Properties

Label 990.2.k.d.683.3
Level $990$
Weight $2$
Character 990.683
Analytic conductor $7.905$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(287,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-12,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 32x^{9} + 9x^{8} - 16x^{7} + 464x^{6} - 80x^{5} + 225x^{4} - 4000x^{3} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 683.3
Root \(-1.46707 + 1.68751i\) of defining polynomial
Character \(\chi\) \(=\) 990.683
Dual form 990.2.k.d.287.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(1.68751 + 1.46707i) q^{5} +(-0.220441 + 0.220441i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.155875 - 2.23063i) q^{10} -1.00000i q^{11} +(3.56880 + 3.56880i) q^{13} +0.311751 q^{14} -1.00000 q^{16} +(-1.29519 - 1.29519i) q^{17} +1.64906i q^{19} +(-1.46707 + 1.68751i) q^{20} +(-0.707107 + 0.707107i) q^{22} +(2.90643 - 2.90643i) q^{23} +(0.695400 + 4.95141i) q^{25} -5.04704i q^{26} +(-0.220441 - 0.220441i) q^{28} -3.24589 q^{29} +5.81287 q^{31} +(0.707107 + 0.707107i) q^{32} +1.83168i q^{34} +(-0.695400 + 0.0485942i) q^{35} +(-7.26705 + 7.26705i) q^{37} +(1.16606 - 1.16606i) q^{38} +(2.23063 - 0.155875i) q^{40} -4.97333i q^{41} +(6.32247 + 6.32247i) q^{43} +1.00000 q^{44} -4.11032 q^{46} +(3.53601 + 3.53601i) q^{47} +6.90281i q^{49} +(3.00945 - 3.99289i) q^{50} +(-3.56880 + 3.56880i) q^{52} +(-6.03331 + 6.03331i) q^{53} +(1.46707 - 1.68751i) q^{55} +0.311751i q^{56} +(2.29519 + 2.29519i) q^{58} +6.33213 q^{59} -1.69396 q^{61} +(-4.11032 - 4.11032i) q^{62} -1.00000i q^{64} +(0.786709 + 11.2581i) q^{65} +(2.68599 - 2.68599i) q^{67} +(1.29519 - 1.29519i) q^{68} +(0.526083 + 0.457360i) q^{70} +0.733819i q^{71} +(2.84498 + 2.84498i) q^{73} +10.2772 q^{74} -1.64906 q^{76} +(0.220441 + 0.220441i) q^{77} -13.9310i q^{79} +(-1.68751 - 1.46707i) q^{80} +(-3.51668 + 3.51668i) q^{82} +(-3.45193 + 3.45193i) q^{83} +(-0.285514 - 4.08580i) q^{85} -8.94133i q^{86} +(-0.707107 - 0.707107i) q^{88} +14.0326 q^{89} -1.57342 q^{91} +(2.90643 + 2.90643i) q^{92} -5.00067i q^{94} +(-2.41929 + 2.78281i) q^{95} +(4.93128 - 4.93128i) q^{97} +(4.88102 - 4.88102i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{13} - 12 q^{16} + 8 q^{17} - 8 q^{23} - 16 q^{31} - 4 q^{37} - 8 q^{38} + 4 q^{40} + 8 q^{43} + 12 q^{44} + 16 q^{46} - 24 q^{47} - 8 q^{50} + 12 q^{52} + 16 q^{53} + 4 q^{58} + 32 q^{59} + 16 q^{61}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.68751 + 1.46707i 0.754679 + 0.656095i
\(6\) 0 0
\(7\) −0.220441 + 0.220441i −0.0833188 + 0.0833188i −0.747538 0.664219i \(-0.768764\pi\)
0.664219 + 0.747538i \(0.268764\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −0.155875 2.23063i −0.0492921 0.705387i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 3.56880 + 3.56880i 0.989807 + 0.989807i 0.999949 0.0101420i \(-0.00322834\pi\)
−0.0101420 + 0.999949i \(0.503228\pi\)
\(14\) 0.311751 0.0833188
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.29519 1.29519i −0.314131 0.314131i 0.532377 0.846507i \(-0.321299\pi\)
−0.846507 + 0.532377i \(0.821299\pi\)
\(18\) 0 0
\(19\) 1.64906i 0.378321i 0.981946 + 0.189160i \(0.0605766\pi\)
−0.981946 + 0.189160i \(0.939423\pi\)
\(20\) −1.46707 + 1.68751i −0.328047 + 0.377339i
\(21\) 0 0
\(22\) −0.707107 + 0.707107i −0.150756 + 0.150756i
\(23\) 2.90643 2.90643i 0.606033 0.606033i −0.335874 0.941907i \(-0.609032\pi\)
0.941907 + 0.335874i \(0.109032\pi\)
\(24\) 0 0
\(25\) 0.695400 + 4.95141i 0.139080 + 0.990281i
\(26\) 5.04704i 0.989807i
\(27\) 0 0
\(28\) −0.220441 0.220441i −0.0416594 0.0416594i
\(29\) −3.24589 −0.602747 −0.301374 0.953506i \(-0.597445\pi\)
−0.301374 + 0.953506i \(0.597445\pi\)
\(30\) 0 0
\(31\) 5.81287 1.04402 0.522011 0.852939i \(-0.325182\pi\)
0.522011 + 0.852939i \(0.325182\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 1.83168i 0.314131i
\(35\) −0.695400 + 0.0485942i −0.117544 + 0.00821392i
\(36\) 0 0
\(37\) −7.26705 + 7.26705i −1.19470 + 1.19470i −0.218963 + 0.975733i \(0.570267\pi\)
−0.975733 + 0.218963i \(0.929733\pi\)
\(38\) 1.16606 1.16606i 0.189160 0.189160i
\(39\) 0 0
\(40\) 2.23063 0.155875i 0.352693 0.0246460i
\(41\) 4.97333i 0.776704i −0.921511 0.388352i \(-0.873044\pi\)
0.921511 0.388352i \(-0.126956\pi\)
\(42\) 0 0
\(43\) 6.32247 + 6.32247i 0.964168 + 0.964168i 0.999380 0.0352119i \(-0.0112106\pi\)
−0.0352119 + 0.999380i \(0.511211\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −4.11032 −0.606033
\(47\) 3.53601 + 3.53601i 0.515780 + 0.515780i 0.916292 0.400512i \(-0.131168\pi\)
−0.400512 + 0.916292i \(0.631168\pi\)
\(48\) 0 0
\(49\) 6.90281i 0.986116i
\(50\) 3.00945 3.99289i 0.425601 0.564681i
\(51\) 0 0
\(52\) −3.56880 + 3.56880i −0.494903 + 0.494903i
\(53\) −6.03331 + 6.03331i −0.828739 + 0.828739i −0.987342 0.158604i \(-0.949301\pi\)
0.158604 + 0.987342i \(0.449301\pi\)
\(54\) 0 0
\(55\) 1.46707 1.68751i 0.197820 0.227544i
\(56\) 0.311751i 0.0416594i
\(57\) 0 0
\(58\) 2.29519 + 2.29519i 0.301374 + 0.301374i
\(59\) 6.33213 0.824373 0.412186 0.911100i \(-0.364765\pi\)
0.412186 + 0.911100i \(0.364765\pi\)
\(60\) 0 0
\(61\) −1.69396 −0.216889 −0.108445 0.994102i \(-0.534587\pi\)
−0.108445 + 0.994102i \(0.534587\pi\)
\(62\) −4.11032 4.11032i −0.522011 0.522011i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.786709 + 11.2581i 0.0975793 + 1.39639i
\(66\) 0 0
\(67\) 2.68599 2.68599i 0.328146 0.328146i −0.523735 0.851881i \(-0.675462\pi\)
0.851881 + 0.523735i \(0.175462\pi\)
\(68\) 1.29519 1.29519i 0.157065 0.157065i
\(69\) 0 0
\(70\) 0.526083 + 0.457360i 0.0628789 + 0.0546650i
\(71\) 0.733819i 0.0870884i 0.999052 + 0.0435442i \(0.0138649\pi\)
−0.999052 + 0.0435442i \(0.986135\pi\)
