Properties

Label 4950.2.d.n.4751.6
Level $4950$
Weight $2$
Character 4950.4751
Analytic conductor $39.526$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4950,2,Mod(4751,4950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4950.4751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,0,8,0,0,0,0,0,0,0,8,16,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.231260962816.24
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 4x^{5} + 41x^{4} - 122x^{3} + 293x^{2} - 244x + 236 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4751.6
Root \(-2.15569 - 1.81129i\) of defining polynomial
Character \(\chi\) \(=\) 4950.4751
Dual form 4950.2.d.n.4751.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.41421i q^{7} +1.00000 q^{8} +(-0.772087 - 3.22550i) q^{11} +3.62258i q^{13} +1.41421i q^{14} +1.00000 q^{16} +2.00000 q^{17} +6.07263i q^{19} +(-0.772087 - 3.22550i) q^{22} -7.77769i q^{23} +3.62258i q^{26} +1.41421i q^{28} -5.49966 q^{29} +6.24621 q^{31} +1.00000 q^{32} +2.00000 q^{34} -1.54417 q^{37} +6.07263i q^{38} +12.5435 q^{41} +9.45353i q^{43} +(-0.772087 - 3.22550i) q^{44} -7.77769i q^{46} +9.96148i q^{47} +5.00000 q^{49} +3.62258i q^{52} +6.07263i q^{53} +1.41421i q^{56} -5.49966 q^{58} -0.794156i q^{59} -9.96148i q^{61} +6.24621 q^{62} +1.00000 q^{64} -3.08835 q^{67} +2.00000 q^{68} +4.06854i q^{73} -1.54417 q^{74} +6.07263i q^{76} +(4.56155 - 1.09190i) q^{77} +6.07263i q^{79} +12.5435 q^{82} +17.3693 q^{83} +9.45353i q^{86} +(-0.772087 - 3.22550i) q^{88} +11.4878i q^{89} -5.12311 q^{91} -7.77769i q^{92} +9.96148i q^{94} -10.9993 q^{97} +5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} + 8 q^{16} + 16 q^{17} - 16 q^{31} + 8 q^{32} + 16 q^{34} + 40 q^{49} - 16 q^{62} + 8 q^{64} + 16 q^{68} + 20 q^{77} + 40 q^{83} - 8 q^{91} + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2377\) \(4501\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.41421i 0.534522i 0.963624 + 0.267261i \(0.0861187\pi\)
−0.963624 + 0.267261i \(0.913881\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −0.772087 3.22550i −0.232793 0.972526i
\(12\) 0 0
\(13\) 3.62258i 1.00472i 0.864657 + 0.502362i \(0.167535\pi\)
−0.864657 + 0.502362i \(0.832465\pi\)
\(14\) 1.41421i 0.377964i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 6.07263i 1.39316i 0.717480 + 0.696579i \(0.245295\pi\)
−0.717480 + 0.696579i \(0.754705\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.772087 3.22550i −0.164609 0.687680i
\(23\) 7.77769i 1.62176i −0.585212 0.810880i \(-0.698989\pi\)
0.585212 0.810880i \(-0.301011\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.62258i 0.710447i
\(27\) 0 0
\(28\) 1.41421i 0.267261i
\(29\) −5.49966 −1.02126 −0.510630 0.859800i \(-0.670588\pi\)
