Properties

Label 990.2.f.c.989.16
Level $990$
Weight $2$
Character 990.989
Analytic conductor $7.905$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(989,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.989"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 517x^{12} + 3164x^{10} + 9372x^{8} + 14032x^{6} + 10320x^{4} + 3200x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 989.16
Root \(-3.96698i\) of defining polynomial
Character \(\chi\) \(=\) 990.989
Dual form 990.2.f.c.989.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.94442 + 1.10418i) q^{5} -1.41421 q^{7} -1.00000i q^{8} +(-1.10418 + 1.94442i) q^{10} +(0.772087 - 3.22550i) q^{11} +3.62258 q^{13} -1.41421i q^{14} +1.00000 q^{16} +2.00000i q^{17} +6.07263i q^{19} +(-1.94442 - 1.10418i) q^{20} +(3.22550 + 0.772087i) q^{22} +7.77769 q^{23} +(2.56155 + 4.29400i) q^{25} +3.62258i q^{26} +1.41421 q^{28} -5.49966 q^{29} +6.24621 q^{31} +1.00000i q^{32} -2.00000 q^{34} +(-2.74983 - 1.56155i) q^{35} +1.54417i q^{37} -6.07263 q^{38} +(1.10418 - 1.94442i) q^{40} -12.5435 q^{41} +9.45353 q^{43} +(-0.772087 + 3.22550i) q^{44} +7.77769i q^{46} +9.96148 q^{47} -5.00000 q^{49} +(-4.29400 + 2.56155i) q^{50} -3.62258 q^{52} -6.07263 q^{53} +(5.06282 - 5.41922i) q^{55} +1.41421i q^{56} -5.49966i q^{58} +0.794156i q^{59} +9.96148i q^{61} +6.24621i q^{62} -1.00000 q^{64} +(7.04383 + 4.00000i) q^{65} +3.08835i q^{67} -2.00000i q^{68} +(1.56155 - 2.74983i) q^{70} +4.06854 q^{73} -1.54417 q^{74} -6.07263i q^{76} +(-1.09190 + 4.56155i) q^{77} +6.07263i q^{79} +(1.94442 + 1.10418i) q^{80} -12.5435i q^{82} -17.3693i q^{83} +(-2.20837 + 3.88884i) q^{85} +9.45353i q^{86} +(-3.22550 - 0.772087i) q^{88} -11.4878i q^{89} -5.12311 q^{91} -7.77769 q^{92} +9.96148i q^{94} +(-6.70531 + 11.8078i) q^{95} +10.9993i q^{97} -5.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{16} + 8 q^{25} - 32 q^{31} - 32 q^{34} - 80 q^{49} + 24 q^{55} - 16 q^{64} - 8 q^{70} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.94442 + 1.10418i 0.869572 + 0.493806i
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.10418 + 1.94442i −0.349174 + 0.614880i
\(11\) 0.772087 3.22550i 0.232793 0.972526i
\(12\) 0 0
\(13\) 3.62258 1.00472 0.502362 0.864657i \(-0.332465\pi\)
0.502362 + 0.864657i \(0.332465\pi\)
\(14\) 1.41421i 0.377964i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 6.07263i 1.39316i 0.717480 + 0.696579i \(0.245295\pi\)
−0.717480 + 0.696579i \(0.754705\pi\)
\(20\) −1.94442 1.10418i −0.434786 0.246903i
\(21\) 0 0
\(22\) 3.22550 + 0.772087i 0.687680 + 0.164609i
\(23\) 7.77769 1.62176 0.810880 0.585212i \(-0.198989\pi\)
0.810880 + 0.585212i \(0.198989\pi\)
\(24\) 0 0
\(25\) 2.56155 + 4.29400i 0.512311 + 0.858800i
\(26\) 3.62258i 0.710447i
\(27\) 0 0
\(28\) 1.41421 0.267261
\(29\) −5.49966 −1.02126 −0.510630 0.859800i \(-0.670588\pi\)
−0.510630 + 0.859800i \(0.670588\pi\)
\(30\) 0 0
\(31\) 6.24621 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) −2.74983 1.56155i −0.464806 0.263951i
\(36\) 0 0
\(37\) 1.54417i 0.253861i 0.991912 + 0.126930i \(0.0405124\pi\)
−0.991912 + 0.126930i \(0.959488\pi\)
\(38\) −6.07263 −0.985111
\(39\) 0 0
\(40\) 1.10418 1.94442i 0.174587 0.307440i
\(41\) −12.5435 −1.95896 −0.979482 0.201534i \(-0.935407\pi\)
−0.979482 + 0.201534i \(0.935407\pi\)
\(42\) 0 0
\(43\) 9.45353 1.44165 0.720825 0.693117i \(-0.243763\pi\)
0.720825 + 0.693117i \(0.243763\pi\)
\(44\) −0.772087 + 3.22550i −0.116396 + 0.486263i
\(45\) 0 0
\(46\) 7.77769i 1.14676i
\(47\) 9.96148 1.45303 0.726515 0.687150i \(-0.241139\pi\)
0.726515 + 0.687150i \(0.241139\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) −4.29400 + 2.56155i −0.607263 + 0.362258i
\(51\) 0 0
\(52\) −3.62258 −0.502362
\(53\) −6.07263 −0.834141 −0.417070 0.908874i \(-0.636943\pi\)
−0.417070 + 0.908874i \(0.636943\pi\)
\(54\) 0 0
\(55\) 5.06282 5.41922i 0.682670 0.730727i
\(56\) 1.41421i 0.188982i
\(57\) 0 0
\(58\) 5.49966i 0.722140i
\(59\) 0.794156i 0.103390i 0.998663 + 0.0516951i \(0.0164624\pi\)
−0.998663 + 0.0516951i \(0.983538\pi\)
\(60\) 0 0
\(61\) 9.96148i 1.27544i 0.770270 + 0.637718i \(0.220122\pi\)
−0.770270 + 0.637718i \(0.779878\pi\)
\(62\) 6.24621i 0.793270i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.04383 + 4.00000i 0.873679 + 0.496139i
\(66\) 0 0
\(67\) 3.08835i 0.377302i 0.982044 + 0.188651i \(0.0604114\pi\)
−0.982044 + 0.188651i \(0.939589\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 0 0
\(70\) 1.56155 2.74983i 0.186641 0.328667i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 4.06854 0.476187 0.238093 0.971242i \(-0.423478\pi\)
0.238093 + 0.971242i \(0.423478\pi\)
\(74\) −1.54417 −0.179507
\(75\) 0 0
\(76\) 6.07263i 0.696579i
\(77\) −1.09190 + 4.56155i −0.124433 + 0.519837i
\(78\) 0 0
\(79\) 6.07263i 0.683225i 0.939841 + 0.341612i \(0.110973\pi\)
−0.939841 + 0.341612i \(0.889027\pi\)
\(80\) 1.94442 + 1.10418i 0.217393 + 0.123452i
\(81\) 0 0
\(82\) 12.5435i 1.38520i
\(83\) 17.3693i 1.90653i −0.302135 0.953265i \(-0.597699\pi\)
0.302135 0.953265i \(-0.402301\pi\)