\(72\) 0 0
\(73\) 2.84498 + 2.84498i 0.332980 + 0.332980i 0.853717 0.520737i \(-0.174343\pi\)
−0.520737 + 0.853717i \(0.674343\pi\)
\(74\) 10.2772 1.19470
\(75\) 0 0
\(76\) −1.64906 −0.189160
\(77\) 0.220441 + 0.220441i 0.0251216 + 0.0251216i
\(78\) 0 0
\(79\) 13.9310i 1.56736i −0.621166 0.783679i \(-0.713341\pi\)
0.621166 0.783679i \(-0.286659\pi\)
\(80\) −1.68751 1.46707i −0.188670 0.164024i
\(81\) 0 0
\(82\) −3.51668 + 3.51668i −0.388352 + 0.388352i
\(83\) −3.45193 + 3.45193i −0.378898 + 0.378898i −0.870705 0.491806i \(-0.836337\pi\)
0.491806 + 0.870705i \(0.336337\pi\)
\(84\) 0 0
\(85\) −0.285514 4.08580i −0.0309683 0.443167i
\(86\) 8.94133i 0.964168i
\(87\) 0 0
\(88\) −0.707107 0.707107i −0.0753778 0.0753778i
\(89\) 14.0326 1.48745 0.743724 0.668487i \(-0.233058\pi\)
0.743724 + 0.668487i \(0.233058\pi\)
\(90\) 0 0
\(91\) −1.57342 −0.164939
\(92\) 2.90643 + 2.90643i 0.303017 + 0.303017i
\(93\) 0 0
\(94\) 5.00067i 0.515780i
\(95\) −2.41929 + 2.78281i −0.248214 + 0.285511i
\(96\) 0 0
\(97\) 4.93128 4.93128i 0.500695 0.500695i −0.410959 0.911654i \(-0.634806\pi\)
0.911654 + 0.410959i \(0.134806\pi\)
\(98\) 4.88102 4.88102i 0.493058 0.493058i
\(99\) 0 0
\(100\) −4.95141 + 0.695400i −0.495141 + 0.0695400i
\(101\) 7.22294i 0.718709i −0.933201 0.359355i \(-0.882997\pi\)
0.933201 0.359355i \(-0.117003\pi\)
\(102\) 0 0
\(103\) 13.0883 + 13.0883i 1.28962 + 1.28962i 0.935015 + 0.354609i \(0.115386\pi\)
0.354609 + 0.935015i \(0.384614\pi\)
\(104\) 5.04704 0.494903
\(105\) 0 0
\(106\) 8.53239 0.828739
\(107\) 6.08443 + 6.08443i 0.588204 + 0.588204i 0.937145 0.348941i \(-0.113458\pi\)
−0.348941 + 0.937145i \(0.613458\pi\)
\(108\) 0 0
\(109\) 15.4240i 1.47735i −0.674060 0.738677i \(-0.735451\pi\)
0.674060 0.738677i \(-0.264549\pi\)
\(110\) −2.23063 + 0.155875i −0.212682 + 0.0148621i
\(111\) 0 0
\(112\) 0.220441 0.220441i 0.0208297 0.0208297i
\(113\) −1.01545 + 1.01545i −0.0955254 + 0.0955254i −0.753255 0.657729i \(-0.771517\pi\)
0.657729 + 0.753255i \(0.271517\pi\)
\(114\) 0 0
\(115\) 9.16859 0.640697i 0.854976 0.0597453i
\(116\) 3.24589i 0.301374i
\(117\) 0 0
\(118\) −4.47749 4.47749i −0.412186 0.412186i
\(119\) 0.571027 0.0523460
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 1.19781 + 1.19781i 0.108445 + 0.108445i
\(123\) 0 0
\(124\) 5.81287i 0.522011i
\(125\) −6.09057 + 9.37576i −0.544757 + 0.838594i
\(126\) 0 0
\(127\) −2.31919 + 2.31919i −0.205795 + 0.205795i −0.802477 0.596682i \(-0.796485\pi\)
0.596682 + 0.802477i \(0.296485\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 7.40438 8.51695i 0.649407 0.746986i
\(131\) 2.58260i 0.225642i −0.993615 0.112821i \(-0.964011\pi\)
0.993615 0.112821i \(-0.0359887\pi\)
\(132\) 0 0
\(133\) −0.363521 0.363521i −0.0315212 0.0315212i
\(134\) −3.79857 −0.328146
\(135\) 0 0
\(136\) −1.83168 −0.157065
\(137\) 2.39766 + 2.39766i 0.204846 + 0.204846i 0.802072 0.597227i \(-0.203731\pi\)
−0.597227 + 0.802072i \(0.703731\pi\)
\(138\) 0 0
\(139\) 15.3059i 1.29823i −0.760690 0.649115i \(-0.775139\pi\)
0.760690 0.649115i \(-0.224861\pi\)
\(140\) −0.0485942 0.695400i −0.00410696 0.0587720i
\(141\) 0 0
\(142\) 0.518889 0.518889i 0.0435442 0.0435442i
\(143\) 3.56880 3.56880i 0.298438 0.298438i
\(144\) 0 0
\(145\) −5.47749 4.76196i −0.454881 0.395459i
\(146\) 4.02341i 0.332980i
\(147\) 0 0
\(148\) −7.26705 7.26705i −0.597348 0.597348i
\(149\) −8.11299 −0.664642 −0.332321 0.943166i \(-0.607832\pi\)
−0.332321 + 0.943166i \(0.607832\pi\)
\(150\) 0 0
\(151\) −8.68914 −0.707112 −0.353556 0.935413i \(-0.615028\pi\)
−0.353556 + 0.935413i \(0.615028\pi\)
\(152\) 1.16606 + 1.16606i 0.0945802 + 0.0945802i
\(153\) 0 0
\(154\) 0.311751i 0.0251216i
\(155\) 9.80929 + 8.52790i 0.787901 + 0.684977i
\(156\) 0 0
\(157\) −11.5457 + 11.5457i −0.921446 + 0.921446i −0.997132 0.0756854i \(-0.975886\pi\)
0.0756854 + 0.997132i \(0.475886\pi\)
\(158\) −9.85069 + 9.85069i −0.783679 + 0.783679i
\(159\) 0 0
\(160\) 0.155875 + 2.23063i 0.0123230 + 0.176347i
\(161\) 1.28139i 0.100988i
\(162\) 0 0
\(163\) −8.19627 8.19627i −0.641981 0.641981i 0.309061 0.951042i \(-0.399985\pi\)
−0.951042 + 0.309061i \(0.899985\pi\)
\(164\) 4.97333 0.388352
\(165\) 0 0
\(166\) 4.88176 0.378898
\(167\) −15.2871 15.2871i −1.18295 1.18295i −0.978976 0.203976i \(-0.934614\pi\)
−0.203976 0.978976i \(-0.565386\pi\)
\(168\) 0 0
\(169\) 12.4726i 0.959434i
\(170\) −2.68721 + 3.09099i −0.206099 + 0.237068i
\(171\) 0 0
\(172\) −6.32247 + 6.32247i −0.482084 + 0.482084i
\(173\) 0.320800 0.320800i 0.0243900 0.0243900i −0.694807 0.719197i \(-0.744510\pi\)
0.719197 + 0.694807i \(0.244510\pi\)
\(174\) 0 0
\(175\) −1.24479 0.938198i −0.0940970 0.0709211i
\(176\) 1.00000i 0.0753778i
\(177\) 0 0
\(178\) −9.92251 9.92251i −0.743724 0.743724i
\(179\) −11.8322 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(180\) 0 0
\(181\) 2.85138 0.211942 0.105971 0.994369i \(-0.466205\pi\)
0.105971 + 0.994369i \(0.466205\pi\)
\(182\) 1.11257 + 1.11257i 0.0824695 + 0.0824695i
\(183\) 0 0
\(184\) 4.11032i 0.303017i
\(185\) −22.9245 + 1.60196i −1.68545 + 0.117778i
\(186\) 0 0
\(187\) −1.29519 + 1.29519i −0.0947140 + 0.0947140i
\(188\) −3.53601 + 3.53601i −0.257890 + 0.257890i
\(189\) 0 0
\(190\) 3.67844 0.257048i 0.266862 0.0186482i
\(191\) 24.5026i 1.77294i 0.462784 + 0.886471i \(0.346851\pi\)
−0.462784 + 0.886471i \(0.653149\pi\)
\(192\) 0 0
\(193\) 10.0278 + 10.0278i 0.721820 + 0.721820i 0.968976 0.247156i \(-0.0794960\pi\)
−0.247156 + 0.968976i \(0.579496\pi\)
\(194\) −6.97388 −0.500695
\(195\) 0 0
\(196\) −6.90281 −0.493058
\(197\) −15.1983 15.1983i −1.08283 1.08283i −0.996244 0.0865874i \(-0.972404\pi\)
−0.0865874 0.996244i \(-0.527596\pi\)
\(198\) 0 0