−0.510630 + 0.859800i \(0.670588\pi\)
\(30\) 0 0
\(31\) 6.24621 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) −1.54417 −0.253861 −0.126930 0.991912i \(-0.540512\pi\)
−0.126930 + 0.991912i \(0.540512\pi\)
\(38\) 6.07263i 0.985111i
\(39\) 0 0
\(40\) 0 0
\(41\) 12.5435 1.95896 0.979482 0.201534i \(-0.0645925\pi\)
0.979482 + 0.201534i \(0.0645925\pi\)
\(42\) 0 0
\(43\) 9.45353i 1.44165i 0.693117 + 0.720825i \(0.256237\pi\)
−0.693117 + 0.720825i \(0.743763\pi\)
\(44\) −0.772087 3.22550i −0.116396 0.486263i
\(45\) 0 0
\(46\) 7.77769i 1.14676i
\(47\) 9.96148i 1.45303i 0.687150 + 0.726515i \(0.258861\pi\)
−0.687150 + 0.726515i \(0.741139\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 3.62258i 0.502362i
\(53\) 6.07263i 0.834141i 0.908874 + 0.417070i \(0.136943\pi\)
−0.908874 + 0.417070i \(0.863057\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.41421i 0.188982i
\(57\) 0 0
\(58\) −5.49966 −0.722140
\(59\) 0.794156i 0.103390i −0.998663 0.0516951i \(-0.983538\pi\)
0.998663 0.0516951i \(-0.0164624\pi\)
\(60\) 0 0
\(61\) 9.96148i 1.27544i −0.770270 0.637718i \(-0.779878\pi\)
0.770270 0.637718i \(-0.220122\pi\)
\(62\) 6.24621 0.793270
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −3.08835 −0.377302 −0.188651 0.982044i \(-0.560411\pi\)
−0.188651 + 0.982044i \(0.560411\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 4.06854i 0.476187i 0.971242 + 0.238093i \(0.0765225\pi\)
−0.971242 + 0.238093i \(0.923478\pi\)
\(74\) −1.54417 −0.179507
\(75\) 0 0
\(76\) 6.07263i 0.696579i
\(77\) 4.56155 1.09190i 0.519837 0.124433i
\(78\) 0 0
\(79\) 6.07263i 0.683225i 0.939841 + 0.341612i \(0.110973\pi\)
−0.939841 + 0.341612i \(0.889027\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.5435 1.38520
\(83\) 17.3693 1.90653 0.953265 0.302135i \(-0.0976994\pi\)
0.953265 + 0.302135i \(0.0976994\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.45353i 1.01940i
\(87\) 0 0
\(88\) −0.772087 3.22550i −0.0823047 0.343840i
\(89\) 11.4878i 1.21771i 0.793283 + 0.608853i \(0.208370\pi\)
−0.793283 + 0.608853i \(0.791630\pi\)
\(90\) 0 0
\(91\) −5.12311 −0.537047
\(92\) 7.77769i 0.810880i
\(93\) 0 0
\(94\) 9.96148i 1.02745i
\(95\) 0 0
\(96\) 0 0
\(97\) −10.9993 −1.11681 −0.558405 0.829568i \(-0.688587\pi\)
−0.558405 + 0.829568i \(0.688587\pi\)
\(98\) 5.00000 0.505076
\(99\) 0 0
\(100\) 0 0
\(101\) −16.4990 −1.64171 −0.820854 0.571138i \(-0.806502\pi\)
−0.820854 + 0.571138i \(0.806502\pi\)
\(102\) 0 0
\(103\) 3.95548 0.389745 0.194873 0.980829i \(-0.437571\pi\)
0.194873 + 0.980829i \(0.437571\pi\)
\(104\) 3.62258i 0.355223i
\(105\) 0 0
\(106\) 6.07263i 0.589826i
\(107\) 11.1231 1.07531 0.537656 0.843165i \(-0.319310\pi\)
0.537656 + 0.843165i \(0.319310\pi\)
\(108\) 0 0
