 0 0
\(589\) 1.76393 5.42882i 0.0726816 0.223691i
\(590\) −11.8262 + 8.59226i −0.486879 + 0.353738i
\(591\) 0 0
\(592\) −0.190983 0.587785i −0.00784935 0.0241578i
\(593\) 2.58359 0.106095 0.0530477 0.998592i \(-0.483106\pi\)
0.0530477 + 0.998592i \(0.483106\pi\)
\(594\) 0 0
\(595\) 23.4164 0.959979
\(596\) 2.76393 + 8.50651i 0.113215 + 0.348440i
\(597\) 0 0
\(598\) 2.42705 1.76336i 0.0992495 0.0721090i
\(599\) 1.32624 4.08174i 0.0541886 0.166775i −0.920299 0.391215i \(-0.872055\pi\)
0.974488 + 0.224439i \(0.0720550\pi\)
\(600\) 0 0
\(601\) 28.3885 20.6255i 1.15799 0.841331i 0.168470 0.985707i \(-0.446117\pi\)
0.989523 + 0.144376i \(0.0461174\pi\)
\(602\) −2.23607 1.62460i −0.0911353 0.0662137i
\(603\) 0 0
\(604\) −12.4721 −0.507484
\(605\) 10.8992 1.48584i 0.443115 0.0604080i
\(606\) 0 0
\(607\) −5.05573 15.5599i −0.205206 0.631558i −0.999705 0.0242929i \(-0.992267\pi\)
0.794499 0.607265i \(-0.207733\pi\)
\(608\) 0.500000 + 0.363271i 0.0202777 + 0.0147326i
\(609\) 0 0
\(610\) 3.47214 10.6861i 0.140583 0.432669i
\(611\) 0.500000 1.53884i 0.0202278 0.0622549i
\(612\) 0 0
\(613\) −36.7426 26.6951i −1.48402 1.07820i −0.976233 0.216723i \(-0.930463\pi\)
−0.507788 0.861482i \(-0.669537\pi\)
\(614\) 8.29180 + 25.5195i 0.334630 + 1.02988i
\(615\) 0 0
\(616\) −10.1631 6.37988i −0.409484 0.257053i
\(617\) −23.0557 −0.928189 −0.464094 0.885786i \(-0.653620\pi\)
−0.464094 + 0.885786i \(0.653620\pi\)
\(618\) 0 0
\(619\) −19.2082 13.9556i −0.772043 0.560922i 0.130537 0.991443i \(-0.458330\pi\)
−0.902580 + 0.430521i \(0.858330\pi\)
\(620\) 7.47214 5.42882i 0.300088 0.218027i
\(621\) 0 0
\(622\) 8.61803 26.5236i 0.345552 1.06350i
\(623\) −15.0623 + 10.9434i −0.603459 + 0.438438i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 5.70820 0.228146
\(627\) 0 0
\(628\) −5.61803 −0.224184
\(629\) −1.23607 3.80423i −0.0492853 0.151684i
\(630\) 0 0
\(631\) −1.38197 + 1.00406i −0.0550152 + 0.0399709i −0.614953 0.788564i \(-0.710825\pi\)
0.559938 + 0.828535i \(0.310825\pi\)
\(632\) −1.38197 + 4.25325i −0.0549717 + 0.169185i
\(633\) 0 0
\(634\) 8.82624 6.41264i 0.350535 0.254678i
\(635\) −10.2082 7.41669i −0.405100 0.294323i
\(636\) 0 0
\(637\) 3.76393 0.149132
\(638\) −4.58359 11.4127i −0.181466 0.451832i
\(639\) 0 0
\(640\) 0.309017 + 0.951057i 0.0122150 + 0.0375938i
\(641\) 30.2984 + 22.0131i 1.19671 + 0.869463i 0.993957 0.109766i \(-0.0350101\pi\)
0.202756 + 0.979229i \(0.435010\pi\)
\(642\) 0 0
\(643\) −1.05573 + 3.24920i −0.0416339 + 0.128136i −0.969713 0.244247i \(-0.921459\pi\)
0.928079 + 0.372383i \(0.121459\pi\)
\(644\) −5.42705 + 16.7027i −0.213856 + 0.658180i
\(645\) 0 0
\(646\) 3.23607 + 2.35114i 0.127321 + 0.0925044i