\(199\) 24.7030i 1.75115i −0.483085 0.875574i \(-0.660484\pi\)
0.483085 0.875574i \(-0.339516\pi\)
\(200\) 3.99289 + 3.00945i 0.282340 + 0.212800i
\(201\) 0 0
\(202\) −5.10739 + 5.10739i −0.359355 + 0.359355i
\(203\) 0.715528 0.715528i 0.0502202 0.0502202i
\(204\) 0 0
\(205\) 7.29624 8.39256i 0.509591 0.586162i
\(206\) 18.5096i 1.28962i
\(207\) 0 0
\(208\) −3.56880 3.56880i −0.247452 0.247452i
\(209\) 1.64906 0.114068
\(210\) 0 0
\(211\) 4.53147 0.311960 0.155980 0.987760i \(-0.450147\pi\)
0.155980 + 0.987760i \(0.450147\pi\)
\(212\) −6.03331 6.03331i −0.414369 0.414369i
\(213\) 0 0
\(214\) 8.60469i 0.588204i
\(215\) 1.39373 + 19.9448i 0.0950517 + 1.36022i
\(216\) 0 0
\(217\) −1.28139 + 1.28139i −0.0869867 + 0.0869867i
\(218\) −10.9064 + 10.9064i −0.738677 + 0.738677i
\(219\) 0 0
\(220\) 1.68751 + 1.46707i 0.113772 + 0.0989100i
\(221\) 9.24457i 0.621857i
\(222\) 0 0
\(223\) −0.652316 0.652316i −0.0436823 0.0436823i 0.684928 0.728611i \(-0.259834\pi\)
−0.728611 + 0.684928i \(0.759834\pi\)
\(224\) −0.311751 −0.0208297
\(225\) 0 0
\(226\) 1.43606 0.0955254
\(227\) −2.09545 2.09545i −0.139080 0.139080i 0.634139 0.773219i \(-0.281355\pi\)
−0.773219 + 0.634139i \(0.781355\pi\)
\(228\) 0 0
\(229\) 5.36435i 0.354486i 0.984167 + 0.177243i \(0.0567179\pi\)
−0.984167 + 0.177243i \(0.943282\pi\)
\(230\) −6.93622 6.03013i −0.457360 0.397615i
\(231\) 0 0
\(232\) −2.29519 + 2.29519i −0.150687 + 0.150687i
\(233\) 8.10424 8.10424i 0.530927 0.530927i −0.389921 0.920848i \(-0.627498\pi\)
0.920848 + 0.389921i \(0.127498\pi\)
\(234\) 0 0
\(235\) 0.779481 + 11.1546i 0.0508477 + 0.727649i
\(236\) 6.33213i 0.412186i
\(237\) 0 0
\(238\) −0.403777 0.403777i −0.0261730 0.0261730i
\(239\) 30.3794 1.96508 0.982541 0.186045i \(-0.0595670\pi\)
0.982541 + 0.186045i \(0.0595670\pi\)
\(240\) 0 0
\(241\) −14.6449 −0.943364 −0.471682 0.881769i \(-0.656353\pi\)
−0.471682 + 0.881769i \(0.656353\pi\)
\(242\) 0.707107 + 0.707107i 0.0454545 + 0.0454545i
\(243\) 0 0
\(244\) 1.69396i 0.108445i
\(245\) −10.1269 + 11.6486i −0.646985 + 0.744201i
\(246\) 0 0
\(247\) −5.88517 + 5.88517i −0.374464 + 0.374464i
\(248\) 4.11032 4.11032i 0.261005 0.261005i
\(249\) 0 0
\(250\) 10.9364 2.32298i 0.691676 0.146918i
\(251\) 5.75251i 0.363095i −0.983382 0.181548i \(-0.941889\pi\)
0.983382 0.181548i \(-0.0581106\pi\)
\(252\) 0 0
\(253\) −2.90643 2.90643i −0.182726 0.182726i
\(254\) 3.27983 0.205795
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.3846 16.3846i −1.02204 1.02204i −0.999752 0.0222888i \(-0.992905\pi\)
−0.0222888 0.999752i \(-0.507095\pi\)
\(258\) 0 0
\(259\) 3.20391i 0.199081i
\(260\) −11.2581 + 0.786709i −0.698196 + 0.0487896i
\(261\) 0 0
\(262\) −1.82617 + 1.82617i −0.112821 + 0.112821i
\(263\) −2.43637 + 2.43637i −0.150233 + 0.150233i −0.778222 0.627989i \(-0.783878\pi\)
0.627989 + 0.778222i \(0.283878\pi\)
\(264\) 0 0
\(265\) −19.0326 + 1.32999i −1.16916 + 0.0817005i
\(266\) 0.514096i 0.0315212i
\(267\) 0 0
\(268\) 2.68599 + 2.68599i 0.164073 + 0.164073i
\(269\) −14.4426 −0.880582 −0.440291 0.897855i \(-0.645125\pi\)
−0.440291 + 0.897855i \(0.645125\pi\)
\(270\) 0 0
\(271\) −21.1249 −1.28324 −0.641622 0.767021i \(-0.721738\pi\)
−0.641622 + 0.767021i \(0.721738\pi\)
\(272\) 1.29519 + 1.29519i 0.0785327 + 0.0785327i
\(273\) 0 0
\(274\) 3.39080i 0.204846i
\(275\) 4.95141 0.695400i 0.298581 0.0419342i
\(276\) 0 0
\(277\) 11.5683 11.5683i 0.695070 0.695070i −0.268273 0.963343i \(-0.586453\pi\)
0.963343 + 0.268273i \(0.0864528\pi\)
\(278\) −10.8229 + 10.8229i −0.649115 + 0.649115i
\(279\) 0 0
\(280\) −0.457360 + 0.526083i −0.0273325 + 0.0314395i
\(281\) 1.01801i 0.0607295i 0.999539 + 0.0303648i \(0.00966689\pi\)
−0.999539 + 0.0303648i \(0.990333\pi\)
\(282\) 0 0
\(283\) −19.3736 19.3736i −1.15164 1.15164i −0.986224 0.165417i \(-0.947103\pi\)
−0.165417 0.986224i \(-0.552897\pi\)
\(284\) −0.733819 −0.0435442
\(285\) 0 0
\(286\) −5.04704 −0.298438
\(287\) 1.09633 + 1.09633i 0.0647141 + 0.0647141i
\(288\) 0 0
\(289\) 13.6449i 0.802644i
\(290\) 0.505955 + 7.24038i 0.0297107 + 0.425170i
\(291\) 0 0
\(292\) −2.84498 + 2.84498i −0.166490 + 0.166490i
\(293\) −21.5194 + 21.5194i −1.25718 + 1.25718i −0.304739 + 0.952436i \(0.598569\pi\)
−0.952436 + 0.304739i \(0.901431\pi\)
\(294\) 0 0
\(295\) 10.6855 + 9.28968i 0.622136 + 0.540866i
\(296\) 10.2772i 0.597348i
\(297\) 0 0
\(298\) 5.73675 + 5.73675i 0.332321 + 0.332321i
\(299\) 20.7450 1.19971
\(300\) 0 0
\(301\) −2.78746 −0.160667
\(302\) 6.14415 + 6.14415i 0.353556 + 0.353556i
\(303\) 0 0
\(304\) 1.64906i 0.0945802i
\(305\) −2.85858 2.48516i −0.163682 0.142300i
\(306\) 0 0
\(307\) 8.30937 8.30937i 0.474241 0.474241i −0.429043 0.903284i \(-0.641149\pi\)
0.903284 + 0.429043i \(0.141149\pi\)
\(308\) −0.220441 + 0.220441i −0.0125608 + 0.0125608i
\(309\) 0 0
\(310\) −0.906082 12.9663i −0.0514620 0.736439i
\(311\) 7.84346i 0.444762i −0.974960 0.222381i \(-0.928617\pi\)
0.974960 0.222381i \(-0.0713829\pi\)
\(312\) 0 0
\(313\) 11.5937 + 11.5937i 0.655313 + 0.655313i 0.954267 0.298955i \(-0.0966379\pi\)
−0.298955 + 0.954267i \(0.596638\pi\)
\(314\) 16.3281 0.921446
\(315\) 0 0
\(316\) 13.9310 0.783679
\(317\) −2.43344 2.43344i −0.136676 0.136676i 0.635459 0.772135i \(-0.280811\pi\)
−0.772135 + 0.635459i \(0.780811\pi\)
\(318\) 0 0
\(319\) 3.24589i 0.181735i
\(320\) 1.46707 1.68751i 0.0820118 0.0943348i
\(321\) 0 0
\(322\) 0.906082 0.906082i 0.0504940 0.0504940i
\(323\) 2.13585 2.13585i 0.118842 0.118842i
\(324\) 0 0
\(325\) −15.1888 + 20.1523i −0.842525 + 1.11785i
\(326\) 11.5913i 0.641981i
\(327\) 0 0
\(328\) −3.51668 3.51668i −0.194176 0.194176i
\(329\) −1.55896 −0.0859484
\(330\) 0 0