\(109\) 2.18379i 0.209169i −0.994516 0.104585i \(-0.966649\pi\)
0.994516 0.104585i \(-0.0333513\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.41421i 0.133631i
\(113\) 8.25643i 0.776699i 0.921512 + 0.388350i \(0.126955\pi\)
−0.921512 + 0.388350i \(0.873045\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.49966 −0.510630
\(117\) 0 0
\(118\) 0.794156i 0.0731079i
\(119\) 2.82843i 0.259281i
\(120\) 0 0
\(121\) −9.80776 + 4.98074i −0.891615 + 0.452794i
\(122\) 9.96148i 0.901870i
\(123\) 0 0
\(124\) 6.24621 0.560926
\(125\) 0 0
\(126\) 0 0
\(127\) 9.89949i 0.878438i 0.898380 + 0.439219i \(0.144745\pi\)
−0.898380 + 0.439219i \(0.855255\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −1.54417 −0.134915 −0.0674575 0.997722i \(-0.521489\pi\)
−0.0674575 + 0.997722i \(0.521489\pi\)
\(132\) 0 0
\(133\) −8.58800 −0.744674
\(134\) −3.08835 −0.266793
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 0.478739i 0.0409014i 0.999791 + 0.0204507i \(0.00651011\pi\)
−0.999791 + 0.0204507i \(0.993490\pi\)
\(138\) 0 0
\(139\) 19.4442i 1.64924i −0.565689 0.824619i \(-0.691390\pi\)
0.565689 0.824619i \(-0.308610\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.6847 2.79695i 0.977120 0.233893i
\(144\) 0 0
\(145\) 0 0
\(146\) 4.06854i 0.336715i
\(147\) 0 0
\(148\) −1.54417 −0.126930
\(149\) 2.41131 0.197542 0.0987710 0.995110i \(-0.468509\pi\)
0.0987710 + 0.995110i \(0.468509\pi\)
\(150\) 0 0
\(151\) 9.48274i 0.771694i 0.922563 + 0.385847i \(0.126091\pi\)
−0.922563 + 0.385847i \(0.873909\pi\)
\(152\) 6.07263i 0.492556i
\(153\) 0 0
\(154\) 4.56155 1.09190i 0.367580 0.0879875i
\(155\) 0 0
\(156\) 0 0
\(157\) 21.1315 1.68648 0.843238 0.537540i \(-0.180646\pi\)
0.843238 + 0.537540i \(0.180646\pi\)
\(158\) 6.07263i 0.483113i
\(159\) 0 0
\(160\) 0 0
\(161\) 10.9993 0.866867
\(162\) 0 0
\(163\) 7.91096 0.619635 0.309817 0.950796i \(-0.399732\pi\)
0.309817 + 0.950796i \(0.399732\pi\)
\(164\) 12.5435 0.979482
\(165\) 0 0
\(166\) 17.3693 1.34812
\(167\) −7.36932 −0.570255 −0.285127 0.958490i \(-0.592036\pi\)
−0.285127 + 0.958490i \(0.592036\pi\)
\(168\) 0 0
\(169\) −0.123106 −0.00946966
\(170\) 0 0
\(171\) 0 0
\(172\) 9.45353i 0.720825i
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.772087 3.22550i −0.0581982 0.243132i
\(177\) 0 0
\(178\) 11.4878i 0.861047i
\(179\) 10.8677i 0.812294i 0.913808 + 0.406147i \(0.133128\pi\)
−0.913808 + 0.406147i \(0.866872\pi\)
\(180\) 0 0
\(181\) −9.12311 −0.678115 −0.339058 0.940766i \(-0.610108\pi\)
−0.339058 + 0.940766i \(0.610108\pi\)
\(182\) −5.12311 −0.379750
\(183\) 0 0
\(184\) 7.77769i 0.573379i
\(185\) 0 0
\(186\) 0 0
\(187\) −1.54417 6.45101i −0.112921 0.471745i
\(188\) 9.96148i 0.726515i
\(189\) 0 0
\(190\) 0 0