\(647\) 9.52786 + 29.3238i 0.374579 + 1.15284i 0.943762 + 0.330625i \(0.107259\pi\)
−0.569183 + 0.822211i \(0.692741\pi\)
\(648\) 0 0
\(649\) 48.3713 3.28195i 1.89874 0.128828i
\(650\) 0.618034 0.0242413
\(651\) 0 0
\(652\) −14.4721 10.5146i −0.566773 0.411784i
\(653\) −12.8262 + 9.31881i −0.501929 + 0.364673i −0.809754 0.586770i \(-0.800399\pi\)
0.307824 + 0.951443i \(0.400399\pi\)
\(654\) 0 0
\(655\) −6.47214 + 19.9192i −0.252887 + 0.778307i
\(656\) −7.54508 + 5.48183i −0.294586 + 0.214029i
\(657\) 0 0
\(658\) 2.92705 + 9.00854i 0.114108 + 0.351189i
\(659\) −28.2705 −1.10126 −0.550631 0.834749i \(-0.685613\pi\)
−0.550631 + 0.834749i \(0.685613\pi\)
\(660\) 0 0
\(661\) 41.4853 1.61359 0.806795 0.590831i \(-0.201200\pi\)
0.806795 + 0.590831i \(0.201200\pi\)
\(662\) 2.37132 + 7.29818i 0.0921641 + 0.283652i
\(663\) 0 0
\(664\) −4.00000 + 2.90617i −0.155230 + 0.112781i
\(665\) −0.690983 + 2.12663i −0.0267952 + 0.0824671i
\(666\) 0 0
\(667\) −14.5623 + 10.5801i −0.563855 + 0.409664i
\(668\) −9.35410 6.79615i −0.361921 0.262951i
\(669\) 0 0
\(670\) −8.18034 −0.316034
\(671\) −28.5967 + 23.8949i −1.10397 + 0.922453i
\(672\) 0 0
\(673\) −14.0902 43.3651i −0.543136 1.67160i −0.725381 0.688348i \(-0.758336\pi\)
0.182245 0.983253i \(-0.441664\pi\)
\(674\) 16.1803 + 11.7557i 0.623243 + 0.452813i
\(675\) 0 0
\(676\) −3.89919 + 12.0005i −0.149969 + 0.461556i
\(677\) −4.43769 + 13.6578i −0.170554 + 0.524913i −0.999403 0.0345610i \(-0.988997\pi\)
0.828848 + 0.559474i \(0.188997\pi\)
\(678\) 0 0
\(679\) −43.7426 31.7809i −1.67869 1.21964i
\(680\) 2.00000 + 6.15537i 0.0766965 + 0.236048i
\(681\) 0 0
\(682\) −30.5623 + 2.07363i −1.17029 + 0.0794033i
\(683\) −31.1246 −1.19095 −0.595475 0.803374i \(-0.703036\pi\)
−0.595475 + 0.803374i \(0.703036\pi\)
\(684\) 0 0
\(685\) 12.4721 + 9.06154i 0.476536 + 0.346224i
\(686\) 2.66312 1.93487i 0.101678 0.0738736i
\(687\) 0 0
\(688\) 0.236068 0.726543i 0.00900001 0.0276992i
\(689\) −3.04508 + 2.21238i −0.116008 + 0.0842851i
\(690\) 0 0
\(691\) −0.465558 1.43284i −0.0177107 0.0545078i 0.941811 0.336144i \(-0.109123\pi\)
−0.959521 + 0.281636i \(0.909123\pi\)
\(692\) 24.5623 0.933719
\(693\) 0 0
\(694\) −3.81966 −0.144992
\(695\) −2.35410 7.24518i −0.0892962 0.274825i
\(696\) 0 0
\(697\) −48.8328 + 35.4791i −1.84967 + 1.34387i
\(698\) 3.09017 9.51057i 0.116965 0.359980i
\(699\) 0 0
\(700\) −2.92705 + 2.12663i −0.110632 + 0.0803789i
\(701\) −16.2361 11.7962i −0.613228 0.445536i 0.237322 0.971431i \(-0.423730\pi\)
−0.850549 + 0.525895i \(0.823730\pi\)
\(702\) 0 0
\(703\) 0.381966 0.0144061
\(704\) 0.809017 3.21644i 0.0304910 0.121224i
\(705\) 0 0
\(706\) 7.61803 + 23.4459i 0.286708 + 0.882398i