\(331\) −14.5295 −0.798615 −0.399307 0.916817i \(-0.630749\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(332\) −3.45193 3.45193i −0.189449 0.189449i
\(333\) 0 0
\(334\) 21.6192i 1.18295i
\(335\) 8.47319 0.592103i 0.462940 0.0323500i
\(336\) 0 0
\(337\) −0.238212 + 0.238212i −0.0129762 + 0.0129762i −0.713565 0.700589i \(-0.752921\pi\)
0.700589 + 0.713565i \(0.252921\pi\)
\(338\) 8.81949 8.81949i 0.479717 0.479717i
\(339\) 0 0
\(340\) 4.08580 0.285514i 0.221584 0.0154842i
\(341\) 5.81287i 0.314784i
\(342\) 0 0
\(343\) −3.06475 3.06475i −0.165481 0.165481i
\(344\) 8.94133 0.482084
\(345\) 0 0
\(346\) −0.453680 −0.0243900
\(347\) −6.13171 6.13171i −0.329168 0.329168i 0.523102 0.852270i \(-0.324775\pi\)
−0.852270 + 0.523102i \(0.824775\pi\)
\(348\) 0 0
\(349\) 31.0087i 1.65986i −0.557869 0.829929i \(-0.688381\pi\)
0.557869 0.829929i \(-0.311619\pi\)
\(350\) 0.216791 + 1.54360i 0.0115880 + 0.0825091i
\(351\) 0 0
\(352\) 0.707107 0.707107i 0.0376889 0.0376889i
\(353\) 22.6991 22.6991i 1.20815 1.20815i 0.236528 0.971625i \(-0.423991\pi\)
0.971625 0.236528i \(-0.0760094\pi\)
\(354\) 0 0
\(355\) −1.07657 + 1.23833i −0.0571382 + 0.0657237i
\(356\) 14.0326i 0.743724i
\(357\) 0 0
\(358\) 8.36665 + 8.36665i 0.442191 + 0.442191i
\(359\) −14.8579 −0.784172 −0.392086 0.919928i \(-0.628246\pi\)
−0.392086 + 0.919928i \(0.628246\pi\)
\(360\) 0 0
\(361\) 16.2806 0.856873
\(362\) −2.01623 2.01623i −0.105971 0.105971i
\(363\) 0 0
\(364\) 1.57342i 0.0824695i
\(365\) 0.627151 + 8.97474i 0.0328266 + 0.469759i
\(366\) 0 0
\(367\) 12.5695 12.5695i 0.656123 0.656123i −0.298337 0.954461i \(-0.596432\pi\)
0.954461 + 0.298337i \(0.0964320\pi\)
\(368\) −2.90643 + 2.90643i −0.151508 + 0.151508i
\(369\) 0 0
\(370\) 17.3428 + 15.0773i 0.901612 + 0.783834i
\(371\) 2.65998i 0.138099i
\(372\) 0 0
\(373\) 10.6478 + 10.6478i 0.551325 + 0.551325i 0.926823 0.375498i \(-0.122528\pi\)
−0.375498 + 0.926823i \(0.622528\pi\)
\(374\) 1.83168 0.0947140
\(375\) 0 0
\(376\) 5.00067 0.257890
\(377\) −11.5839 11.5839i −0.596603 0.596603i
\(378\) 0 0
\(379\) 28.4169i 1.45968i −0.683619 0.729839i \(-0.739595\pi\)
0.683619 0.729839i \(-0.260405\pi\)
\(380\) −2.78281 2.41929i −0.142755 0.124107i
\(381\) 0 0
\(382\) 17.3259 17.3259i 0.886471 0.886471i
\(383\) 3.82895 3.82895i 0.195650 0.195650i −0.602482 0.798132i \(-0.705822\pi\)
0.798132 + 0.602482i \(0.205822\pi\)
\(384\) 0 0
\(385\) 0.0485942 + 0.695400i 0.00247659 + 0.0354408i
\(386\) 14.1815i 0.721820i
\(387\) 0 0
\(388\) 4.93128 + 4.93128i 0.250348 + 0.250348i
\(389\) −10.0431 −0.509203 −0.254601 0.967046i \(-0.581944\pi\)
−0.254601 + 0.967046i \(0.581944\pi\)
\(390\) 0 0
\(391\) −7.52879 −0.380747
\(392\) 4.88102 + 4.88102i 0.246529 + 0.246529i
\(393\) 0 0
\(394\) 21.4936i 1.08283i
\(395\) 20.4377 23.5087i 1.02833 1.18285i
\(396\) 0 0
\(397\) −12.1157 + 12.1157i −0.608070 + 0.608070i −0.942441 0.334372i \(-0.891476\pi\)
0.334372 + 0.942441i \(0.391476\pi\)
\(398\) −17.4676 + 17.4676i −0.875574 + 0.875574i
\(399\) 0 0
\(400\) −0.695400 4.95141i −0.0347700 0.247570i
\(401\) 37.2698i 1.86116i −0.366083 0.930582i \(-0.619301\pi\)
0.366083 0.930582i \(-0.380699\pi\)
\(402\) 0 0
\(403\) 20.7450 + 20.7450i 1.03338 + 1.03338i
\(404\) 7.22294 0.359355
\(405\) 0 0
\(406\) −1.01191 −0.0502202
\(407\) 7.26705 + 7.26705i 0.360214 + 0.360214i
\(408\) 0 0
\(409\) 2.55163i 0.126170i 0.998008 + 0.0630851i \(0.0200939\pi\)
−0.998008 + 0.0630851i \(0.979906\pi\)
\(410\) −11.0937 + 0.775219i −0.547877 + 0.0382854i
\(411\) 0 0
\(412\) −13.0883 + 13.0883i −0.644812 + 0.644812i
\(413\) −1.39586 + 1.39586i −0.0686858 + 0.0686858i
\(414\) 0 0
\(415\) −10.8894 + 0.760946i −0.534540 + 0.0373534i
\(416\) 5.04704i 0.247452i
\(417\) 0 0
\(418\) −1.16606 1.16606i −0.0570340 0.0570340i
\(419\) 33.6631 1.64455 0.822275 0.569090i \(-0.192704\pi\)
0.822275 + 0.569090i \(0.192704\pi\)
\(420\) 0 0
\(421\) 13.0333 0.635202 0.317601 0.948224i \(-0.397123\pi\)
0.317601 + 0.948224i \(0.397123\pi\)
\(422\) −3.20424 3.20424i −0.155980 0.155980i
\(423\) 0 0
\(424\) 8.53239i 0.414369i
\(425\) 5.51235 7.31371i 0.267388 0.354767i
\(426\) 0 0
\(427\) 0.373418 0.373418i 0.0180710 0.0180710i
\(428\) −6.08443 + 6.08443i −0.294102 + 0.294102i
\(429\) 0 0
\(430\) 13.1176 15.0886i 0.632585 0.727637i
\(431\) 0.991169i 0.0477429i 0.999715 + 0.0238715i \(0.00759924\pi\)
−0.999715 + 0.0238715i \(0.992401\pi\)
\(432\) 0 0
\(433\) 12.9422 + 12.9422i 0.621963 + 0.621963i 0.946033 0.324070i \(-0.105051\pi\)
−0.324070 + 0.946033i \(0.605051\pi\)
\(434\) 1.81216 0.0869867
\(435\) 0 0
\(436\) 15.4240 0.738677
\(437\) 4.79289 + 4.79289i 0.229275 + 0.229275i
\(438\) 0 0
\(439\) 1.03879i 0.0495788i −0.999693 0.0247894i \(-0.992108\pi\)
0.999693 0.0247894i \(-0.00789152\pi\)
\(440\) −0.155875 2.23063i −0.00743106 0.106341i
\(441\) 0 0
\(442\) −6.53690 + 6.53690i −0.310929 + 0.310929i
\(443\) −18.8125 + 18.8125i −0.893810 + 0.893810i −0.994879 0.101069i \(-0.967774\pi\)
0.101069 + 0.994879i \(0.467774\pi\)
\(444\) 0 0
\(445\) 23.6801 + 20.5868i 1.12255 + 0.975906i
\(446\) 0.922513i 0.0436823i
\(447\) 0 0
\(448\) 0.220441 + 0.220441i 0.0104149 + 0.0104149i
\(449\) −7.45097 −0.351633 −0.175817 0.984423i \(-0.556257\pi\)
−0.175817 + 0.984423i \(0.556257\pi\)
\(450\) 0 0
\(451\) −4.97333 −0.234185
\(452\) −1.01545 1.01545i −0.0477627 0.0477627i
\(453\) 0 0
\(454\) 2.96342i 0.139080i
\(455\) −2.65516 2.30832i −0.124476 0.108216i
\(456\) 0 0
\(457\) −24.7619 + 24.7619i −1.15831 + 1.15831i −0.173477 + 0.984838i \(0.555500\pi\)
−0.984838 + 0.173477i \(0.944500\pi\)
\(458\) 3.79317 3.79317i 0.177243 0.177243i
\(459\) 0 0
\(460\) 0.640697 + 9.16859i 0.0298726 + 0.427488i
\(461\) 37.0698i 1.72651i 0.504766 + 0.863256i \(0.331579\pi\)
