Properties

Label 990.2.k
Level $990$
Weight $2$
Character orbit 990.k
Rep. character $\chi_{990}(287,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $40$
Newform subspaces $4$
Sturm bound $432$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(432\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 464 40 424
Cusp forms 400 40 360
Eisenstein series 64 0 64

Trace form

\( 40 q - 8 q^{13} - 40 q^{16} - 64 q^{31} - 8 q^{37} + 8 q^{40} + 8 q^{52} + 8 q^{58} + 64 q^{61} - 32 q^{67} + 32 q^{70} + 8 q^{73} + 64 q^{76} + 24 q^{82} - 96 q^{85} + 104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.k.a 990.k 15.e $8$ $7.905$ \(\Q(\zeta_{16})\) None 990.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{16}^{6}q^{2}-\zeta_{16}^{4}q^{4}+(-\zeta_{16}-2\zeta_{16}^{5}+\cdots)q^{5}+\cdots\)
990.2.k.b 990.k 15.e $8$ $7.905$ \(\Q(\zeta_{16})\) None 990.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{16}^{6}q^{2}-\zeta_{16}^{4}q^{4}+(\zeta_{16}+2\zeta_{16}^{5}+\cdots)q^{5}+\cdots\)
990.2.k.c 990.k 15.e $12$ $7.905$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 990.2.k.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}-\beta _{2}q^{4}+\beta _{11}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\)
990.2.k.d 990.k 15.e $12$ $7.905$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 990.2.k.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{2}-\beta _{2}q^{4}-\beta _{11}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)