\(84\) 0 0
\(85\) −2.20837 + 3.88884i −0.239531 + 0.421804i
\(86\) 9.45353i 1.01940i
\(87\) 0 0
\(88\) −3.22550 0.772087i −0.343840 0.0823047i
\(89\) 11.4878i 1.21771i −0.793283 0.608853i \(-0.791630\pi\)
0.793283 0.608853i \(-0.208370\pi\)
\(90\) 0 0
\(91\) −5.12311 −0.537047
\(92\) −7.77769 −0.810880
\(93\) 0 0
\(94\) 9.96148i 1.02745i
\(95\) −6.70531 + 11.8078i −0.687950 + 1.21145i
\(96\) 0 0
\(97\) 10.9993i 1.11681i 0.829568 + 0.558405i \(0.188587\pi\)
−0.829568 + 0.558405i \(0.811413\pi\)
\(98\) 5.00000i 0.505076i
\(99\) 0 0
\(100\) −2.56155 4.29400i −0.256155 0.429400i
\(101\) 16.4990 1.64171 0.820854 0.571138i \(-0.193498\pi\)
0.820854 + 0.571138i \(0.193498\pi\)
\(102\) 0 0
\(103\) 3.95548i 0.389745i 0.980829 + 0.194873i \(0.0624293\pi\)
−0.980829 + 0.194873i \(0.937571\pi\)
\(104\) 3.62258i 0.355223i
\(105\) 0 0
\(106\) 6.07263i 0.589826i
\(107\) 11.1231i 1.07531i 0.843165 + 0.537656i \(0.180690\pi\)
−0.843165 + 0.537656i \(0.819310\pi\)
\(108\) 0 0
\(109\) 2.18379i 0.209169i −0.994516 0.104585i \(-0.966649\pi\)
0.994516 0.104585i \(-0.0333513\pi\)
\(110\) 5.41922 + 5.06282i 0.516702 + 0.482720i
\(111\) 0 0
\(112\) −1.41421 −0.133631
\(113\) −8.25643 −0.776699 −0.388350 0.921512i \(-0.626955\pi\)
−0.388350 + 0.921512i \(0.626955\pi\)
\(114\) 0 0
\(115\) 15.1231 + 8.58800i 1.41024 + 0.800835i
\(116\) 5.49966 0.510630
\(117\) 0 0
\(118\) −0.794156 −0.0731079
\(119\) 2.82843i 0.259281i
\(120\) 0 0
\(121\) −9.80776 4.98074i −0.891615 0.452794i
\(122\) −9.96148 −0.901870
\(123\) 0 0
\(124\) −6.24621 −0.560926
\(125\) 0.239369 + 11.1778i 0.0214098 + 0.999771i
\(126\) 0 0
\(127\) −9.89949 −0.878438 −0.439219 0.898380i \(-0.644745\pi\)
−0.439219 + 0.898380i \(0.644745\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −4.00000 + 7.04383i −0.350823 + 0.617785i
\(131\) 1.54417 0.134915 0.0674575 0.997722i \(-0.478511\pi\)
0.0674575 + 0.997722i \(0.478511\pi\)
\(132\) 0 0
\(133\) 8.58800i 0.744674i
\(134\) −3.08835 −0.266793
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 0.478739 0.0409014 0.0204507 0.999791i \(-0.493490\pi\)
0.0204507 + 0.999791i \(0.493490\pi\)
\(138\) 0 0
\(139\) 19.4442i 1.64924i −0.565689 0.824619i \(-0.691390\pi\)
0.565689 0.824619i \(-0.308610\pi\)
\(140\) 2.74983 + 1.56155i 0.232403 + 0.131975i
\(141\) 0 0
\(142\) 0 0
\(143\) 2.79695 11.6847i 0.233893 0.977120i
\(144\) 0 0
\(145\) −10.6937 6.07263i −0.888059 0.504305i
\(146\) 4.06854i 0.336715i
\(147\) 0 0
\(148\) 1.54417i 0.126930i
\(149\) 2.41131 0.197542 0.0987710 0.995110i \(-0.468509\pi\)
0.0987710 + 0.995110i \(0.468509\pi\)
\(150\) 0 0
\(151\) 9.48274i 0.771694i −0.922563 0.385847i \(-0.873909\pi\)
0.922563 0.385847i \(-0.126091\pi\)
\(152\) 6.07263 0.492556
\(153\) 0 0
\(154\) −4.56155 1.09190i −0.367580 0.0879875i
\(155\) 12.1453 + 6.89697i 0.975532 + 0.553978i
\(156\) 0 0
\(157\) 21.1315i 1.68648i −0.537540 0.843238i \(-0.680646\pi\)
0.537540 0.843238i \(-0.319354\pi\)
\(158\) −6.07263 −0.483113
\(159\) 0 0
\(160\) −1.10418 + 1.94442i −0.0872935 + 0.153720i
\(161\) −10.9993 −0.866867
\(162\) 0 0
\(163\) 7.91096i 0.619635i 0.950796 + 0.309817i \(0.100268\pi\)
−0.950796 + 0.309817i \(0.899732\pi\)
\(164\) 12.5435 0.979482
\(165\) 0 0
\(166\) 17.3693 1.34812
\(167\) 7.36932i 0.570255i −0.958490 0.285127i \(-0.907964\pi\)
0.958490 0.285127i \(-0.0920359\pi\)
\(168\) 0 0
\(169\) 0.123106 0.00946966
\(170\) −3.88884 2.20837i −0.298261 0.169374i
\(171\) 0 0
\(172\) −9.45353 −0.720825
\(173\) 18.0000i 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) −3.62258 6.07263i −0.273842 0.459048i
\(176\) 0.772087 3.22550i 0.0581982 0.243132i
\(177\) 0 0
\(178\) 11.4878 0.861047
\(179\) 10.8677i 0.812294i −0.913808 0.406147i \(-0.866872\pi\)
0.913808 0.406147i \(-0.133128\pi\)
\(180\) 0 0
\(181\) −9.12311 −0.678115 −0.339058 0.940766i \(-0.610108\pi\)
−0.339058 + 0.940766i \(0.610108\pi\)
\(182\) 5.12311i 0.379750i
\(183\) 0 0
\(184\) 7.77769i 0.573379i
\(185\) −1.70505 + 3.00252i −0.125358 + 0.220750i
\(186\) 0 0
\(187\) 6.45101 + 1.54417i 0.471745 + 0.112921i
\(188\) −9.96148 −0.726515
\(189\) 0 0
\(190\) −11.8078 6.70531i −0.856625 0.486454i
\(191\) 20.1472i 1.45780i −0.684621 0.728900i \(-0.740032\pi\)
0.684621 0.728900i \(-0.259968\pi\)
\(192\) 0 0
\(193\) 17.3188 1.24663 0.623316 0.781970i \(-0.285785\pi\)
0.623316 + 0.781970i \(0.285785\pi\)
\(194\) −10.9993 −0.789705
\(195\) 0 0
\(196\) 5.00000 0.357143
\(197\) 0.876894i 0.0624761i −0.999512 0.0312381i \(-0.990055\pi\)
0.999512 0.0312381i \(-0.00994500\pi\)
\(198\) 0 0
\(199\) −16.4924 −1.16912 −0.584558 0.811352i \(-0.698732\pi\)
−0.584558 + 0.811352i \(0.698732\pi\)
\(200\) 4.29400 2.56155i 0.303632 0.181129i
\(201\) 0 0
\(202\) 16.4990i 1.16086i
\(203\) 7.77769 0.545887
\(204\) 0 0
\(205\) −24.3898 13.8503i −1.70346 0.967348i
\(206\) −3.95548 −0.275591
\(207\) 0 0
\(208\) 3.62258 0.251181
\(209\) 19.5873 + 4.68860i 1.35488 + 0.324317i
\(210\) 0 0
\(211\) 3.88884i 0.267719i 0.991000 + 0.133860i \(0.0427371\pi\)
−0.991000 + 0.133860i \(0.957263\pi\)
\(212\) 6.07263 0.417070