−0.504766 + 0.863256i \(0.668421\pi\)
\(462\) 0 0
\(463\) −19.4204 19.4204i −0.902541 0.902541i 0.0931140 0.995655i \(-0.470318\pi\)
−0.995655 + 0.0931140i \(0.970318\pi\)
\(464\) 3.24589 0.150687
\(465\) 0 0
\(466\) −11.4611 −0.530927
\(467\) 0.949119 + 0.949119i 0.0439200 + 0.0439200i 0.728726 0.684806i \(-0.240113\pi\)
−0.684806 + 0.728726i \(0.740113\pi\)
\(468\) 0 0
\(469\) 1.18421i 0.0546815i
\(470\) 7.33635 8.43870i 0.338400 0.389248i
\(471\) 0 0
\(472\) 4.47749 4.47749i 0.206093 0.206093i
\(473\) 6.32247 6.32247i 0.290708 0.290708i
\(474\) 0 0
\(475\) −8.16517 + 1.14676i −0.374644 + 0.0526168i
\(476\) 0.571027i 0.0261730i
\(477\) 0 0
\(478\) −21.4815 21.4815i −0.982541 0.982541i
\(479\) 34.5759 1.57981 0.789907 0.613227i \(-0.210129\pi\)
0.789907 + 0.613227i \(0.210129\pi\)
\(480\) 0 0
\(481\) −51.8693 −2.36504
\(482\) 10.3555 + 10.3555i 0.471682 + 0.471682i
\(483\) 0 0
\(484\) 1.00000i 0.0454545i
\(485\) 15.5561 1.08706i 0.706368 0.0493606i
\(486\) 0 0
\(487\) 19.7458 19.7458i 0.894767 0.894767i −0.100201 0.994967i \(-0.531948\pi\)
0.994967 + 0.100201i \(0.0319485\pi\)
\(488\) −1.19781 + 1.19781i −0.0542223 + 0.0542223i
\(489\) 0 0
\(490\) 15.3976 1.07598i 0.695593 0.0486077i
\(491\) 5.29573i 0.238993i −0.992835 0.119497i \(-0.961872\pi\)
0.992835 0.119497i \(-0.0381281\pi\)
\(492\) 0 0
\(493\) 4.20406 + 4.20406i 0.189341 + 0.189341i
\(494\) 8.32289 0.374464
\(495\) 0 0
\(496\) −5.81287 −0.261005
\(497\) −0.161764 0.161764i −0.00725610 0.00725610i
\(498\) 0 0
\(499\) 32.1794i 1.44055i 0.693690 + 0.720274i \(0.255984\pi\)
−0.693690 + 0.720274i \(0.744016\pi\)
\(500\) −9.37576 6.09057i −0.419297 0.272379i
\(501\) 0 0
\(502\) −4.06764 + 4.06764i −0.181548 + 0.181548i
\(503\) 29.3990 29.3990i 1.31084 1.31084i 0.390036 0.920799i \(-0.372462\pi\)
0.920799 0.390036i \(-0.127538\pi\)
\(504\) 0 0
\(505\) 10.5966 12.1888i 0.471541 0.542395i
\(506\) 4.11032i 0.182726i
\(507\) 0 0
\(508\) −2.31919 2.31919i −0.102897 0.102897i
\(509\) −14.0999 −0.624968 −0.312484 0.949923i \(-0.601161\pi\)
−0.312484 + 0.949923i \(0.601161\pi\)
\(510\) 0 0
\(511\) −1.25430 −0.0554870
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 23.1713i 1.02204i
\(515\) 2.88519 + 41.2880i 0.127136 + 1.81937i
\(516\) 0 0
\(517\) 3.53601 3.53601i 0.155514 0.155514i
\(518\) −2.26551 + 2.26551i −0.0995407 + 0.0995407i
\(519\) 0 0
\(520\) 8.51695 + 7.40438i 0.373493 + 0.324703i
\(521\) 30.2443i 1.32503i −0.749050 0.662513i \(-0.769490\pi\)
0.749050 0.662513i \(-0.230510\pi\)
\(522\) 0 0
\(523\) −2.57488 2.57488i −0.112591 0.112591i 0.648567 0.761158i \(-0.275369\pi\)
−0.761158 + 0.648567i \(0.775369\pi\)
\(524\) 2.58260 0.112821
\(525\) 0 0
\(526\) 3.44555 0.150233
\(527\) −7.52879 7.52879i −0.327959 0.327959i
\(528\) 0 0
\(529\) 6.10528i 0.265447i
\(530\) 14.3985 + 12.5176i 0.625431 + 0.543731i
\(531\) 0 0
\(532\) 0.363521 0.363521i 0.0157606 0.0157606i
\(533\) 17.7488 17.7488i 0.768787 0.768787i
\(534\) 0 0
\(535\) 1.34126 + 19.1939i 0.0579876 + 0.829823i
\(536\) 3.79857i 0.164073i
\(537\) 0 0
\(538\) 10.2125 + 10.2125i 0.440291 + 0.440291i
\(539\) 6.90281 0.297325
\(540\) 0 0
\(541\) 31.5800 1.35773 0.678866 0.734262i \(-0.262472\pi\)
0.678866 + 0.734262i \(0.262472\pi\)
\(542\) 14.9375 + 14.9375i 0.641622 + 0.641622i
\(543\) 0 0
\(544\) 1.83168i 0.0785327i
\(545\) 22.6282 26.0282i 0.969284 1.11493i
\(546\) 0 0
\(547\) 22.3561 22.3561i 0.955879 0.955879i −0.0431877 0.999067i \(-0.513751\pi\)
0.999067 + 0.0431877i \(0.0137514\pi\)
\(548\) −2.39766 + 2.39766i −0.102423 + 0.102423i
\(549\) 0 0
\(550\) −3.99289 3.00945i −0.170258 0.128323i
\(551\) 5.35268i 0.228032i
\(552\) 0 0
\(553\) 3.07096 + 3.07096i 0.130590 + 0.130590i
\(554\) −16.3600 −0.695070
\(555\) 0 0
\(556\) 15.3059 0.649115
\(557\) 12.3562 + 12.3562i 0.523547 + 0.523547i 0.918641 0.395094i \(-0.129288\pi\)
−0.395094 + 0.918641i \(0.629288\pi\)
\(558\) 0 0
\(559\) 45.1273i 1.90868i
\(560\) 0.695400 0.0485942i 0.0293860 0.00205348i
\(561\) 0 0
\(562\) 0.719844 0.719844i 0.0303648 0.0303648i
\(563\) 17.2529 17.2529i 0.727123 0.727123i −0.242922 0.970046i \(-0.578106\pi\)
0.970046 + 0.242922i \(0.0781061\pi\)
\(564\) 0 0
\(565\) −3.20332 + 0.223846i −0.134765 + 0.00941729i
\(566\) 27.3984i 1.15164i
\(567\) 0 0
\(568\) 0.518889 + 0.518889i 0.0217721 + 0.0217721i
\(569\) 11.4436 0.479740 0.239870 0.970805i \(-0.422895\pi\)
0.239870 + 0.970805i \(0.422895\pi\)
\(570\) 0 0
\(571\) −5.53623 −0.231684 −0.115842 0.993268i \(-0.536957\pi\)
−0.115842 + 0.993268i \(0.536957\pi\)
\(572\) 3.56880 + 3.56880i 0.149219 + 0.149219i
\(573\) 0 0
\(574\) 1.55044i 0.0647141i
\(575\) 16.4121 + 12.3698i 0.684431 + 0.515856i
\(576\) 0 0
\(577\) 10.9014 10.9014i 0.453833 0.453833i −0.442792 0.896625i \(-0.646012\pi\)
0.896625 + 0.442792i \(0.146012\pi\)
\(578\) −9.64843 + 9.64843i −0.401322 + 0.401322i
\(579\) 0 0
\(580\) 4.76196 5.47749i 0.197730 0.227440i
\(581\) 1.52189i 0.0631387i
\(582\) 0 0
\(583\) 6.03331 + 6.03331i 0.249874 + 0.249874i
\(584\) 4.02341 0.166490
\(585\) 0 0
\(586\) 30.4330 1.25718
\(587\) −0.325923 0.325923i −0.0134523 0.0134523i 0.700349 0.713801i \(-0.253028\pi\)
−0.713801 + 0.700349i \(0.753028\pi\)
\(588\) 0 0
\(589\) 9.58578i 0.394975i
\(590\) −0.987022 14.1246i −0.0406350 0.581501i
\(591\) 0 0
\(592\) 7.26705 7.26705i 0.298674 0.298674i
\(593\) 18.7609 18.7609i 0.770416 0.770416i −0.207763 0.978179i \(-0.566618\pi\)
0.978179 + 0.207763i \(0.0666183\pi\)
\(594\) 0 0
\(595\) 0.963616 + 0.837738i 0.0395044 + 0.0343439i
\(596\) 8.11299i 0.332321i
\(597\) 0 0
\(598\) −14.6689 14.6689i −0.599856 0.599856i
\(599\) −6.62064 −0.270512 −0.135256 0.990811i \(-0.543186\pi\)
−0.135256 + 0.990811i \(0.543186\pi\)