\(707\) 11.7082 + 8.50651i 0.440332 + 0.319920i
\(708\) 0 0
\(709\) −7.61803 + 23.4459i −0.286101 + 0.880529i 0.699965 + 0.714177i \(0.253199\pi\)
−0.986066 + 0.166352i \(0.946801\pi\)
\(710\) 0.0901699 0.277515i 0.00338402 0.0104149i
\(711\) 0 0
\(712\) −4.16312 3.02468i −0.156019 0.113355i
\(713\) 13.8541 + 42.6385i 0.518840 + 1.59683i
\(714\) 0 0
\(715\) −1.73607 1.08981i −0.0649253 0.0407567i
\(716\) 11.1459 0.416542
\(717\) 0 0
\(718\) 20.4164 + 14.8334i 0.761934 + 0.553577i
\(719\) −19.3262 + 14.0413i −0.720747 + 0.523653i −0.886623 0.462493i \(-0.846955\pi\)
0.165876 + 0.986147i \(0.446955\pi\)
\(720\) 0 0
\(721\) −11.0172 + 33.9075i −0.410303 + 1.26278i
\(722\) 15.0623 10.9434i 0.560561 0.407271i
\(723\) 0 0
\(724\) −7.52786 23.1684i −0.279771 0.861046i
\(725\) −3.70820 −0.137719
\(726\) 0 0
\(727\) −46.6312 −1.72946 −0.864728 0.502241i \(-0.832509\pi\)
−0.864728 + 0.502241i \(0.832509\pi\)
\(728\) 0.690983 + 2.12663i 0.0256095 + 0.0788180i
\(729\) 0 0
\(730\) −8.85410 + 6.43288i −0.327705 + 0.238092i
\(731\) 1.52786 4.70228i 0.0565101 0.173920i
\(732\) 0 0
\(733\) 23.0344 16.7355i 0.850797 0.618140i −0.0745690 0.997216i \(-0.523758\pi\)
0.925366 + 0.379076i \(0.123758\pi\)
\(734\) −6.76393 4.91428i −0.249661 0.181390i
\(735\) 0 0
\(736\) −4.85410 −0.178925
\(737\) 22.9787 + 14.4248i 0.846432 + 0.531346i
\(738\) 0 0
\(739\) 8.53444 + 26.2663i 0.313945 + 0.966222i 0.976187 + 0.216932i \(0.0696050\pi\)
−0.662242 + 0.749290i \(0.730395\pi\)
\(740\) 0.500000 + 0.363271i 0.0183804 + 0.0133541i
\(741\) 0 0
\(742\) 6.80902 20.9560i 0.249967 0.769319i
\(743\) 2.20820 6.79615i 0.0810111 0.249327i −0.902345 0.431014i \(-0.858156\pi\)
0.983356 + 0.181687i \(0.0581559\pi\)
\(744\) 0 0
\(745\) −7.23607 5.25731i −0.265109 0.192613i
\(746\) −4.28115 13.1760i −0.156744 0.482409i
\(747\) 0 0
\(748\) 5.23607 20.8172i 0.191450 0.761154i
\(749\) −64.7214 −2.36487
\(750\) 0 0
\(751\) 24.4721 + 17.7800i 0.893001 + 0.648803i 0.936659 0.350243i \(-0.113901\pi\)
−0.0436578 + 0.999047i \(0.513901\pi\)
\(752\) −2.11803 + 1.53884i −0.0772368 + 0.0561158i
\(753\) 0 0
\(754\) −0.708204 + 2.17963i −0.0257913 + 0.0793774i
\(755\) 10.0902 7.33094i 0.367219 0.266800i
\(756\) 0 0
\(757\) 0.572949 + 1.76336i 0.0208242 + 0.0640903i 0.960929 0.276796i \(-0.0892728\pi\)
−0.940104 + 0.340887i \(0.889273\pi\)
\(758\) −32.7426 −1.18927
\(759\) 0 0
\(760\) −0.618034 −0.0224184
\(761\) 2.43769 + 7.50245i 0.0883663 + 0.271964i 0.985468 0.169860i \(-0.0543316\pi\)
−0.897102 + 0.441824i \(0.854332\pi\)
\(762\) 0 0
\(763\) −11.7082 + 8.50651i −0.423865 + 0.307956i
\(764\) 4.23607 13.0373i 0.153256 0.471672i
\(765\) 0 0
\(766\) −23.0172 + 16.7230i −0.831646 + 0.604226i