\(191\) 20.1472i 1.45780i −0.684621 0.728900i \(-0.740032\pi\)
0.684621 0.728900i \(-0.259968\pi\)
\(192\) 0 0
\(193\) 17.3188i 1.24663i 0.781970 + 0.623316i \(0.214215\pi\)
−0.781970 + 0.623316i \(0.785785\pi\)
\(194\) −10.9993 −0.789705
\(195\) 0 0
\(196\) 5.00000 0.357143
\(197\) −0.876894 −0.0624761 −0.0312381 0.999512i \(-0.509945\pi\)
−0.0312381 + 0.999512i \(0.509945\pi\)
\(198\) 0 0
\(199\) 16.4924 1.16912 0.584558 0.811352i \(-0.301268\pi\)
0.584558 + 0.811352i \(0.301268\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −16.4990 −1.16086
\(203\) 7.77769i 0.545887i
\(204\) 0 0
\(205\) 0 0
\(206\) 3.95548 0.275591
\(207\) 0 0
\(208\) 3.62258i 0.251181i
\(209\) 19.5873 4.68860i 1.35488 0.324317i
\(210\) 0 0
\(211\) 3.88884i 0.267719i −0.991000 0.133860i \(-0.957263\pi\)
0.991000 0.133860i \(-0.0427371\pi\)
\(212\) 6.07263i 0.417070i
\(213\) 0 0
\(214\) 11.1231 0.760360
\(215\) 0 0
\(216\) 0 0
\(217\) 8.83348i 0.599655i
\(218\) 2.18379i 0.147905i
\(219\) 0 0
\(220\) 0 0
\(221\) 7.24517i 0.487363i
\(222\) 0 0
\(223\) 3.95548 0.264879 0.132439 0.991191i \(-0.457719\pi\)
0.132439 + 0.991191i \(0.457719\pi\)
\(224\) 1.41421i 0.0944911i
\(225\) 0 0
\(226\) 8.25643i 0.549209i
\(227\) 5.36932 0.356374 0.178187 0.983997i \(-0.442977\pi\)
0.178187 + 0.983997i \(0.442977\pi\)
\(228\) 0 0
\(229\) −20.2462 −1.33791 −0.668954 0.743304i \(-0.733258\pi\)
−0.668954 + 0.743304i \(0.733258\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.49966 −0.361070
\(233\) 14.4924 0.949430 0.474715 0.880140i \(-0.342551\pi\)
0.474715 + 0.880140i \(0.342551\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.794156i 0.0516951i
\(237\) 0 0
\(238\) 2.82843i 0.183340i
\(239\) −16.4990 −1.06723 −0.533615 0.845728i \(-0.679167\pi\)
−0.533615 + 0.845728i \(0.679167\pi\)
\(240\) 0 0
\(241\) 2.18379i 0.140670i −0.997523 0.0703352i \(-0.977593\pi\)
0.997523 0.0703352i \(-0.0224069\pi\)
\(242\) −9.80776 + 4.98074i −0.630467 + 0.320174i
\(243\) 0 0
\(244\) 9.96148i 0.637718i
\(245\) 0 0
\(246\) 0 0
\(247\) −21.9986 −1.39974
\(248\) 6.24621 0.396635
\(249\) 0 0
\(250\) 0 0
\(251\) 3.62258i 0.228655i −0.993443 0.114328i \(-0.963529\pi\)
0.993443 0.114328i \(-0.0364714\pi\)
\(252\) 0 0
\(253\) −25.0870 + 6.00505i −1.57720 + 0.377534i
\(254\) 9.89949i 0.621150i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.88884i 0.242579i 0.992617 + 0.121290i \(0.0387030\pi\)
−0.992617 + 0.121290i \(0.961297\pi\)
\(258\) 0 0
\(259\) 2.18379i 0.135694i
\(260\) 0 0
\(261\) 0 0
\(262\) −1.54417 −0.0953994
\(263\) 15.3693 0.947713 0.473856 0.880602i \(-0.342862\pi\)
0.473856 + 0.880602i \(0.342862\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.58800 −0.526564
\(267\) 0 0
\(268\) −3.08835 −0.188651