\(600\) 0 0
\(601\) −32.0766 −1.30843 −0.654217 0.756307i \(-0.727002\pi\)
−0.654217 + 0.756307i \(0.727002\pi\)
\(602\) 1.97103 + 1.97103i 0.0803334 + 0.0803334i
\(603\) 0 0
\(604\) 8.68914i 0.353556i
\(605\) −1.68751 1.46707i −0.0686072 0.0596450i
\(606\) 0 0
\(607\) 15.0339 15.0339i 0.610208 0.610208i −0.332792 0.943000i \(-0.607991\pi\)
0.943000 + 0.332792i \(0.107991\pi\)
\(608\) −1.16606 + 1.16606i −0.0472901 + 0.0472901i
\(609\) 0 0
\(610\) 0.264046 + 3.77859i 0.0106909 + 0.152991i
\(611\) 25.2386i 1.02104i
\(612\) 0 0
\(613\) −8.10085 8.10085i −0.327190 0.327190i 0.524327 0.851517i \(-0.324317\pi\)
−0.851517 + 0.524327i \(0.824317\pi\)
\(614\) −11.7512 −0.474241
\(615\) 0 0
\(616\) 0.311751 0.0125608
\(617\) −22.1508 22.1508i −0.891756 0.891756i 0.102932 0.994688i \(-0.467178\pi\)
−0.994688 + 0.102932i \(0.967178\pi\)
\(618\) 0 0
\(619\) 13.6051i 0.546834i 0.961896 + 0.273417i \(0.0881540\pi\)
−0.961896 + 0.273417i \(0.911846\pi\)
\(620\) −8.52790 + 9.80929i −0.342489 + 0.393951i
\(621\) 0 0
\(622\) −5.54617 + 5.54617i −0.222381 + 0.222381i
\(623\) −3.09335 + 3.09335i −0.123932 + 0.123932i
\(624\) 0 0
\(625\) −24.0328 + 6.88641i −0.961314 + 0.275456i
\(626\) 16.3959i 0.655313i
\(627\) 0 0
\(628\) −11.5457 11.5457i −0.460723 0.460723i
\(629\) 18.8245 0.750581
\(630\) 0 0
\(631\) 41.3096 1.64451 0.822254 0.569120i \(-0.192716\pi\)
0.822254 + 0.569120i \(0.192716\pi\)
\(632\) −9.85069 9.85069i −0.391839 0.391839i
\(633\) 0 0
\(634\) 3.44141i 0.136676i
\(635\) −7.31609 + 0.511245i −0.290330 + 0.0202881i
\(636\) 0 0
\(637\) −24.6347 + 24.6347i −0.976064 + 0.976064i
\(638\) 2.29519 2.29519i 0.0908676 0.0908676i
\(639\) 0 0
\(640\) −2.23063 + 0.155875i −0.0881733 + 0.00616151i
\(641\) 34.8513i 1.37654i 0.725453 + 0.688272i \(0.241630\pi\)
−0.725453 + 0.688272i \(0.758370\pi\)
\(642\) 0 0
\(643\) 12.9785 + 12.9785i 0.511822 + 0.511822i 0.915084 0.403262i \(-0.132124\pi\)
−0.403262 + 0.915084i \(0.632124\pi\)
\(644\) −1.28139 −0.0504940
\(645\) 0 0
\(646\) −3.02055 −0.118842
\(647\) −27.0946 27.0946i −1.06520 1.06520i −0.997721 0.0674782i \(-0.978505\pi\)
−0.0674782 0.997721i \(-0.521495\pi\)
\(648\) 0 0
\(649\) 6.33213i 0.248558i
\(650\) 24.9900 3.50971i 0.980187 0.137662i
\(651\) 0 0
\(652\) 8.19627 8.19627i 0.320991 0.320991i
\(653\) −34.5899 + 34.5899i −1.35361 + 1.35361i −0.472017 + 0.881590i \(0.656474\pi\)
−0.881590 + 0.472017i \(0.843526\pi\)
\(654\) 0 0
\(655\) 3.78885 4.35816i 0.148043 0.170288i
\(656\) 4.97333i 0.194176i
\(657\) 0 0
\(658\) 1.10235 + 1.10235i 0.0429742 + 0.0429742i
\(659\) −15.8413 −0.617088 −0.308544 0.951210i \(-0.599842\pi\)
−0.308544 + 0.951210i \(0.599842\pi\)
\(660\) 0 0
\(661\) 24.7558 0.962888 0.481444 0.876477i \(-0.340112\pi\)
0.481444 + 0.876477i \(0.340112\pi\)
\(662\) 10.2739 + 10.2739i 0.399307 + 0.399307i
\(663\) 0 0
\(664\) 4.88176i 0.189449i
\(665\) −0.0801348 1.14676i −0.00310750 0.0444693i
\(666\) 0 0
\(667\) −9.43398 + 9.43398i −0.365285 + 0.365285i
\(668\) 15.2871 15.2871i 0.591476 0.591476i
\(669\) 0 0
\(670\) −6.41013 5.57277i −0.247645 0.215295i
\(671\) 1.69396i 0.0653945i
\(672\) 0 0
\(673\) 1.61094 + 1.61094i 0.0620970 + 0.0620970i 0.737473 0.675376i \(-0.236019\pi\)
−0.675376 + 0.737473i \(0.736019\pi\)
\(674\) 0.336883 0.0129762
\(675\) 0 0
\(676\) −12.4726 −0.479717
\(677\) 16.3466 + 16.3466i 0.628252 + 0.628252i 0.947628 0.319376i \(-0.103473\pi\)
−0.319376 + 0.947628i \(0.603473\pi\)
\(678\) 0 0
\(679\) 2.17411i 0.0834347i
\(680\) −3.09099 2.68721i −0.118534 0.103050i
\(681\) 0 0
\(682\) −4.11032 + 4.11032i −0.157392 + 0.157392i
\(683\) −5.57698 + 5.57698i −0.213397 + 0.213397i −0.805709 0.592312i \(-0.798215\pi\)
0.592312 + 0.805709i \(0.298215\pi\)
\(684\) 0 0
\(685\) 0.528542 + 7.56361i 0.0201945 + 0.288991i
\(686\) 4.33421i 0.165481i
\(687\) 0 0
\(688\) −6.32247 6.32247i −0.241042 0.241042i
\(689\) −43.0633 −1.64058
\(690\) 0 0
\(691\) −28.1217 −1.06980 −0.534899 0.844916i \(-0.679650\pi\)
−0.534899 + 0.844916i \(0.679650\pi\)
\(692\) 0.320800 + 0.320800i 0.0121950 + 0.0121950i
\(693\) 0 0
\(694\) 8.67155i 0.329168i
\(695\) 22.4549 25.8289i 0.851762 0.979747i
\(696\) 0 0
\(697\) −6.44143 + 6.44143i −0.243987 + 0.243987i
\(698\) −21.9265 + 21.9265i −0.829929 + 0.829929i
\(699\) 0 0
\(700\) 0.938198 1.24479i 0.0354605 0.0470485i
\(701\) 13.6485i 0.515497i −0.966212 0.257749i \(-0.917019\pi\)
0.966212 0.257749i \(-0.0829806\pi\)
\(702\) 0 0
\(703\) −11.9838 11.9838i −0.451978 0.451978i
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −32.1014 −1.20815
\(707\) 1.59223 + 1.59223i 0.0598820 + 0.0598820i
\(708\) 0 0
\(709\) 24.0511i 0.903259i −0.892206 0.451629i \(-0.850843\pi\)
0.892206 0.451629i \(-0.149157\pi\)
\(710\) 1.63688 0.114384i 0.0614310 0.00429277i
\(711\) 0 0
\(712\) 9.92251 9.92251i 0.371862 0.371862i
\(713\) 16.8947 16.8947i 0.632712 0.632712i
\(714\) 0 0
\(715\) 11.2581 0.786709i 0.421028 0.0294213i
\(716\) 11.8322i 0.442191i
\(717\) 0 0
\(718\) 10.5062 + 10.5062i 0.392086 + 0.392086i
\(719\) −16.6685 −0.621629 −0.310814 0.950471i \(-0.600602\pi\)
−0.310814 + 0.950471i \(0.600602\pi\)
\(720\) 0 0
\(721\) −5.77037 −0.214900
\(722\) −11.5121 11.5121i −0.428437 0.428437i
\(723\) 0 0
\(724\) 2.85138i 0.105971i
\(725\) −2.25719 16.0717i −0.0838301 0.596889i
\(726\) 0 0
\(727\) 15.0266 15.0266i 0.557307 0.557307i −0.371233 0.928540i \(-0.621065\pi\)
0.928540 + 0.371233i \(0.121065\pi\)
\(728\) −1.11257 + 1.11257i −0.0412348 + 0.0412348i
\(729\) 0 0
\(730\) 5.90264 6.78956i 0.218466 0.251293i
\(731\) 16.3777i 0.605750i
\(732\) 0 0
\(733\) 23.4209 + 23.4209i 0.865069 + 0.865069i 0.991922 0.126853i \(-0.0404875\pi\)
