Defining parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 464 | 40 | 424 |
Cusp forms | 400 | 40 | 360 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
990.2.k.a | $8$ | $7.905$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{16}^{6}q^{2}-\zeta_{16}^{4}q^{4}+(-\zeta_{16}-2\zeta_{16}^{5}+\cdots)q^{5}+\cdots\) |
990.2.k.b | $8$ | $7.905$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{16}^{6}q^{2}-\zeta_{16}^{4}q^{4}+(\zeta_{16}+2\zeta_{16}^{5}+\cdots)q^{5}+\cdots\) |
990.2.k.c | $12$ | $7.905$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{6}q^{2}-\beta _{2}q^{4}+\beta _{11}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\) |
990.2.k.d | $12$ | $7.905$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{2}-\beta _{2}q^{4}-\beta _{11}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)