\(269\) 13.8703i 0.845685i −0.906203 0.422843i \(-0.861032\pi\)
0.906203 0.422843i \(-0.138968\pi\)
\(270\) 0 0
\(271\) 17.2604i 1.04850i 0.851566 + 0.524248i \(0.175654\pi\)
−0.851566 + 0.524248i \(0.824346\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 0.478739i 0.0289217i
\(275\) 0 0
\(276\) 0 0
\(277\) 10.8677i 0.652980i −0.945201 0.326490i \(-0.894134\pi\)
0.945201 0.326490i \(-0.105866\pi\)
\(278\) 19.4442i 1.16619i
\(279\) 0 0
\(280\) 0 0
\(281\) −20.4544 −1.22021 −0.610105 0.792321i \(-0.708873\pi\)
−0.610105 + 0.792321i \(0.708873\pi\)
\(282\) 0 0
\(283\) 13.5221i 0.803804i −0.915683 0.401902i \(-0.868349\pi\)
0.915683 0.401902i \(-0.131651\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 11.6847 2.79695i 0.690928 0.165387i
\(287\) 17.7392i 1.04711i
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 4.06854i 0.238093i
\(293\) −11.6155 −0.678586 −0.339293 0.940681i \(-0.610188\pi\)
−0.339293 + 0.940681i \(0.610188\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.54417 −0.0897533
\(297\) 0 0
\(298\) 2.41131 0.139683
\(299\) 28.1753 1.62942
\(300\) 0 0
\(301\) −13.3693 −0.770595
\(302\) 9.48274i 0.545670i
\(303\) 0 0
\(304\) 6.07263i 0.348289i
\(305\) 0 0
\(306\) 0 0
\(307\) 10.6937i 0.610319i 0.952301 + 0.305159i \(0.0987098\pi\)
−0.952301 + 0.305159i \(0.901290\pi\)
\(308\) 4.56155 1.09190i 0.259919 0.0622165i
\(309\) 0 0
\(310\) 0 0
\(311\) 4.41674i 0.250450i 0.992128 + 0.125225i \(0.0399653\pi\)
−0.992128 + 0.125225i \(0.960035\pi\)
\(312\) 0 0
\(313\) 16.4990 0.932577 0.466288 0.884633i \(-0.345591\pi\)
0.466288 + 0.884633i \(0.345591\pi\)
\(314\) 21.1315 1.19252
\(315\) 0 0
\(316\) 6.07263i 0.341612i
\(317\) 27.2219i 1.52893i −0.644663 0.764467i \(-0.723002\pi\)
0.644663 0.764467i \(-0.276998\pi\)
\(318\) 0 0
\(319\) 4.24621 + 17.7392i 0.237742 + 0.993203i
\(320\) 0 0
\(321\) 0 0
\(322\) 10.9993 0.612968
\(323\) 12.1453i 0.675781i
\(324\) 0 0
\(325\) 0 0
\(326\) 7.91096 0.438148
\(327\) 0 0
\(328\) 12.5435 0.692598
\(329\) −14.0877 −0.776678
\(330\) 0 0
\(331\) −7.36932 −0.405054 −0.202527 0.979277i \(-0.564915\pi\)
−0.202527 + 0.979277i \(0.564915\pi\)
\(332\) 17.3693 0.953265
\(333\) 0 0
\(334\) −7.36932 −0.403231
\(335\) 0 0
\(336\) 0 0
\(337\) 16.0786i 0.875859i 0.899009 + 0.437930i \(0.144288\pi\)
−0.899009 + 0.437930i \(0.855712\pi\)
\(338\) −0.123106 −0.00669606
\(339\) 0 0
\(340\) 0 0
\(341\) −4.82262 20.1472i −0.261159 1.09103i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 9.45353i 0.509700i
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −23.6155 −1.26775 −0.633874 0.773436i \(-0.718536\pi\)
−0.633874 + 0.773436i \(0.718536\pi\)
\(348\) 0 0
\(349\) 29.8844i 1.59968i −0.600215 0.799839i \(-0.704918\pi\)