−0.126853 + 0.991922i \(0.540488\pi\)
\(734\) −17.7760 −0.656123
\(735\) 0 0
\(736\) 4.11032 0.151508
\(737\) −2.68599 2.68599i −0.0989398 0.0989398i
\(738\) 0 0
\(739\) 9.10321i 0.334867i 0.985883 + 0.167433i \(0.0535479\pi\)
−0.985883 + 0.167433i \(0.946452\pi\)
\(740\) −1.60196 22.9245i −0.0588891 0.842723i
\(741\) 0 0
\(742\) −1.88089 + 1.88089i −0.0690495 + 0.0690495i
\(743\) −33.1249 + 33.1249i −1.21523 + 1.21523i −0.245951 + 0.969282i \(0.579100\pi\)
−0.969282 + 0.245951i \(0.920900\pi\)
\(744\) 0 0
\(745\) −13.6908 11.9023i −0.501591 0.436068i
\(746\) 15.0583i 0.551325i
\(747\) 0 0
\(748\) −1.29519 1.29519i −0.0473570 0.0473570i
\(749\) −2.68252 −0.0980170
\(750\) 0 0
\(751\) −36.0619 −1.31592 −0.657958 0.753055i \(-0.728580\pi\)
−0.657958 + 0.753055i \(0.728580\pi\)
\(752\) −3.53601 3.53601i −0.128945 0.128945i
\(753\) 0 0
\(754\) 16.3822i 0.596603i
\(755\) −14.6630 12.7476i −0.533642 0.463932i
\(756\) 0 0
\(757\) 27.8654 27.8654i 1.01278 1.01278i 0.0128674 0.999917i \(-0.495904\pi\)
0.999917 0.0128674i \(-0.00409592\pi\)
\(758\) −20.0938 + 20.0938i −0.729839 + 0.729839i
\(759\) 0 0
\(760\) 0.257048 + 3.67844i 0.00932411 + 0.133431i
\(761\) 1.06484i 0.0386005i 0.999814 + 0.0193002i \(0.00614384\pi\)
−0.999814 + 0.0193002i \(0.993856\pi\)
\(762\) 0 0
\(763\) 3.40009 + 3.40009i 0.123091 + 0.123091i
\(764\) −24.5026 −0.886471
\(765\) 0 0
\(766\) −5.41495 −0.195650
\(767\) 22.5981 + 22.5981i 0.815969 + 0.815969i
\(768\) 0 0
\(769\) 16.1547i 0.582554i 0.956639 + 0.291277i \(0.0940801\pi\)
−0.956639 + 0.291277i \(0.905920\pi\)
\(770\) 0.457360 0.526083i 0.0164821 0.0189587i
\(771\) 0 0
\(772\) −10.0278 + 10.0278i −0.360910 + 0.360910i
\(773\) −6.90233 + 6.90233i −0.248260 + 0.248260i −0.820256 0.571996i \(-0.806169\pi\)
0.571996 + 0.820256i \(0.306169\pi\)
\(774\) 0 0
\(775\) 4.04227 + 28.7819i 0.145202 + 1.03388i
\(776\) 6.97388i 0.250348i
\(777\) 0 0
\(778\) 7.10151 + 7.10151i 0.254601 + 0.254601i
\(779\) 8.20133 0.293843
\(780\) 0 0
\(781\) 0.733819 0.0262581
\(782\) 5.32366 + 5.32366i 0.190374 + 0.190374i
\(783\) 0 0
\(784\) 6.90281i 0.246529i
\(785\) −36.4219 + 2.54514i −1.29995 + 0.0908400i
\(786\) 0 0
\(787\) 31.9673 31.9673i 1.13951 1.13951i 0.150972 0.988538i \(-0.451760\pi\)
0.988538 0.150972i \(-0.0482403\pi\)
\(788\) 15.1983 15.1983i 0.541416 0.541416i
\(789\) 0 0
\(790\) −31.0748 + 2.17150i −1.10559 + 0.0772583i
\(791\) 0.447693i 0.0159181i
\(792\) 0 0
\(793\) −6.04540 6.04540i −0.214678 0.214678i
\(794\) 17.1342 0.608070
\(795\) 0 0
\(796\) 24.7030 0.875574
\(797\) 10.6223 + 10.6223i 0.376262 + 0.376262i 0.869752 0.493490i \(-0.164279\pi\)
−0.493490 + 0.869752i \(0.664279\pi\)
\(798\) 0 0
\(799\) 9.15964i 0.324045i
\(800\) −3.00945 + 3.99289i −0.106400 + 0.141170i
\(801\) 0 0
\(802\) −26.3537 + 26.3537i −0.930582 + 0.930582i
\(803\) 2.84498 2.84498i 0.100397 0.100397i
\(804\) 0 0
\(805\) −1.87990 + 2.16237i −0.0662577 + 0.0762135i
\(806\) 29.3378i 1.03338i
\(807\) 0 0
\(808\) −5.10739 5.10739i −0.179677 0.179677i
\(809\) −55.8710 −1.96432 −0.982160 0.188049i \(-0.939784\pi\)
−0.982160 + 0.188049i \(0.939784\pi\)
\(810\) 0 0
\(811\) −13.1843 −0.462964 −0.231482 0.972839i \(-0.574357\pi\)
−0.231482 + 0.972839i \(0.574357\pi\)
\(812\) 0.715528 + 0.715528i 0.0251101 + 0.0251101i
\(813\) 0 0
\(814\) 10.2772i 0.360214i
\(815\) −1.80679 25.8558i −0.0632892 0.905690i
\(816\) 0 0
\(817\) −10.4261 + 10.4261i −0.364765 + 0.364765i
\(818\) 1.80428 1.80428i 0.0630851 0.0630851i
\(819\) 0 0
\(820\) 8.39256 + 7.29624i 0.293081 + 0.254796i
\(821\) 31.8795i 1.11260i 0.830981 + 0.556301i \(0.187780\pi\)
−0.830981 + 0.556301i \(0.812220\pi\)
\(822\) 0 0
\(823\) 7.18547 + 7.18547i 0.250470 + 0.250470i 0.821163 0.570694i \(-0.193326\pi\)
−0.570694 + 0.821163i \(0.693326\pi\)
\(824\) 18.5096 0.644812
\(825\) 0 0
\(826\) 1.97404 0.0686858
\(827\) −18.7986 18.7986i −0.653691 0.653691i 0.300189 0.953880i \(-0.402950\pi\)
−0.953880 + 0.300189i \(0.902950\pi\)
\(828\) 0 0
\(829\) 11.6858i 0.405865i 0.979193 + 0.202932i \(0.0650471\pi\)
−0.979193 + 0.202932i \(0.934953\pi\)
\(830\) 8.23804 + 7.16190i 0.285947 + 0.248593i
\(831\) 0 0
\(832\) 3.56880 3.56880i 0.123726 0.123726i
\(833\) 8.94048 8.94048i 0.309769 0.309769i
\(834\) 0 0
\(835\) −3.36990 48.2245i −0.116620 1.66888i
\(836\) 1.64906i 0.0570340i
\(837\) 0 0
\(838\) −23.8034 23.8034i −0.822275 0.822275i
\(839\) −45.6504 −1.57603 −0.788014 0.615657i \(-0.788891\pi\)
−0.788014 + 0.615657i \(0.788891\pi\)
\(840\) 0 0
\(841\) −18.4642 −0.636695
\(842\) −9.21591 9.21591i −0.317601 0.317601i
\(843\) 0 0
\(844\) 4.53147i 0.155980i
\(845\) −18.2983 + 21.0477i −0.629480 + 0.724065i
\(846\) 0 0
\(847\) 0.220441 0.220441i 0.00757444 0.00757444i
\(848\) 6.03331 6.03331i 0.207185 0.207185i
\(849\) 0 0
\(850\) −9.06940 + 1.27375i −0.311078 + 0.0436893i
\(851\) 42.2424i 1.44805i
\(852\) 0 0
\(853\) −26.3300 26.3300i −0.901524 0.901524i 0.0940443 0.995568i \(-0.470020\pi\)
−0.995568 + 0.0940443i \(0.970020\pi\)
\(854\) −0.528092 −0.0180710
\(855\) 0 0
\(856\) 8.60469 0.294102
\(857\) 18.3854 + 18.3854i 0.628033 + 0.628033i 0.947573 0.319540i \(-0.103528\pi\)
−0.319540 + 0.947573i \(0.603528\pi\)
\(858\) 0 0
\(859\) 5.40669i 0.184474i 0.995737 + 0.0922369i \(0.0294017\pi\)
−0.995737 + 0.0922369i \(0.970598\pi\)
\(860\) −19.9448 + 1.39373i −0.680111 + 0.0475259i
\(861\) 0 0
\(862\) 0.700862 0.700862i 0.0238715 0.0238715i
\(863\) 5.50836 5.50836i 0.187507 0.187507i −0.607111 0.794617i \(-0.707671\pi\)
0.794617 + 0.607111i \(0.207671\pi\)
\(864\) 0 0
\(865\) 1.01199 0.0707175i 0.0344088 0.00240447i
\(866\) 18.3031i 0.621963i
\(867\) 0 0
\(868\) −1.28139 1.28139i −0.0434933 0.0434933i
\(869\) −13.9310 −0.472576