\(767\) −7.30902 5.31031i −0.263913 0.191744i
\(768\) 0 0
\(769\) −34.7984 −1.25486 −0.627431 0.778672i \(-0.715893\pi\)
−0.627431 + 0.778672i \(0.715893\pi\)
\(770\) 11.9721 0.812299i 0.431446 0.0292732i
\(771\) 0 0
\(772\) −1.14590 3.52671i −0.0412418 0.126929i
\(773\) 3.07295 + 2.23263i 0.110526 + 0.0803021i 0.641675 0.766976i \(-0.278240\pi\)
−0.531149 + 0.847278i \(0.678240\pi\)
\(774\) 0 0
\(775\) −2.85410 + 8.78402i −0.102522 + 0.315531i
\(776\) 4.61803 14.2128i 0.165778 0.510211i
\(777\) 0 0
\(778\) 2.85410 + 2.07363i 0.102325 + 0.0743431i
\(779\) −1.78115 5.48183i −0.0638164 0.196407i
\(780\) 0 0
\(781\) −0.742646 + 0.620541i −0.0265740 + 0.0222047i
\(782\) −31.4164 −1.12345
\(783\) 0 0
\(784\) −4.92705 3.57971i −0.175966 0.127847i
\(785\) 4.54508 3.30220i 0.162221 0.117860i
\(786\) 0 0
\(787\) −5.61803 + 17.2905i −0.200261 + 0.616341i 0.799613 + 0.600515i \(0.205038\pi\)
−0.999875 + 0.0158258i \(0.994962\pi\)
\(788\) 2.92705 2.12663i 0.104272 0.0757580i
\(789\) 0 0
\(790\) −1.38197 4.25325i −0.0491681 0.151324i
\(791\) 45.1246 1.60445
\(792\) 0 0
\(793\) 6.94427 0.246598
\(794\) 3.91641 + 12.0535i 0.138988 + 0.427761i
\(795\) 0 0
\(796\) 10.4721 7.60845i 0.371175 0.269674i
\(797\) −4.24671 + 13.0700i −0.150426 + 0.462964i −0.997669 0.0682419i \(-0.978261\pi\)
0.847243 + 0.531206i \(0.178261\pi\)
\(798\) 0 0
\(799\) −13.7082 + 9.95959i −0.484961 + 0.352345i
\(800\) −0.809017 0.587785i −0.0286031 0.0207813i
\(801\) 0 0
\(802\) 1.67376 0.0591026
\(803\) 36.2148 2.45714i 1.27799 0.0867107i
\(804\) 0 0
\(805\) −5.42705 16.7027i −0.191278 0.588694i
\(806\) 4.61803 + 3.35520i 0.162663 + 0.118182i
\(807\) 0 0
\(808\) −1.23607 + 3.80423i −0.0434847 + 0.133832i
\(809\) 1.07953 3.32244i 0.0379541 0.116811i −0.930284 0.366839i \(-0.880440\pi\)
0.968239 + 0.250028i \(0.0804399\pi\)
\(810\) 0 0
\(811\) −21.2533 15.4414i −0.746304 0.542222i 0.148375 0.988931i \(-0.452596\pi\)
−0.894679 + 0.446710i \(0.852596\pi\)
\(812\) −4.14590 12.7598i −0.145492 0.447780i
\(813\) 0 0
\(814\) −0.763932 1.90211i −0.0267758 0.0666690i
\(815\) 17.8885 0.626608
\(816\) 0 0
\(817\) 0.381966 + 0.277515i 0.0133633 + 0.00970901i
\(818\) −11.5000 + 8.35524i −0.402088 + 0.292134i
\(819\) 0 0
\(820\) 2.88197 8.86978i 0.100643 0.309746i
\(821\) 10.3262 7.50245i 0.360388 0.261837i −0.392826 0.919613i \(-0.628502\pi\)
0.753214 + 0.657776i \(0.228502\pi\)
\(822\) 0 0
\(823\) 10.1697 + 31.2991i 0.354493 + 1.09102i 0.956303 + 0.292379i \(0.0944467\pi\)
−0.601809 + 0.798640i \(0.705553\pi\)
\(824\) −9.85410 −0.343284
\(825\) 0 0
\(826\) 52.8885 1.84023
\(827\) 3.00000 + 9.23305i 0.104320 + 0.321065i 0.989570 0.144051i \(-0.0460128\pi\)