\(213\) 0 0
\(214\) −11.1231 −0.760360
\(215\) 18.3817 + 10.4384i 1.25362 + 0.711896i
\(216\) 0 0
\(217\) −8.83348 −0.599655
\(218\) 2.18379 0.147905
\(219\) 0 0
\(220\) −5.06282 + 5.41922i −0.341335 + 0.365363i
\(221\) 7.24517i 0.487363i
\(222\) 0 0
\(223\) 3.95548i 0.264879i 0.991191 + 0.132439i \(0.0422810\pi\)
−0.991191 + 0.132439i \(0.957719\pi\)
\(224\) 1.41421i 0.0944911i
\(225\) 0 0
\(226\) 8.25643i 0.549209i
\(227\) 5.36932i 0.356374i 0.983997 + 0.178187i \(0.0570232\pi\)
−0.983997 + 0.178187i \(0.942977\pi\)
\(228\) 0 0
\(229\) 20.2462 1.33791 0.668954 0.743304i \(-0.266742\pi\)
0.668954 + 0.743304i \(0.266742\pi\)
\(230\) −8.58800 + 15.1231i −0.566276 + 0.997188i
\(231\) 0 0
\(232\) 5.49966i 0.361070i
\(233\) 14.4924i 0.949430i −0.880140 0.474715i \(-0.842551\pi\)
0.880140 0.474715i \(-0.157449\pi\)
\(234\) 0 0
\(235\) 19.3693 + 10.9993i 1.26351 + 0.717516i
\(236\) 0.794156i 0.0516951i
\(237\) 0 0
\(238\) 2.82843 0.183340
\(239\) −16.4990 −1.06723 −0.533615 0.845728i \(-0.679167\pi\)
−0.533615 + 0.845728i \(0.679167\pi\)
\(240\) 0 0
\(241\) 2.18379i 0.140670i 0.997523 + 0.0703352i \(0.0224069\pi\)
−0.997523 + 0.0703352i \(0.977593\pi\)
\(242\) 4.98074 9.80776i 0.320174 0.630467i
\(243\) 0 0
\(244\) 9.96148i 0.637718i
\(245\) −9.72211 5.52092i −0.621123 0.352719i
\(246\) 0 0
\(247\) 21.9986i 1.39974i
\(248\) 6.24621i 0.396635i
\(249\) 0 0
\(250\) −11.1778 + 0.239369i −0.706945 + 0.0151390i
\(251\) 3.62258i 0.228655i −0.993443 0.114328i \(-0.963529\pi\)
0.993443 0.114328i \(-0.0364714\pi\)
\(252\) 0 0
\(253\) 6.00505 25.0870i 0.377534 1.57720i
\(254\) 9.89949i 0.621150i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.88884 0.242579 0.121290 0.992617i \(-0.461297\pi\)
0.121290 + 0.992617i \(0.461297\pi\)
\(258\) 0 0
\(259\) 2.18379i 0.135694i
\(260\) −7.04383 4.00000i −0.436840 0.248069i
\(261\) 0 0
\(262\) 1.54417i 0.0953994i
\(263\) 15.3693i 0.947713i −0.880602 0.473856i \(-0.842862\pi\)
0.880602 0.473856i \(-0.157138\pi\)
\(264\) 0 0
\(265\) −11.8078 6.70531i −0.725345 0.411904i
\(266\) 8.58800 0.526564
\(267\) 0 0
\(268\) 3.08835i 0.188651i
\(269\) 13.8703i 0.845685i 0.906203 + 0.422843i \(0.138968\pi\)
−0.906203 + 0.422843i \(0.861032\pi\)
\(270\) 0 0
\(271\) 17.2604i 1.04850i −0.851566 0.524248i \(-0.824346\pi\)
0.851566 0.524248i \(-0.175654\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 0.478739i 0.0289217i
\(275\) 15.8281 4.94696i 0.954468 0.298313i
\(276\) 0 0
\(277\) 10.8677 0.652980 0.326490 0.945201i \(-0.394134\pi\)
0.326490 + 0.945201i \(0.394134\pi\)
\(278\) 19.4442 1.16619
\(279\) 0 0
\(280\) −1.56155 + 2.74983i −0.0933206 + 0.164334i
\(281\) 20.4544 1.22021 0.610105 0.792321i \(-0.291127\pi\)
0.610105 + 0.792321i \(0.291127\pi\)
\(282\) 0 0
\(283\) −13.5221 −0.803804 −0.401902 0.915683i \(-0.631651\pi\)
−0.401902 + 0.915683i \(0.631651\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 11.6847 + 2.79695i 0.690928 + 0.165387i
\(287\) 17.7392 1.04711
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 6.07263 10.6937i 0.356597 0.627953i
\(291\) 0 0
\(292\) −4.06854 −0.238093
\(293\) 11.6155i 0.678586i 0.940681 + 0.339293i \(0.110188\pi\)
−0.940681 + 0.339293i \(0.889812\pi\)
\(294\) 0 0
\(295\) −0.876894 + 1.54417i −0.0510548 + 0.0899053i
\(296\) 1.54417 0.0897533
\(297\) 0 0
\(298\) 2.41131i 0.139683i
\(299\) 28.1753 1.62942
\(300\) 0 0
\(301\) −13.3693 −0.770595
\(302\) 9.48274 0.545670
\(303\) 0 0
\(304\) 6.07263i 0.348289i
\(305\) −10.9993 + 19.3693i −0.629819 + 1.10908i
\(306\) 0 0
\(307\) −10.6937 −0.610319 −0.305159 0.952301i \(-0.598710\pi\)
−0.305159 + 0.952301i \(0.598710\pi\)
\(308\) 1.09190 4.56155i 0.0622165 0.259919i
\(309\) 0 0
\(310\) −6.89697 + 12.1453i −0.391722 + 0.689805i
\(311\) 4.41674i 0.250450i 0.992128 + 0.125225i \(0.0399653\pi\)
−0.992128 + 0.125225i \(0.960035\pi\)
\(312\) 0 0
\(313\) 16.4990i 0.932577i 0.884633 + 0.466288i \(0.154409\pi\)
−0.884633 + 0.466288i \(0.845591\pi\)
\(314\) 21.1315 1.19252
\(315\) 0 0
\(316\) 6.07263i 0.341612i
\(317\) −27.2219 −1.52893 −0.764467 0.644663i \(-0.776998\pi\)
−0.764467 + 0.644663i \(0.776998\pi\)
\(318\) 0 0
\(319\) −4.24621 + 17.7392i −0.237742 + 0.993203i
\(320\) −1.94442 1.10418i −0.108696 0.0617258i
\(321\) 0 0
\(322\) 10.9993i 0.612968i
\(323\) −12.1453 −0.675781
\(324\) 0 0
\(325\) 9.27944 + 15.5554i 0.514731 + 0.862857i
\(326\) −7.91096 −0.438148
\(327\) 0 0
\(328\) 12.5435i 0.692598i
\(329\) −14.0877 −0.776678
\(330\) 0 0
\(331\) −7.36932 −0.405054 −0.202527 0.979277i \(-0.564915\pi\)
−0.202527 + 0.979277i \(0.564915\pi\)
\(332\) 17.3693i 0.953265i
\(333\) 0 0
\(334\) 7.36932 0.403231
\(335\) −3.41011 + 6.00505i −0.186314 + 0.328091i
\(336\) 0 0
\(337\) −16.0786 −0.875859 −0.437930 0.899009i \(-0.644288\pi\)
−0.437930 + 0.899009i \(0.644288\pi\)
\(338\) 0.123106i 0.00669606i
\(339\) 0 0
\(340\) 2.20837 3.88884i 0.119766 0.210902i
\(341\) 4.82262 20.1472i 0.261159 1.09103i
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 9.45353i 0.509700i