\(870\) 0 0
\(871\) 19.1715 0.649603
\(872\) −10.9064 10.9064i −0.369338 0.369338i
\(873\) 0 0
\(874\) 6.77817i 0.229275i
\(875\) −0.724190 3.40941i −0.0244821 0.115259i
\(876\) 0 0
\(877\) 12.1862 12.1862i 0.411500 0.411500i −0.470761 0.882261i \(-0.656021\pi\)
0.882261 + 0.470761i \(0.156021\pi\)
\(878\) −0.734537 + 0.734537i −0.0247894 + 0.0247894i
\(879\) 0 0
\(880\) −1.46707 + 1.68751i −0.0494550 + 0.0568860i
\(881\) 15.9794i 0.538361i 0.963090 + 0.269180i \(0.0867528\pi\)
−0.963090 + 0.269180i \(0.913247\pi\)
\(882\) 0 0
\(883\) −8.49960 8.49960i −0.286034 0.286034i 0.549476 0.835510i \(-0.314828\pi\)
−0.835510 + 0.549476i \(0.814828\pi\)
\(884\) 9.24457 0.310929
\(885\) 0 0
\(886\) 26.6049 0.893810
\(887\) 29.4073 + 29.4073i 0.987400 + 0.987400i 0.999922 0.0125212i \(-0.00398572\pi\)
−0.0125212 + 0.999922i \(0.503986\pi\)
\(888\) 0 0
\(889\) 1.02249i 0.0342932i
\(890\) −2.18733 31.3014i −0.0733194 1.04923i
\(891\) 0 0
\(892\) 0.652316 0.652316i 0.0218411 0.0218411i
\(893\) −5.83110 + 5.83110i −0.195130 + 0.195130i
\(894\) 0 0
\(895\) −19.9670 17.3587i −0.667424 0.580238i
\(896\) 0.311751i 0.0104149i
\(897\) 0 0
\(898\) 5.26863 + 5.26863i 0.175817 + 0.175817i
\(899\) −18.8680 −0.629282
\(900\) 0 0
\(901\) 15.6286 0.520665
\(902\) 3.51668 + 3.51668i 0.117093 + 0.117093i
\(903\) 0 0
\(904\) 1.43606i 0.0477627i
\(905\) 4.81175 + 4.18318i 0.159948 + 0.139054i
\(906\) 0 0
\(907\) 16.3267 16.3267i 0.542118 0.542118i −0.382031 0.924149i \(-0.624775\pi\)
0.924149 + 0.382031i \(0.124775\pi\)
\(908\) 2.09545 2.09545i 0.0695401 0.0695401i
\(909\) 0 0
\(910\) 0.245257 + 3.50971i 0.00813019 + 0.116346i
\(911\) 13.7949i 0.457046i −0.973539 0.228523i \(-0.926610\pi\)
0.973539 0.228523i \(-0.0733896\pi\)
\(912\) 0 0
\(913\) 3.45193 + 3.45193i 0.114242 + 0.114242i
\(914\) 35.0187 1.15831
\(915\) 0 0
\(916\) −5.36435 −0.177243
\(917\) 0.569310 + 0.569310i 0.0188003 + 0.0188003i
\(918\) 0 0
\(919\) 47.3513i 1.56197i −0.624547 0.780987i \(-0.714716\pi\)
0.624547 0.780987i \(-0.285284\pi\)
\(920\) 6.03013 6.93622i 0.198808 0.228680i
\(921\) 0 0
\(922\) 26.2123 26.2123i 0.863256 0.863256i
\(923\) −2.61885 + 2.61885i −0.0862006 + 0.0862006i
\(924\) 0 0
\(925\) −41.0356 30.9286i −1.34924 1.01693i
\(926\) 27.4646i 0.902541i
\(927\) 0 0
\(928\) −2.29519 2.29519i −0.0753434 0.0753434i
\(929\) −32.1504 −1.05482 −0.527411 0.849611i \(-0.676837\pi\)
−0.527411 + 0.849611i \(0.676837\pi\)
\(930\) 0 0
\(931\) −11.3832 −0.373068
\(932\) 8.10424 + 8.10424i 0.265463 + 0.265463i
\(933\) 0 0
\(934\) 1.34226i 0.0439200i
\(935\) −4.08580 + 0.285514i −0.133620 + 0.00933730i
\(936\) 0 0
\(937\) −12.8869 + 12.8869i −0.420998 + 0.420998i −0.885547 0.464550i \(-0.846216\pi\)
0.464550 + 0.885547i \(0.346216\pi\)
\(938\) 0.837360 0.837360i 0.0273408 0.0273408i
\(939\) 0 0
\(940\) −11.1546 + 0.779481i −0.363824 + 0.0254239i
\(941\) 20.4404i 0.666339i 0.942867 + 0.333169i \(0.108118\pi\)
−0.942867 + 0.333169i \(0.891882\pi\)
\(942\) 0 0
\(943\) −14.4547 14.4547i −0.470709 0.470709i
\(944\) −6.33213 −0.206093
\(945\) 0 0
\(946\) −8.94133 −0.290708
\(947\) −1.98640 1.98640i −0.0645494 0.0645494i 0.674095 0.738645i \(-0.264534\pi\)
−0.738645 + 0.674095i \(0.764534\pi\)
\(948\) 0 0
\(949\) 20.3063i 0.659172i
\(950\) 6.58453 + 4.96277i 0.213630 + 0.161014i
\(951\) 0 0
\(952\) 0.403777 0.403777i 0.0130865 0.0130865i
\(953\) −1.04603 + 1.04603i −0.0338842 + 0.0338842i −0.723846 0.689962i \(-0.757627\pi\)
0.689962 + 0.723846i \(0.257627\pi\)
\(954\) 0 0
\(955\) −35.9470 + 41.3484i −1.16322 + 1.33800i
\(956\) 30.3794i 0.982541i
\(957\) 0 0
\(958\) −24.4489 24.4489i −0.789907 0.789907i
\(959\) −1.05708 −0.0341350
\(960\) 0 0
\(961\) 2.78944 0.0899818
\(962\) 36.6771 + 36.6771i 1.18252 + 1.18252i
\(963\) 0 0
\(964\) 14.6449i 0.471682i
\(965\) 2.21055 + 31.6337i 0.0711600 + 1.01832i
\(966\) 0 0
\(967\) −14.6161 + 14.6161i −0.470021 + 0.470021i −0.901921 0.431900i \(-0.857843\pi\)
0.431900 + 0.901921i \(0.357843\pi\)
\(968\) −0.707107 + 0.707107i −0.0227273 + 0.0227273i
\(969\) 0 0
\(970\) −11.7685 10.2312i −0.377864 0.328503i
\(971\) 46.6249i 1.49627i 0.663549 + 0.748133i \(0.269049\pi\)
−0.663549 + 0.748133i \(0.730951\pi\)
\(972\) 0 0
\(973\) 3.37405 + 3.37405i 0.108167 + 0.108167i
\(974\) −27.9247 −0.894767
\(975\) 0 0
\(976\) 1.69396 0.0542223
\(977\) 23.2968 + 23.2968i 0.745329 + 0.745329i 0.973598 0.228269i \(-0.0733065\pi\)
−0.228269 + 0.973598i \(0.573307\pi\)
\(978\) 0 0
\(979\) 14.0326i 0.448482i
\(980\) −11.6486 10.1269i −0.372100 0.323493i
\(981\) 0 0
\(982\) −3.74465 + 3.74465i −0.119497 + 0.119497i
\(983\) −8.97262 + 8.97262i −0.286182 + 0.286182i −0.835568 0.549386i \(-0.814862\pi\)
0.549386 + 0.835568i \(0.314862\pi\)
\(984\) 0 0
\(985\) −3.35032 47.9442i −0.106750 1.52763i
\(986\) 5.94544i 0.189341i
\(987\) 0 0
\(988\) −5.88517 5.88517i −0.187232 0.187232i
\(989\) 36.7517 1.16864
\(990\) 0 0
\(991\) 55.8361 1.77369 0.886845 0.462066i \(-0.152892\pi\)
0.886845 + 0.462066i \(0.152892\pi\)
\(992\) 4.11032 + 4.11032i 0.130503 + 0.130503i
\(993\) 0 0
\(994\) 0.228769i 0.00725610i
\(995\) 36.2410 41.6866i 1.14892 1.32155i
\(996\) 0 0
\(997\) −20.1162 + 20.1162i −0.637087 + 0.637087i −0.949836 0.312749i \(-0.898750\pi\)
0.312749 + 0.949836i \(0.398750\pi\)
\(998\) 22.7543 22.7543i 0.720274 0.720274i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.k.d.683.3 yes 12
3.2 odd 2 990.2.k.c.683.4 yes 12
5.2 odd 4 990.2.k.c.287.4 12
15.2 even 4 inner 990.2.k.d.287.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.k.c.287.4 12 5.2 odd 4
990.2.k.c.683.4 yes 12 3.2 odd 2
990.2.k.d.287.3 yes 12 15.2 even 4 inner
990.2.k.d.683.3 yes 12 1.1 even 1 trivial