0.600215 0.799839i \(-0.295082\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.772087 3.22550i −0.0411524 0.171920i
\(353\) 16.0341i 0.853410i 0.904391 + 0.426705i \(0.140326\pi\)
−0.904391 + 0.426705i \(0.859674\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.4878i 0.608853i
\(357\) 0 0
\(358\) 10.8677i 0.574378i
\(359\) −21.9986 −1.16104 −0.580521 0.814245i \(-0.697151\pi\)
−0.580521 + 0.814245i \(0.697151\pi\)
\(360\) 0 0
\(361\) −17.8769 −0.940889
\(362\) −9.12311 −0.479500
\(363\) 0 0
\(364\) −5.12311 −0.268524
\(365\) 0 0
\(366\) 0 0
\(367\) 7.04383 0.367685 0.183842 0.982956i \(-0.441146\pi\)
0.183842 + 0.982956i \(0.441146\pi\)
\(368\) 7.77769i 0.405440i
\(369\) 0 0
\(370\) 0 0
\(371\) −8.58800 −0.445867
\(372\) 0 0
\(373\) 24.1180i 1.24878i −0.781112 0.624390i \(-0.785347\pi\)
0.781112 0.624390i \(-0.214653\pi\)
\(374\) −1.54417 6.45101i −0.0798473 0.333574i
\(375\) 0 0
\(376\) 9.96148i 0.513724i
\(377\) 19.9230i 1.02608i
\(378\) 0 0
\(379\) −0.492423 −0.0252940 −0.0126470 0.999920i \(-0.504026\pi\)
−0.0126470 + 0.999920i \(0.504026\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20.1472i 1.03082i
\(383\) 22.1067i 1.12960i 0.825227 + 0.564801i \(0.191047\pi\)
−0.825227 + 0.564801i \(0.808953\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.3188i 0.881502i
\(387\) 0 0
\(388\) −10.9993 −0.558405
\(389\) 36.1495i 1.83285i −0.400204 0.916426i \(-0.631061\pi\)
0.400204 0.916426i \(-0.368939\pi\)
\(390\) 0 0
\(391\) 15.5554i 0.786669i
\(392\) 5.00000 0.252538
\(393\) 0 0
\(394\) −0.876894 −0.0441773
\(395\) 0 0
\(396\) 0 0
\(397\) 23.5428 1.18158 0.590790 0.806826i \(-0.298816\pi\)
0.590790 + 0.806826i \(0.298816\pi\)
\(398\) 16.4924 0.826690
\(399\) 0 0
\(400\) 0 0
\(401\) 9.89949i 0.494357i 0.968970 + 0.247179i \(0.0795034\pi\)
−0.968970 + 0.247179i \(0.920497\pi\)
\(402\) 0 0
\(403\) 22.6274i 1.12715i
\(404\) −16.4990 −0.820854
\(405\) 0 0
\(406\) 7.77769i 0.386000i
\(407\) 1.19224 + 4.98074i 0.0590969 + 0.246886i
\(408\) 0 0
\(409\) 18.9655i 0.937783i 0.883256 + 0.468891i \(0.155346\pi\)
−0.883256 + 0.468891i \(0.844654\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.95548 0.194873
\(413\) 1.12311 0.0552644
\(414\) 0 0
\(415\) 0 0
\(416\) 3.62258i 0.177612i
\(417\) 0 0
\(418\) 19.5873 4.68860i 0.958047 0.229327i
\(419\) 13.3480i 0.652091i 0.945354 + 0.326046i \(0.105716\pi\)
−0.945354 + 0.326046i \(0.894284\pi\)
\(420\) 0 0
\(421\) −14.8769 −0.725055 −0.362528 0.931973i \(-0.618086\pi\)
−0.362528 + 0.931973i \(0.618086\pi\)
\(422\) 3.88884i 0.189306i
\(423\) 0 0
\(424\) 6.07263i 0.294913i
\(425\) 0 0
\(426\) 0 0
\(427\) 14.0877 0.681750
\(428\) 11.1231 0.537656
\(429\) 0 0
\(430\) 0 0
\(431\) 36.7633 1.77083 0.885413 0.464804i \(-0.153875\pi\)
0.885413 + 0.464804i \(0.153875\pi\)