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 23.6155i 1.26775i −0.773436 0.633874i \(-0.781464\pi\)
0.773436 0.633874i \(-0.218536\pi\)
\(348\) 0 0
\(349\) 29.8844i 1.59968i −0.600215 0.799839i \(-0.704918\pi\)
0.600215 0.799839i \(-0.295082\pi\)
\(350\) 6.07263 3.62258i 0.324596 0.193635i
\(351\) 0 0
\(352\) 3.22550 + 0.772087i 0.171920 + 0.0411524i
\(353\) −16.0341 −0.853410 −0.426705 0.904391i \(-0.640326\pi\)
−0.426705 + 0.904391i \(0.640326\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.4878i 0.608853i
\(357\) 0 0
\(358\) 10.8677 0.574378
\(359\) −21.9986 −1.16104 −0.580521 0.814245i \(-0.697151\pi\)
−0.580521 + 0.814245i \(0.697151\pi\)
\(360\) 0 0
\(361\) −17.8769 −0.940889
\(362\) 9.12311i 0.479500i
\(363\) 0 0
\(364\) 5.12311 0.268524
\(365\) 7.91096 + 4.49242i 0.414079 + 0.235144i
\(366\) 0 0
\(367\) 7.04383i 0.367685i −0.982956 0.183842i \(-0.941146\pi\)
0.982956 0.183842i \(-0.0588536\pi\)
\(368\) 7.77769 0.405440
\(369\) 0 0
\(370\) −3.00252 1.70505i −0.156094 0.0886415i
\(371\) 8.58800 0.445867
\(372\) 0 0
\(373\) −24.1180 −1.24878 −0.624390 0.781112i \(-0.714653\pi\)
−0.624390 + 0.781112i \(0.714653\pi\)
\(374\) −1.54417 + 6.45101i −0.0798473 + 0.333574i
\(375\) 0 0
\(376\) 9.96148i 0.513724i
\(377\) −19.9230 −1.02608
\(378\) 0 0
\(379\) 0.492423 0.0252940 0.0126470 0.999920i \(-0.495974\pi\)
0.0126470 + 0.999920i \(0.495974\pi\)
\(380\) 6.70531 11.8078i 0.343975 0.605726i
\(381\) 0 0
\(382\) 20.1472 1.03082
\(383\) −22.1067 −1.12960 −0.564801 0.825227i \(-0.691047\pi\)
−0.564801 + 0.825227i \(0.691047\pi\)
\(384\) 0 0
\(385\) −7.15990 + 7.66393i −0.364902 + 0.390590i
\(386\) 17.3188i 0.881502i
\(387\) 0 0
\(388\) 10.9993i 0.558405i
\(389\) 36.1495i 1.83285i 0.400204 + 0.916426i \(0.368939\pi\)
−0.400204 + 0.916426i \(0.631061\pi\)
\(390\) 0 0
\(391\) 15.5554i 0.786669i
\(392\) 5.00000i 0.252538i
\(393\) 0 0
\(394\) 0.876894 0.0441773
\(395\) −6.70531 + 11.8078i −0.337381 + 0.594113i
\(396\) 0 0
\(397\) 23.5428i 1.18158i −0.806826 0.590790i \(-0.798816\pi\)
0.806826 0.590790i \(-0.201184\pi\)
\(398\) 16.4924i 0.826690i
\(399\) 0 0
\(400\) 2.56155 + 4.29400i 0.128078 + 0.214700i
\(401\) 9.89949i 0.494357i 0.968970 + 0.247179i \(0.0795034\pi\)
−0.968970 + 0.247179i \(0.920497\pi\)
\(402\) 0 0
\(403\) 22.6274 1.12715
\(404\) −16.4990 −0.820854
\(405\) 0 0
\(406\) 7.77769i 0.386000i
\(407\) 4.98074 + 1.19224i 0.246886 + 0.0590969i
\(408\) 0 0
\(409\) 18.9655i 0.937783i 0.883256 + 0.468891i \(0.155346\pi\)
−0.883256 + 0.468891i \(0.844654\pi\)
\(410\) 13.8503 24.3898i 0.684019 1.20453i
\(411\) 0 0
\(412\) 3.95548i 0.194873i
\(413\) 1.12311i 0.0552644i
\(414\) 0 0
\(415\) 19.1789 33.7733i 0.941457 1.65787i
\(416\) 3.62258i 0.177612i
\(417\) 0 0
\(418\) −4.68860 + 19.5873i −0.229327 + 0.958047i
\(419\) 13.3480i 0.652091i −0.945354 0.326046i \(-0.894284\pi\)
0.945354 0.326046i \(-0.105716\pi\)
\(420\) 0 0
\(421\) −14.8769 −0.725055 −0.362528 0.931973i \(-0.618086\pi\)
−0.362528 + 0.931973i \(0.618086\pi\)
\(422\) −3.88884 −0.189306
\(423\) 0 0
\(424\) 6.07263i 0.294913i
\(425\) −8.58800 + 5.12311i −0.416579 + 0.248507i
\(426\) 0 0
\(427\) 14.0877i 0.681750i
\(428\) 11.1231i 0.537656i
\(429\) 0 0
\(430\) −10.4384 + 18.3817i −0.503387 + 0.886442i
\(431\) −36.7633 −1.77083 −0.885413 0.464804i \(-0.846125\pi\)
−0.885413 + 0.464804i \(0.846125\pi\)
\(432\) 0 0
\(433\) 5.49966i 0.264297i −0.991230 0.132148i \(-0.957812\pi\)
0.991230 0.132148i \(-0.0421875\pi\)
\(434\) 8.83348i 0.424020i
\(435\) 0 0
\(436\) 2.18379i 0.104585i
\(437\) 47.2311i 2.25937i
\(438\) 0 0
\(439\) 6.07263i 0.289831i 0.989444 + 0.144916i \(0.0462910\pi\)
−0.989444 + 0.144916i \(0.953709\pi\)
\(440\) −5.41922 5.06282i −0.258351 0.241360i
\(441\) 0 0
\(442\) −7.24517 −0.344617
\(443\) 12.1453 0.577039 0.288520 0.957474i \(-0.406837\pi\)
0.288520 + 0.957474i \(0.406837\pi\)
\(444\) 0 0
\(445\) 12.6847 22.3371i 0.601310 1.05888i
\(446\) −3.95548 −0.187298
\(447\) 0 0
\(448\) 1.41421 0.0668153
\(449\) 21.9096i 1.03398i 0.855992 + 0.516989i \(0.172947\pi\)
−0.855992 + 0.516989i \(0.827053\pi\)
\(450\) 0 0
\(451\) −9.68466 + 40.4591i −0.456033 + 1.90514i
\(452\) 8.25643 0.388350
\(453\) 0 0
\(454\) −5.36932 −0.251995
\(455\) −9.96148 5.65685i −0.467001 0.265197i
\(456\) 0 0
\(457\) 12.0101 0.561809 0.280904 0.959736i \(-0.409366\pi\)
0.280904 + 0.959736i \(0.409366\pi\)
\(458\) 20.2462i 0.946043i
\(459\) 0 0
\(460\) −15.1231 8.58800i −0.705118 0.400418i
\(461\) −14.7647 −0.687660 −0.343830 0.939032i \(-0.611724\pi\)
−0.343830 + 0.939032i \(0.611724\pi\)
\(462\) 0 0
\(463\) 22.8658i 1.06266i −0.847164 0.531331i \(-0.821692\pi\)
0.847164 0.531331i \(-0.178308\pi\)
\(464\) −5.49966 −0.255315
\(465\) 0 0
\(466\) 14.4924 0.671349
\(467\) −12.1453 −0.562016 −0.281008 0.959705i \(-0.590669\pi\)
−0.281008 + 0.959705i \(0.590669\pi\)
\(468\) 0 0
\(469\) 4.36758i 0.201676i
\(470\) −10.9993 + 19.3693i −0.507360 + 0.893440i
\(471\) 0 0
\(472\) 0.794156 0.0365540
\(473\) 7.29895 30.4924i 0.335606 1.40204i
\(474\) 0 0
\(475\) −26.0759 + 15.5554i −1.19644 + 0.713730i