−0.885250 + 0.465115i \(0.846013\pi\)
\(828\) 0 0
\(829\) 18.8541 13.6983i 0.654830 0.475762i −0.210083 0.977684i \(-0.567373\pi\)
0.864913 + 0.501922i \(0.167373\pi\)
\(830\) 1.52786 4.70228i 0.0530329 0.163219i
\(831\) 0 0
\(832\) −0.500000 + 0.363271i −0.0173344 + 0.0125942i
\(833\) −31.8885 23.1684i −1.10487 0.802737i
\(834\) 0 0
\(835\) 11.5623 0.400130
\(836\) 1.73607 + 1.08981i 0.0600432 + 0.0376920i
\(837\) 0 0
\(838\) 3.46149 + 10.6534i 0.119575 + 0.368015i
\(839\) 26.7984 + 19.4702i 0.925183 + 0.672185i 0.944809 0.327623i \(-0.106248\pi\)
−0.0196260 + 0.999807i \(0.506248\pi\)
\(840\) 0 0
\(841\) −4.71227 + 14.5029i −0.162492 + 0.500099i
\(842\) 8.32624 25.6255i 0.286941 0.883114i
\(843\) 0 0
\(844\) 18.9443 + 13.7638i 0.652089 + 0.473770i
\(845\) −3.89919 12.0005i −0.134136 0.412828i
\(846\) 0 0
\(847\) −35.0623 18.8294i −1.20476 0.646985i
\(848\) 6.09017 0.209137
\(849\) 0 0
\(850\) −5.23607 3.80423i −0.179596 0.130484i
\(851\) −2.42705 + 1.76336i −0.0831982 + 0.0604471i
\(852\) 0 0
\(853\) 15.0836 46.4225i 0.516452 1.58948i −0.264171 0.964476i \(-0.585098\pi\)
0.780624 0.625001i \(-0.214902\pi\)
\(854\) −32.8885 + 23.8949i −1.12542 + 0.817668i
\(855\) 0 0
\(856\) −5.52786 17.0130i −0.188939 0.581493i
\(857\) −55.2361 −1.88683 −0.943414 0.331617i \(-0.892406\pi\)
−0.943414 + 0.331617i \(0.892406\pi\)
\(858\) 0 0
\(859\) 51.0344 1.74127 0.870636 0.491927i \(-0.163707\pi\)
0.870636 + 0.491927i \(0.163707\pi\)
\(860\) 0.236068 + 0.726543i 0.00804985 + 0.0247749i
\(861\) 0 0
\(862\) 1.76393 1.28157i 0.0600798 0.0436505i
\(863\) 0.0450850 0.138757i 0.00153471 0.00472335i −0.950286 0.311378i \(-0.899210\pi\)
0.951821 + 0.306654i \(0.0992096\pi\)
\(864\) 0 0
\(865\) −19.8713 + 14.4374i −0.675645 + 0.490885i
\(866\) 26.7984 + 19.4702i 0.910646 + 0.661623i
\(867\) 0 0
\(868\) −33.4164 −1.13423
\(869\) −3.61803 + 14.3844i −0.122733 + 0.487956i
\(870\) 0 0
\(871\) −1.56231 4.80828i −0.0529367 0.162922i
\(872\) −3.23607 2.35114i −0.109587 0.0796197i
\(873\) 0 0
\(874\) 0.927051 2.85317i 0.0313580 0.0965099i
\(875\) 1.11803 3.44095i 0.0377964 0.116326i
\(876\) 0 0
\(877\) 18.9164 + 13.7436i 0.638762 + 0.464088i 0.859425 0.511263i \(-0.170822\pi\)
−0.220663 + 0.975350i \(0.570822\pi\)
\(878\) 6.23607 + 19.1926i 0.210457 + 0.647720i
\(879\) 0 0
\(880\) 1.23607 + 3.07768i 0.0416678 + 0.103749i
\(881\) −7.79837 −0.262734 −0.131367 0.991334i \(-0.541937\pi\)
−0.131367 + 0.991334i \(0.541937\pi\)
\(882\) 0 0
\(883\) −20.4721 14.8739i −0.688942 0.500546i 0.187370 0.982289i \(-0.440004\pi\)
−0.876312 + 0.481744i \(0.840004\pi\)
\(884\) −3.23607 + 2.35114i −0.108841 + 0.0790774i
\(885\) 0 0