\(432\) 0 0
\(433\) −5.49966 −0.264297 −0.132148 0.991230i \(-0.542188\pi\)
−0.132148 + 0.991230i \(0.542188\pi\)
\(434\) 8.83348i 0.424020i
\(435\) 0 0
\(436\) 2.18379i 0.104585i
\(437\) 47.2311 2.25937
\(438\) 0 0
\(439\) 6.07263i 0.289831i 0.989444 + 0.144916i \(0.0462910\pi\)
−0.989444 + 0.144916i \(0.953709\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7.24517i 0.344617i
\(443\) 12.1453i 0.577039i −0.957474 0.288520i \(-0.906837\pi\)
0.957474 0.288520i \(-0.0931630\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.95548 0.187298
\(447\) 0 0
\(448\) 1.41421i 0.0668153i
\(449\) 21.9096i 1.03398i −0.855992 0.516989i \(-0.827053\pi\)
0.855992 0.516989i \(-0.172947\pi\)
\(450\) 0 0
\(451\) −9.68466 40.4591i −0.456033 1.90514i
\(452\) 8.25643i 0.388350i
\(453\) 0 0
\(454\) 5.36932 0.251995
\(455\) 0 0
\(456\) 0 0
\(457\) 12.0101i 0.561809i −0.959736 0.280904i \(-0.909366\pi\)
0.959736 0.280904i \(-0.0906344\pi\)
\(458\) −20.2462 −0.946043
\(459\) 0 0
\(460\) 0 0
\(461\) 14.7647 0.687660 0.343830 0.939032i \(-0.388276\pi\)
0.343830 + 0.939032i \(0.388276\pi\)
\(462\) 0 0
\(463\) −22.8658 −1.06266 −0.531331 0.847164i \(-0.678308\pi\)
−0.531331 + 0.847164i \(0.678308\pi\)
\(464\) −5.49966 −0.255315
\(465\) 0 0
\(466\) 14.4924 0.671349
\(467\) 12.1453i 0.562016i −0.959705 0.281008i \(-0.909331\pi\)
0.959705 0.281008i \(-0.0906688\pi\)
\(468\) 0 0
\(469\) 4.36758i 0.201676i
\(470\) 0 0
\(471\) 0 0
\(472\) 0.794156i 0.0365540i
\(473\) 30.4924 7.29895i 1.40204 0.335606i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.82843i 0.129641i
\(477\) 0 0
\(478\) −16.4990 −0.754645
\(479\) 27.4983 1.25643 0.628214 0.778040i \(-0.283786\pi\)
0.628214 + 0.778040i \(0.283786\pi\)
\(480\) 0 0
\(481\) 5.59390i 0.255060i
\(482\) 2.18379i 0.0994690i
\(483\) 0 0
\(484\) −9.80776 + 4.98074i −0.445807 + 0.226397i
\(485\) 0 0
\(486\) 0 0
\(487\) −41.3958 −1.87582 −0.937912 0.346873i \(-0.887244\pi\)
−0.937912 + 0.346873i \(0.887244\pi\)
\(488\) 9.96148i 0.450935i
\(489\) 0 0
\(490\) 0 0
\(491\) 43.1301 1.94643 0.973217 0.229887i \(-0.0738357\pi\)
0.973217 + 0.229887i \(0.0738357\pi\)
\(492\) 0 0
\(493\) −10.9993 −0.495384
\(494\) −21.9986 −0.989765
\(495\) 0 0
\(496\) 6.24621 0.280463
\(497\) 0 0
\(498\) 0 0
\(499\) 14.8769 0.665981 0.332991 0.942930i \(-0.391942\pi\)
0.332991 + 0.942930i \(0.391942\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.62258i 0.161684i
\(503\) 3.50758 0.156395 0.0781976 0.996938i \(-0.475084\pi\)
0.0781976 + 0.996938i \(0.475084\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −25.0870 + 6.00505i −1.11525 + 0.266957i
\(507\) 0 0
\(508\) 9.89949i 0.439219i
\(509\) 38.4342i 1.70357i −0.523895 0.851783i \(-0.675522\pi\)