\(476\) 2.82843i 0.129641i
\(477\) 0 0
\(478\) 16.4990i 0.754645i
\(479\) 27.4983 1.25643 0.628214 0.778040i \(-0.283786\pi\)
0.628214 + 0.778040i \(0.283786\pi\)
\(480\) 0 0
\(481\) 5.59390i 0.255060i
\(482\) −2.18379 −0.0994690
\(483\) 0 0
\(484\) 9.80776 + 4.98074i 0.445807 + 0.226397i
\(485\) −12.1453 + 21.3873i −0.551488 + 0.971147i
\(486\) 0 0
\(487\) 41.3958i 1.87582i 0.346873 + 0.937912i \(0.387244\pi\)
−0.346873 + 0.937912i \(0.612756\pi\)
\(488\) 9.96148 0.450935
\(489\) 0 0
\(490\) 5.52092 9.72211i 0.249410 0.439200i
\(491\) −43.1301 −1.94643 −0.973217 0.229887i \(-0.926164\pi\)
−0.973217 + 0.229887i \(0.926164\pi\)
\(492\) 0 0
\(493\) 10.9993i 0.495384i
\(494\) −21.9986 −0.989765
\(495\) 0 0
\(496\) 6.24621 0.280463
\(497\) 0 0
\(498\) 0 0
\(499\) −14.8769 −0.665981 −0.332991 0.942930i \(-0.608058\pi\)
−0.332991 + 0.942930i \(0.608058\pi\)
\(500\) −0.239369 11.1778i −0.0107049 0.499885i
\(501\) 0 0
\(502\) 3.62258 0.161684
\(503\) 3.50758i 0.156395i −0.996938 0.0781976i \(-0.975084\pi\)
0.996938 0.0781976i \(-0.0249165\pi\)
\(504\) 0 0
\(505\) 32.0810 + 18.2179i 1.42758 + 0.810686i
\(506\) 25.0870 + 6.00505i 1.11525 + 0.266957i
\(507\) 0 0
\(508\) 9.89949 0.439219
\(509\) 38.4342i 1.70357i 0.523895 + 0.851783i \(0.324478\pi\)
−0.523895 + 0.851783i \(0.675522\pi\)
\(510\) 0 0
\(511\) −5.75379 −0.254533
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.88884i 0.171530i
\(515\) −4.36758 + 7.69113i −0.192459 + 0.338911i
\(516\) 0 0
\(517\) 7.69113 32.1308i 0.338255 1.41311i
\(518\) 2.18379 0.0959503
\(519\) 0 0
\(520\) 4.00000 7.04383i 0.175412 0.308892i
\(521\) 28.1102i 1.23153i −0.787930 0.615765i \(-0.788847\pi\)
0.787930 0.615765i \(-0.211153\pi\)
\(522\) 0 0
\(523\) 22.3556 0.977540 0.488770 0.872413i \(-0.337446\pi\)
0.488770 + 0.872413i \(0.337446\pi\)
\(524\) −1.54417 −0.0674575
\(525\) 0 0
\(526\) 15.3693 0.670134
\(527\) 12.4924i 0.544178i
\(528\) 0 0
\(529\) 37.4924 1.63011
\(530\) 6.70531 11.8078i 0.291260 0.512896i
\(531\) 0 0
\(532\) 8.58800i 0.372337i
\(533\) −45.4398 −1.96822
\(534\) 0 0
\(535\) −12.2820 + 21.6280i −0.530996 + 0.935060i
\(536\) 3.08835 0.133396
\(537\) 0 0
\(538\) −13.8703 −0.597990
\(539\) −3.86043 + 16.1275i −0.166281 + 0.694662i
\(540\) 0 0
\(541\) 6.55137i 0.281666i 0.990033 + 0.140833i \(0.0449780\pi\)
−0.990033 + 0.140833i \(0.955022\pi\)
\(542\) 17.2604 0.741399
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 2.41131 4.24621i 0.103289 0.181888i
\(546\) 0 0
\(547\) 8.75714 0.374428 0.187214 0.982319i \(-0.440054\pi\)
0.187214 + 0.982319i \(0.440054\pi\)
\(548\) −0.478739 −0.0204507
\(549\) 0 0
\(550\) 4.94696 + 15.8281i 0.210939 + 0.674911i
\(551\) 33.3974i 1.42278i
\(552\) 0 0
\(553\) 8.58800i 0.365199i
\(554\) 10.8677i 0.461726i
\(555\) 0 0
\(556\) 19.4442i 0.824619i
\(557\) 6.49242i 0.275093i 0.990495 + 0.137546i \(0.0439216\pi\)
−0.990495 + 0.137546i \(0.956078\pi\)
\(558\) 0 0
\(559\) 34.2462 1.44846
\(560\) −2.74983 1.56155i −0.116201 0.0659877i
\(561\) 0 0
\(562\) 20.4544i 0.862819i
\(563\) 38.2462i 1.61189i 0.591993 + 0.805943i \(0.298341\pi\)
−0.591993 + 0.805943i \(0.701659\pi\)
\(564\) 0 0
\(565\) −16.0540 9.11662i −0.675396 0.383539i
\(566\) 13.5221i 0.568375i
\(567\) 0 0
\(568\) 0 0
\(569\) 10.8092 0.453146 0.226573 0.973994i \(-0.427248\pi\)
0.226573 + 0.973994i \(0.427248\pi\)
\(570\) 0 0
\(571\) 2.66253i 0.111423i 0.998447 + 0.0557117i \(0.0177428\pi\)
−0.998447 + 0.0557117i \(0.982257\pi\)
\(572\) −2.79695 + 11.6847i −0.116946 + 0.488560i
\(573\) 0 0
\(574\) 17.7392i 0.740418i
\(575\) 19.9230 + 33.3974i 0.830845 + 1.39277i
\(576\) 0 0
\(577\) 6.17669i 0.257139i 0.991700 + 0.128570i \(0.0410386\pi\)
−0.991700 + 0.128570i \(0.958961\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 10.6937 + 6.07263i 0.444030 + 0.252152i
\(581\) 24.5639i 1.01908i
\(582\) 0 0
\(583\) −4.68860 + 19.5873i −0.194182 + 0.811224i
\(584\) 4.06854i 0.168358i
\(585\) 0 0
\(586\) −11.6155 −0.479833
\(587\) 12.1453 0.501289 0.250644 0.968079i \(-0.419357\pi\)
0.250644 + 0.968079i \(0.419357\pi\)
\(588\) 0 0
\(589\) 37.9310i 1.56292i
\(590\) −1.54417 0.876894i −0.0635726 0.0361012i
\(591\) 0 0
\(592\) 1.54417i 0.0634651i
\(593\) 28.7386i 1.18015i 0.807347 + 0.590077i \(0.200903\pi\)
−0.807347 + 0.590077i \(0.799097\pi\)
\(594\) 0 0
\(595\) 3.12311 5.49966i 0.128035 0.225464i
\(596\) −2.41131 −0.0987710
\(597\) 0 0
\(598\) 28.1753i 1.15217i
\(599\) 17.3188i 0.707625i −0.935316 0.353813i \(-0.884885\pi\)
0.935316 0.353813i \(-0.115115\pi\)
\(600\) 0 0
\(601\) 1.22631i 0.0500224i −0.999687 0.0250112i \(-0.992038\pi\)
0.999687 0.0250112i \(-0.00796214\pi\)
\(602\) 13.3693i 0.544893i
\(603\) 0 0
\(604\) 9.48274i 0.385847i
\(605\) −13.5708 20.5142i −0.551730 0.834022i
\(606\) 0 0
\(607\) 28.8066 1.16922 0.584611 0.811314i \(-0.301247\pi\)
0.584611 + 0.811314i \(0.301247\pi\)
\(608\) −6.07263 −0.246278
\(609\) 0 0
\(610\) −19.3693 10.9993i −0.784241 0.445349i
\(611\) 36.0863 1.45989
\(612\) 0 0
\(613\) −27.4901 −1.11032 −0.555158 0.831745i \(-0.687342\pi\)