\(886\) −8.90983 + 27.4216i −0.299332 + 0.921248i
\(887\) 1.01722 0.739054i 0.0341549 0.0248150i −0.570577 0.821244i \(-0.693280\pi\)
0.604732 + 0.796429i \(0.293280\pi\)
\(888\) 0 0
\(889\) 14.1074 + 43.4181i 0.473147 + 1.45620i
\(890\) 5.14590 0.172491
\(891\) 0 0
\(892\) 7.61803 0.255071
\(893\) −0.500000 1.53884i −0.0167319 0.0514954i
\(894\) 0 0
\(895\) −9.01722 + 6.55139i −0.301412 + 0.218989i
\(896\) 1.11803 3.44095i 0.0373509 0.114954i
\(897\) 0 0
\(898\) −15.0623 + 10.9434i −0.502636 + 0.365186i
\(899\) −27.7082 20.1312i −0.924120 0.671413i
\(900\) 0 0
\(901\) 39.4164 1.31315
\(902\) −23.7361 + 19.8334i −0.790325 + 0.660381i
\(903\) 0 0
\(904\) 3.85410 + 11.8617i 0.128186 + 0.394514i
\(905\) 19.7082 + 14.3188i 0.655123 + 0.475975i
\(906\) 0 0
\(907\) 9.23607 28.4257i 0.306679 0.943860i −0.672367 0.740218i \(-0.734722\pi\)
0.979045 0.203642i \(-0.0652777\pi\)
\(908\) 1.29180 3.97574i 0.0428698 0.131940i
\(909\) 0 0
\(910\) −1.80902 1.31433i −0.0599683 0.0435695i
\(911\) 3.29180 + 10.1311i 0.109062 + 0.335659i 0.990662 0.136338i \(-0.0435334\pi\)
−0.881600 + 0.471997i \(0.843533\pi\)
\(912\) 0 0
\(913\) −12.5836 + 10.5146i −0.416456 + 0.347983i
\(914\) 9.88854 0.327084
\(915\) 0 0
\(916\) 9.32624 + 6.77591i 0.308148 + 0.223882i
\(917\) 61.3050 44.5407i 2.02447 1.47086i
\(918\) 0 0
\(919\) −5.58359 + 17.1845i −0.184186 + 0.566865i −0.999933 0.0115426i \(-0.996326\pi\)
0.815748 + 0.578408i \(0.196326\pi\)
\(920\) 3.92705 2.85317i 0.129471 0.0940662i
\(921\) 0 0
\(922\) 7.65248 + 23.5519i 0.252021 + 0.775640i
\(923\) 0.180340 0.00593596
\(924\) 0 0
\(925\) −0.618034 −0.0203208
\(926\) −1.04508 3.21644i −0.0343436 0.105699i
\(927\) 0 0
\(928\) 3.00000 2.17963i 0.0984798 0.0715498i
\(929\) 2.17376 6.69015i 0.0713188 0.219497i −0.909044 0.416701i \(-0.863186\pi\)
0.980362 + 0.197204i \(0.0631862\pi\)
\(930\) 0 0
\(931\) 3.04508 2.21238i 0.0997986 0.0725079i
\(932\) −13.1803 9.57608i −0.431736 0.313675i
\(933\) 0 0
\(934\) −7.05573 −0.230870
\(935\) 8.00000 + 19.9192i 0.261628 + 0.651427i
\(936\) 0 0
\(937\) 14.9443 + 45.9937i 0.488208 + 1.50255i 0.827280 + 0.561790i \(0.189887\pi\)
−0.339072 + 0.940760i \(0.610113\pi\)
\(938\) 23.9443 + 17.3965i 0.781808 + 0.568017i
\(939\) 0 0
\(940\) 0.809017 2.48990i 0.0263872 0.0812115i
\(941\) −3.41641 + 10.5146i −0.111372 + 0.342767i −0.991173 0.132575i \(-0.957676\pi\)
0.879801 + 0.475342i \(0.157676\pi\)
\(942\) 0 0
\(943\) 36.6246 + 26.6093i 1.19266 + 0.866519i
\(944\) 4.51722 + 13.9026i 0.147023 + 0.452490i
\(945\) 0 0
\(946\) 0.618034 2.45714i 0.0200940 0.0798886i
\(947\) 3.30495 0.107396 0.0536982 0.998557i \(-0.482899\pi\)
0.0536982 + 0.998557i \(0.482899\pi\)
\(948\) 0 0