−0.555158 + 0.831745i \(0.687342\pi\)
\(614\) 10.6937i 0.431561i
\(615\) 0 0
\(616\) 4.56155 + 1.09190i 0.183790 + 0.0439937i
\(617\) 3.88884 0.156559 0.0782795 0.996931i \(-0.475057\pi\)
0.0782795 + 0.996931i \(0.475057\pi\)
\(618\) 0 0
\(619\) 22.7386 0.913943 0.456971 0.889481i \(-0.348934\pi\)
0.456971 + 0.889481i \(0.348934\pi\)
\(620\) −12.1453 6.89697i −0.487766 0.276989i
\(621\) 0 0
\(622\) −4.41674 −0.177095
\(623\) 16.2462i 0.650891i
\(624\) 0 0
\(625\) −11.8769 + 21.9986i −0.475076 + 0.879945i
\(626\) −16.4990 −0.659431
\(627\) 0 0
\(628\) 21.1315i 0.843238i
\(629\) −3.08835 −0.123140
\(630\) 0 0
\(631\) 22.2462 0.885608 0.442804 0.896619i \(-0.353984\pi\)
0.442804 + 0.896619i \(0.353984\pi\)
\(632\) 6.07263 0.241556
\(633\) 0 0
\(634\) 27.2219i 1.08112i
\(635\) −19.2488 10.9309i −0.763865 0.433778i
\(636\) 0 0
\(637\) −18.1129 −0.717660
\(638\) −17.7392 4.24621i −0.702300 0.168109i
\(639\) 0 0
\(640\) 1.10418 1.94442i 0.0436467 0.0768600i
\(641\) 31.6350i 1.24951i −0.780822 0.624754i \(-0.785199\pi\)
0.780822 0.624754i \(-0.214801\pi\)
\(642\) 0 0
\(643\) 14.0877i 0.555563i −0.960644 0.277782i \(-0.910401\pi\)
0.960644 0.277782i \(-0.0895991\pi\)
\(644\) 10.9993 0.433434
\(645\) 0 0
\(646\) 12.1453i 0.477849i
\(647\) 13.3716 0.525691 0.262846 0.964838i \(-0.415339\pi\)
0.262846 + 0.964838i \(0.415339\pi\)
\(648\) 0 0
\(649\) 2.56155 + 0.613157i 0.100550 + 0.0240685i
\(650\) −15.5554 + 9.27944i −0.610132 + 0.363969i
\(651\) 0 0
\(652\) 7.91096i 0.309817i
\(653\) 16.0341 0.627463 0.313732 0.949512i \(-0.398421\pi\)
0.313732 + 0.949512i \(0.398421\pi\)
\(654\) 0 0
\(655\) 3.00252 + 1.70505i 0.117318 + 0.0666219i
\(656\) −12.5435 −0.489741
\(657\) 0 0
\(658\) 14.0877i 0.549194i
\(659\) −23.5428 −0.917097 −0.458549 0.888669i \(-0.651630\pi\)
−0.458549 + 0.888669i \(0.651630\pi\)
\(660\) 0 0
\(661\) −48.7386 −1.89571 −0.947857 0.318697i \(-0.896755\pi\)
−0.947857 + 0.318697i \(0.896755\pi\)
\(662\) 7.36932i 0.286417i
\(663\) 0 0
\(664\) −17.3693 −0.674060
\(665\) 9.48274 16.6987i 0.367725 0.647548i
\(666\) 0 0
\(667\) −42.7746 −1.65624
\(668\) 7.36932i 0.285127i
\(669\) 0 0
\(670\) −6.00505 3.41011i −0.231995 0.131744i
\(671\) 32.1308 + 7.69113i 1.24040 + 0.296913i
\(672\) 0 0
\(673\) 34.2893 1.32176 0.660878 0.750493i \(-0.270184\pi\)
0.660878 + 0.750493i \(0.270184\pi\)
\(674\) 16.0786i 0.619326i
\(675\) 0 0
\(676\) −0.123106 −0.00473483
\(677\) 23.6155i 0.907618i −0.891099 0.453809i \(-0.850065\pi\)
0.891099 0.453809i \(-0.149935\pi\)
\(678\) 0 0
\(679\) 15.5554i 0.596961i
\(680\) 3.88884 + 2.20837i 0.149130 + 0.0846871i
\(681\) 0 0
\(682\) 20.1472 + 4.82262i 0.771476 + 0.184668i
\(683\) 51.0337 1.95275 0.976375 0.216082i \(-0.0693278\pi\)
0.976375 + 0.216082i \(0.0693278\pi\)
\(684\) 0 0
\(685\) 0.930870 + 0.528616i 0.0355667 + 0.0201974i
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) 9.45353 0.360413
\(689\) −21.9986 −0.838081
\(690\) 0 0
\(691\) −25.6155 −0.974461 −0.487230 0.873274i \(-0.661993\pi\)
−0.487230 + 0.873274i \(0.661993\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) 23.6155 0.896433
\(695\) 21.4700 37.8078i 0.814404 1.43413i
\(696\) 0 0
\(697\) 25.0870i 0.950237i
\(698\) 29.8844 1.13114
\(699\) 0 0
\(700\) 3.62258 + 6.07263i 0.136921 + 0.229524i
\(701\) −39.8517 −1.50518 −0.752588 0.658491i \(-0.771195\pi\)
−0.752588 + 0.658491i \(0.771195\pi\)
\(702\) 0 0
\(703\) −9.37720 −0.353668
\(704\) −0.772087 + 3.22550i −0.0290991 + 0.121566i
\(705\) 0 0
\(706\) 16.0341i 0.603452i
\(707\) −23.3331 −0.877530
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.4878 −0.430524
\(713\) 48.5811 1.81938
\(714\) 0 0
\(715\) 18.3405 19.6316i 0.685895 0.734179i
\(716\) 10.8677i 0.406147i
\(717\) 0 0
\(718\) 21.9986i 0.820981i
\(719\) 26.6960i 0.995591i 0.867294 + 0.497796i \(0.165857\pi\)
−0.867294 + 0.497796i \(0.834143\pi\)
\(720\) 0 0
\(721\) 5.59390i 0.208328i
\(722\) 17.8769i 0.665309i
\(723\) 0 0
\(724\) 9.12311 0.339058
\(725\) −14.0877 23.6155i −0.523202 0.877059i
\(726\) 0 0
\(727\) 38.3075i 1.42075i −0.703825 0.710373i \(-0.748526\pi\)
0.703825 0.710373i \(-0.251474\pi\)
\(728\) 5.12311i 0.189875i
\(729\) 0 0
\(730\) −4.49242 + 7.91096i −0.166272 + 0.292798i
\(731\) 18.9071i 0.699303i
\(732\) 0 0
\(733\) −4.31897 −0.159525 −0.0797625 0.996814i \(-0.525416\pi\)
−0.0797625 + 0.996814i \(0.525416\pi\)
\(734\) 7.04383 0.259992
\(735\) 0 0
\(736\) 7.77769i 0.286689i
\(737\) 9.96148 + 2.38447i 0.366936 + 0.0878332i
\(738\) 0 0
\(739\) 25.0381i 0.921042i −0.887649 0.460521i \(-0.847663\pi\)
0.887649 0.460521i \(-0.152337\pi\)
\(740\) 1.70505 3.00252i 0.0626790 0.110375i
\(741\) 0 0
\(742\) 8.58800i 0.315275i
\(743\) 14.6307i 0.536748i 0.963315 + 0.268374i \(0.0864862\pi\)
−0.963315 + 0.268374i \(0.913514\pi\)
\(744\) 0 0
\(745\) 4.68860 + 2.66253i 0.171777 + 0.0975475i
\(746\) 24.1180i 0.883021i
\(747\) 0 0
\(748\) −6.45101 1.54417i −0.235872 0.0564606i
\(749\) 15.7304i 0.574778i
\(750\) 0 0
\(751\) 10.2462 0.373890 0.186945 0.982370i \(-0.440141\pi\)
0.186945 + 0.982370i \(0.440141\pi\)