\(949\) −5.47214 3.97574i −0.177633 0.129058i
\(950\) 0.500000 0.363271i 0.0162221 0.0117861i
\(951\) 0 0
\(952\) 7.23607 22.2703i 0.234522 0.721785i
\(953\) −36.2148 + 26.3116i −1.17311 + 0.852316i −0.991378 0.131032i \(-0.958171\pi\)
−0.181734 + 0.983348i \(0.558171\pi\)
\(954\) 0 0
\(955\) 4.23607 + 13.0373i 0.137076 + 0.421876i
\(956\) −22.1803 −0.717363
\(957\) 0 0
\(958\) 39.0132 1.26046
\(959\) −17.2361 53.0472i −0.556582 1.71298i
\(960\) 0 0
\(961\) −43.9336 + 31.9196i −1.41721 + 1.02967i
\(962\) −0.118034 + 0.363271i −0.00380557 + 0.0117123i
\(963\) 0 0
\(964\) 20.7254 15.0579i 0.667521 0.484982i
\(965\) 3.00000 + 2.17963i 0.0965734 + 0.0701647i
\(966\) 0 0
\(967\) −4.25735 −0.136907 −0.0684536 0.997654i \(-0.521807\pi\)
−0.0684536 + 0.997654i \(0.521807\pi\)
\(968\) 1.95492 10.8249i 0.0628333 0.347925i
\(969\) 0 0
\(970\) 4.61803 + 14.2128i 0.148276 + 0.456347i
\(971\) 4.69098 + 3.40820i 0.150541 + 0.109374i 0.660506 0.750821i \(-0.270342\pi\)
−0.509965 + 0.860195i \(0.670342\pi\)
\(972\) 0 0
\(973\) −8.51722 + 26.2133i −0.273050 + 0.840360i
\(974\) 12.4721 38.3853i 0.399633 1.22994i
\(975\) 0 0
\(976\) −9.09017 6.60440i −0.290969 0.211402i
\(977\) 7.67376 + 23.6174i 0.245505 + 0.755588i 0.995553 + 0.0942040i \(0.0300306\pi\)
−0.750048 + 0.661384i \(0.769969\pi\)
\(978\) 0 0
\(979\) −14.4549 9.07405i −0.461981 0.290008i
\(980\) 6.09017 0.194543
\(981\) 0 0
\(982\) −1.88197 1.36733i −0.0600559 0.0436332i
\(983\) −26.7254 + 19.4172i −0.852409 + 0.619311i −0.925809 0.377991i \(-0.876615\pi\)
0.0734004 + 0.997303i \(0.476615\pi\)
\(984\) 0 0
\(985\) −1.11803 + 3.44095i −0.0356235 + 0.109638i
\(986\) 19.4164 14.1068i 0.618344 0.449254i
\(987\) 0 0
\(988\) −0.118034 0.363271i −0.00375516 0.0115572i
\(989\) −3.70820 −0.117914
\(990\) 0 0
\(991\) 8.94427 0.284124 0.142062 0.989858i \(-0.454627\pi\)
0.142062 + 0.989858i \(0.454627\pi\)
\(992\) −2.85410 8.78402i −0.0906178 0.278893i
\(993\) 0 0
\(994\) −0.854102 + 0.620541i −0.0270905 + 0.0196824i
\(995\) −4.00000 + 12.3107i −0.126809 + 0.390277i
\(996\) 0 0
\(997\) 11.1459 8.09797i 0.352994 0.256465i −0.397130 0.917762i \(-0.629994\pi\)
0.750124 + 0.661297i \(0.229994\pi\)
\(998\) 27.2533 + 19.8007i 0.862688 + 0.626779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.a.181.1 4
3.2 odd 2 330.2.m.d.181.1 yes 4
11.9 even 5 inner 990.2.n.a.361.1 4
33.8 even 10 3630.2.a.bi.1.1 2
33.14 odd 10 3630.2.a.bc.1.2 2
33.20 odd 10 330.2.m.d.31.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.m.d.31.1 4 33.20 odd 10
330.2.m.d.181.1 yes 4 3.2 odd 2
990.2.n.a.181.1 4 1.1 even 1 trivial
990.2.n.a.361.1 4 11.9 even 5 inner
3630.2.a.bc.1.2 2 33.14 odd 10
3630.2.a.bi.1.1 2 33.8 even 10