\(752\) 9.96148 0.363258
\(753\) 0 0
\(754\) 19.9230i 0.725551i
\(755\) 10.4707 18.4384i 0.381068 0.671044i
\(756\) 0 0
\(757\) 43.8071i 1.59220i 0.605166 + 0.796099i \(0.293107\pi\)
−0.605166 + 0.796099i \(0.706893\pi\)
\(758\) 0.492423i 0.0178856i
\(759\) 0 0
\(760\) 11.8078 + 6.70531i 0.428313 + 0.243227i
\(761\) 21.8085 0.790558 0.395279 0.918561i \(-0.370648\pi\)
0.395279 + 0.918561i \(0.370648\pi\)
\(762\) 0 0
\(763\) 3.08835i 0.111806i
\(764\) 20.1472i 0.728900i
\(765\) 0 0
\(766\) 22.1067i 0.798749i
\(767\) 2.87689i 0.103879i
\(768\) 0 0
\(769\) 45.4398i 1.63860i −0.573364 0.819301i \(-0.694362\pi\)
0.573364 0.819301i \(-0.305638\pi\)
\(770\) −7.66393 7.15990i −0.276189 0.258025i
\(771\) 0 0
\(772\) −17.3188 −0.623316
\(773\) −42.7773 −1.53859 −0.769296 0.638893i \(-0.779393\pi\)
−0.769296 + 0.638893i \(0.779393\pi\)
\(774\) 0 0
\(775\) 16.0000 + 26.8212i 0.574737 + 0.963447i
\(776\) 10.9993 0.394852
\(777\) 0 0
\(778\) −36.1495 −1.29602
\(779\) 76.1720i 2.72915i
\(780\) 0 0
\(781\) 0 0
\(782\) −15.5554 −0.556259
\(783\) 0 0
\(784\) −5.00000 −0.178571
\(785\) 23.3331 41.0885i 0.832793 1.46651i
\(786\) 0 0
\(787\) 4.14488 0.147749 0.0738744 0.997268i \(-0.476464\pi\)
0.0738744 + 0.997268i \(0.476464\pi\)
\(788\) 0.876894i 0.0312381i
\(789\) 0 0
\(790\) −11.8078 6.70531i −0.420101 0.238564i
\(791\) 11.6763 0.415163
\(792\) 0 0
\(793\) 36.0863i 1.28146i
\(794\) 23.5428 0.835503
\(795\) 0 0
\(796\) 16.4924 0.584558
\(797\) −10.4402 −0.369811 −0.184906 0.982756i \(-0.559198\pi\)
−0.184906 + 0.982756i \(0.559198\pi\)
\(798\) 0 0
\(799\) 19.9230i 0.704824i
\(800\) −4.29400 + 2.56155i −0.151816 + 0.0905646i
\(801\) 0 0
\(802\) −9.89949 −0.349563
\(803\) 3.14127 13.1231i 0.110853 0.463104i
\(804\) 0 0
\(805\) −21.3873 12.1453i −0.753803 0.428065i
\(806\) 22.6274i 0.797017i
\(807\) 0 0
\(808\) 16.4990i 0.580432i
\(809\) 21.8085 0.766747 0.383373 0.923593i \(-0.374762\pi\)
0.383373 + 0.923593i \(0.374762\pi\)
\(810\) 0 0
\(811\) 22.8543i 0.802524i −0.915963 0.401262i \(-0.868572\pi\)
0.915963 0.401262i \(-0.131428\pi\)
\(812\) −7.77769 −0.272943
\(813\) 0 0
\(814\) −1.19224 + 4.98074i −0.0417878 + 0.174575i
\(815\) −8.73516 + 15.3823i −0.305979 + 0.538817i
\(816\) 0 0
\(817\) 57.4079i 2.00845i
\(818\) −18.9655 −0.663112
\(819\) 0 0
\(820\) 24.3898 + 13.8503i 0.851730 + 0.483674i
\(821\) −5.49966 −0.191939 −0.0959697 0.995384i \(-0.530595\pi\)
−0.0959697 + 0.995384i \(0.530595\pi\)
\(822\) 0 0
\(823\) 10.1322i 0.353185i 0.984284 + 0.176593i \(0.0565075\pi\)
−0.984284 + 0.176593i \(0.943492\pi\)
\(824\) 3.95548 0.137796
\(825\) 0 0
\(826\) 1.12311 0.0390778
\(827\) 29.3693i 1.02127i −0.859797 0.510636i \(-0.829410\pi\)
0.859797 0.510636i \(-0.170590\pi\)
\(828\) 0 0
\(829\) −32.7386 −1.13706 −0.568530 0.822663i \(-0.692488\pi\)
−0.568530 + 0.822663i \(0.692488\pi\)
\(830\) 33.7733 + 19.1789i 1.17229 + 0.665710i
\(831\) 0 0
\(832\) −3.62258 −0.125590
\(833\) 10.0000i 0.346479i
\(834\) 0 0
\(835\) 8.13709 14.3291i 0.281595 0.495878i
\(836\) −19.5873 4.68860i −0.677441 0.162159i
\(837\) 0 0
\(838\) 13.3480 0.461098
\(839\) 2.82843i 0.0976481i 0.998807 + 0.0488241i \(0.0155474\pi\)
−0.998807 + 0.0488241i \(0.984453\pi\)
\(840\) 0 0
\(841\) 1.24621 0.0429728
\(842\) 14.8769i 0.512692i
\(843\) 0 0
\(844\) 3.88884i 0.133860i
\(845\) 0.239369 + 0.135931i 0.00823455 + 0.00467618i
\(846\) 0 0
\(847\) 13.8703 + 7.04383i 0.476588 + 0.242029i
\(848\) −6.07263 −0.208535
\(849\) 0 0
\(850\) −5.12311 8.58800i −0.175721 0.294566i
\(851\) 12.0101i 0.411701i
\(852\) 0 0
\(853\) −9.62763 −0.329644 −0.164822 0.986323i \(-0.552705\pi\)
−0.164822 + 0.986323i \(0.552705\pi\)
\(854\) 14.0877 0.482070
\(855\) 0 0
\(856\) 11.1231 0.380180
\(857\) 26.4924i 0.904964i −0.891774 0.452482i \(-0.850539\pi\)
0.891774 0.452482i \(-0.149461\pi\)
\(858\) 0 0
\(859\) −12.9848 −0.443037 −0.221519 0.975156i \(-0.571101\pi\)
−0.221519 + 0.975156i \(0.571101\pi\)
\(860\) −18.3817 10.4384i −0.626809 0.355948i
\(861\) 0 0
\(862\) 36.7633i 1.25216i
\(863\) 16.5129 0.562104 0.281052 0.959693i \(-0.409317\pi\)
0.281052 + 0.959693i \(0.409317\pi\)
\(864\) 0 0
\(865\) 19.8753 34.9996i 0.675781 1.19002i
\(866\) 5.49966 0.186886
\(867\) 0 0
\(868\) 8.83348 0.299828
\(869\) 19.5873 + 4.68860i 0.664454 + 0.159050i
\(870\) 0 0
\(871\) 11.1878i 0.379084i
\(872\) −2.18379 −0.0739525
\(873\) 0 0
\(874\) −47.2311 −1.59761
\(875\) −0.338519 15.8078i −0.0114440 0.534400i
\(876\) 0 0
\(877\) 40.3921 1.36395 0.681973 0.731378i \(-0.261122\pi\)
0.681973 + 0.731378i \(0.261122\pi\)
\(878\) −6.07263 −0.204942
\(879\) 0 0
\(880\) 5.06282 5.41922i 0.170667 0.182682i
\(881\) 12.1842i 0.410496i −0.978710 0.205248i \(-0.934200\pi\)
0.978710 0.205248i \(-0.0658001\pi\)
\(882\) 0 0
\(883\) 47.0856i 1.58456i 0.610160 + 0.792278i \(0.291105\pi\)
−0.610160 + 0.792278i \(0.708895\pi\)
\(884\) 7.24517i 0.243681i
\(885\) 0 0
\(886\) 12.1453i 0.408028i
\(887\) 10.0000i 0.335767i 0.985807 + 0.167884i \(0.0536933\pi\)
−0.985807 + 0.167884i \(0.946307\pi\)
\(888\) 0 0
\(889\) 14.0000 0.469545
\(890\) 22.3371 + 12.6847i 0.748743 + 0.425191i
\(891\) 0 0
\(892\) 3.95548i 0.132439i
\(893\) 60.4924i 2.02430i
\(894\) 0 0
\(895\) 12.0000 21.1315i 0.401116 0.706348i
\(896\) 1.41421i 0.0472456i
\(897\) 0 0
\(898\) −21.9096 −0.731133
\(899\) −34.3520 −1.14570
\(900\) 0 0
\(901\) 12.1453i 0.404618i
\(902\) −40.4591 9.68466i −1.34714 0.322464i
\(903\) 0 0
\(904\) 8.25643i 0.274605i
\(905\) −17.7392 10.0736i −0.589670 0.334858i
\(906\) 0 0
\(907\) 6.17669i 0.205094i −0.994728 0.102547i \(-0.967301\pi\)
0.994728 0.102547i \(-0.0326992\pi\)
\(908\) 5.36932i 0.178187i
\(909\) 0 0
\(910\) 5.65685 9.96148i 0.187523 0.330220i
\(911\) 10.4218i 0.345289i −0.984984 0.172645i \(-0.944769\pi\)
0.984984 0.172645i \(-0.0552312\pi\)
\(912\) 0 0
\(913\) −56.0248 13.4106i −1.85415 0.443827i
\(914\) 12.0101i 0.397259i
\(915\) 0 0
\(916\) −20.2462 −0.668954
\(917\) −2.18379 −0.0721151
\(918\) 0 0
\(919\) 8.52526i 0.281222i −0.990065 0.140611i \(-0.955093\pi\)
0.990065 0.140611i \(-0.0449068\pi\)
\(920\) 8.58800 15.1231i 0.283138 0.498594i
\(921\) 0 0
\(922\) 14.7647i 0.486249i
\(923\) 0 0
\(924\) 0 0
\(925\) −6.63068 + 3.95548i −0.218016 + 0.130055i
\(926\) 22.8658 0.751415
\(927\) 0 0
\(928\) 5.49966i 0.180535i
\(929\) 24.7380i 0.811628i 0.913956 + 0.405814i \(0.133012\pi\)
−0.913956 + 0.405814i \(0.866988\pi\)
\(930\) 0 0
\(931\) 30.3632i 0.995113i
\(932\) 14.4924i 0.474715i
\(933\) 0 0
\(934\) 12.1453i 0.397405i
\(935\) 10.8384 + 10.1256i 0.354455 + 0.331144i
\(936\) 0 0
\(937\) −47.1913 −1.54167 −0.770837 0.637032i \(-0.780162\pi\)
−0.770837 + 0.637032i \(0.780162\pi\)
\(938\) 4.36758 0.142607
\(939\) 0 0
\(940\) −19.3693 10.9993i −0.631757 0.358758i
\(941\) 2.41131 0.0786064 0.0393032 0.999227i \(-0.487486\pi\)
0.0393032 + 0.999227i \(0.487486\pi\)
\(942\) 0 0
\(943\) −97.5593 −3.17697
\(944\) 0.794156i 0.0258476i
\(945\) 0 0
\(946\) 30.4924 + 7.29895i 0.991394 + 0.237309i
\(947\) 15.5554 0.505482 0.252741 0.967534i \(-0.418668\pi\)
0.252741 + 0.967534i \(0.418668\pi\)
\(948\) 0 0
\(949\) 14.7386 0.478436
\(950\) −15.5554 26.0759i −0.504683 0.846014i
\(951\) 0 0
\(952\) −2.82843 −0.0916698
\(953\) 48.2462i 1.56285i 0.624000 + 0.781424i \(0.285506\pi\)
−0.624000 + 0.781424i \(0.714494\pi\)
\(954\) 0 0
\(955\) 22.2462 39.1746i 0.719870 1.26766i
\(956\) 16.4990 0.533615
\(957\) 0 0
\(958\) 27.4983i 0.888429i
\(959\) −0.677039 −0.0218627
\(960\) 0 0
\(961\) 8.01515 0.258553
\(962\) −5.59390 −0.180354
\(963\) 0 0
\(964\) 2.18379i 0.0703352i
\(965\) 33.6750 + 19.1231i 1.08404 + 0.615595i
\(966\) 0 0
\(967\) 16.7965 0.540138 0.270069 0.962841i \(-0.412954\pi\)
0.270069 + 0.962841i \(0.412954\pi\)
\(968\) −4.98074 + 9.80776i −0.160087 + 0.315233i
\(969\) 0 0
\(970\) −21.3873 12.1453i −0.686705 0.389961i
\(971\) 7.14740i 0.229371i 0.993402 + 0.114685i \(0.0365860\pi\)
−0.993402 + 0.114685i \(0.963414\pi\)
\(972\) 0 0
\(973\) 27.4983i 0.881554i
\(974\) −41.3958 −1.32641
\(975\) 0 0
\(976\) 9.96148i 0.318859i
\(977\) 59.2901 1.89686 0.948430 0.316988i \(-0.102671\pi\)
0.948430 + 0.316988i \(0.102671\pi\)
\(978\) 0 0
\(979\) −37.0540 8.86958i −1.18425 0.283473i
\(980\) 9.72211 + 5.52092i 0.310561 + 0.176359i
\(981\) 0 0
\(982\) 43.1301i 1.37634i
\(983\) 13.3716 0.426487 0.213244 0.976999i \(-0.431597\pi\)
0.213244 + 0.976999i \(0.431597\pi\)
\(984\) 0 0
\(985\) 0.968253 1.70505i 0.0308511 0.0543275i
\(986\) 10.9993 0.350289
\(987\) 0 0
\(988\) 21.9986i 0.699869i
\(989\) 73.5266 2.33801
\(990\) 0 0
\(991\) −12.4924 −0.396835 −0.198417 0.980118i \(-0.563580\pi\)
−0.198417 + 0.980118i \(0.563580\pi\)
\(992\) 6.24621i 0.198317i
\(993\) 0 0
\(994\) 0 0
\(995\) −32.0682 18.2107i −1.01663 0.577317i
\(996\) 0 0
\(997\) 48.3337 1.53074 0.765372 0.643589i \(-0.222555\pi\)
0.765372 + 0.643589i \(0.222555\pi\)
\(998\) 14.8769i 0.470920i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.f.c.989.16 yes 16
3.2 odd 2 inner 990.2.f.c.989.1 16
5.2 odd 4 4950.2.d.g.4751.3 8
5.3 odd 4 4950.2.d.n.4751.7 8
5.4 even 2 inner 990.2.f.c.989.2 yes 16
11.10 odd 2 inner 990.2.f.c.989.8 yes 16
15.2 even 4 4950.2.d.n.4751.2 8
15.8 even 4 4950.2.d.g.4751.6 8
15.14 odd 2 inner 990.2.f.c.989.15 yes 16
33.32 even 2 inner 990.2.f.c.989.9 yes 16
55.32 even 4 4950.2.d.n.4751.6 8
55.43 even 4 4950.2.d.g.4751.2 8
55.54 odd 2 inner 990.2.f.c.989.10 yes 16
165.32 odd 4 4950.2.d.g.4751.7 8
165.98 odd 4 4950.2.d.n.4751.3 8
165.164 even 2 inner 990.2.f.c.989.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.f.c.989.1 16 3.2 odd 2 inner
990.2.f.c.989.2 yes 16 5.4 even 2 inner
990.2.f.c.989.7 yes 16 165.164 even 2 inner
990.2.f.c.989.8 yes 16 11.10 odd 2 inner
990.2.f.c.989.9 yes 16 33.32 even 2 inner
990.2.f.c.989.10 yes 16 55.54 odd 2 inner
990.2.f.c.989.15 yes 16 15.14 odd 2 inner
990.2.f.c.989.16 yes 16 1.1 even 1 trivial
4950.2.d.g.4751.2 8 55.43 even 4
4950.2.d.g.4751.3 8 5.2 odd 4
4950.2.d.g.4751.6 8 15.8 even 4
4950.2.d.g.4751.7 8 165.32 odd 4
4950.2.d.n.4751.2 8 15.2 even 4
4950.2.d.n.4751.3 8 165.98 odd 4
4950.2.d.n.4751.6 8 55.32 even 4
4950.2.d.n.4751.7 8 5.3 odd 4