0.523895 0.851783i \(-0.324478\pi\)
\(510\) 0 0
\(511\) −5.75379 −0.254533
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.88884i 0.171530i
\(515\) 0 0
\(516\) 0 0
\(517\) 32.1308 7.69113i 1.41311 0.338255i
\(518\) 2.18379i 0.0959503i
\(519\) 0 0
\(520\) 0 0
\(521\) 28.1102i 1.23153i −0.787930 0.615765i \(-0.788847\pi\)
0.787930 0.615765i \(-0.211153\pi\)
\(522\) 0 0
\(523\) 22.3556i 0.977540i 0.872413 + 0.488770i \(0.162554\pi\)
−0.872413 + 0.488770i \(0.837446\pi\)
\(524\) −1.54417 −0.0674575
\(525\) 0 0
\(526\) 15.3693 0.670134
\(527\) 12.4924 0.544178
\(528\) 0 0
\(529\) −37.4924 −1.63011
\(530\) 0 0
\(531\) 0 0
\(532\) −8.58800 −0.372337
\(533\) 45.4398i 1.96822i
\(534\) 0 0
\(535\) 0 0
\(536\) −3.08835 −0.133396
\(537\) 0 0
\(538\) 13.8703i 0.597990i
\(539\) −3.86043 16.1275i −0.166281 0.694662i
\(540\) 0 0
\(541\) 6.55137i 0.281666i −0.990033 0.140833i \(-0.955022\pi\)
0.990033 0.140833i \(-0.0449780\pi\)
\(542\) 17.2604i 0.741399i
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) 8.75714i 0.374428i −0.982319 0.187214i \(-0.940054\pi\)
0.982319 0.187214i \(-0.0599459\pi\)
\(548\) 0.478739i 0.0204507i
\(549\) 0 0
\(550\) 0 0
\(551\) 33.3974i 1.42278i
\(552\) 0 0
\(553\) −8.58800 −0.365199
\(554\) 10.8677i 0.461726i
\(555\) 0 0
\(556\) 19.4442i 0.824619i
\(557\) 6.49242 0.275093 0.137546 0.990495i \(-0.456078\pi\)
0.137546 + 0.990495i \(0.456078\pi\)
\(558\) 0 0
\(559\) −34.2462 −1.44846
\(560\) 0 0
\(561\) 0 0
\(562\) −20.4544 −0.862819
\(563\) −38.2462 −1.61189 −0.805943 0.591993i \(-0.798341\pi\)
−0.805943 + 0.591993i \(0.798341\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.5221i 0.568375i
\(567\) 0 0
\(568\) 0 0
\(569\) 10.8092 0.453146 0.226573 0.973994i \(-0.427248\pi\)
0.226573 + 0.973994i \(0.427248\pi\)
\(570\) 0 0
\(571\) 2.66253i 0.111423i −0.998447 0.0557117i \(-0.982257\pi\)
0.998447 0.0557117i \(-0.0177428\pi\)
\(572\) 11.6847 2.79695i 0.488560 0.116946i
\(573\) 0 0
\(574\) 17.7392i 0.740418i
\(575\) 0 0
\(576\) 0 0
\(577\) −6.17669 −0.257139 −0.128570 0.991700i \(-0.541039\pi\)
−0.128570 + 0.991700i \(0.541039\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 0 0
\(581\) 24.5639i 1.01908i
\(582\) 0 0
\(583\) 19.5873 4.68860i 0.811224 0.194182i
\(584\) 4.06854i 0.168358i
\(585\) 0 0
\(586\) −11.6155 −0.479833
\(587\) 12.1453i 0.501289i 0.968079 + 0.250644i \(0.0806425\pi\)
−0.968079 + 0.250644i \(0.919357\pi\)
\(588\) 0 0
\(589\) 37.9310i 1.56292i
\(590\) 0 0
\(591\) 0 0
\(592\) −1.54417 −0.0634651
\(593\) −28.7386 −1.18015 −0.590077 0.807347i \(-0.700903\pi\)
−0.590077 + 0.807347i \(0.700903\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.41131 0.0987710
\(597\) 0 0
\(598\) 28.1753 1.15217
\(599\) 17.3188i 0.707625i 0.935316 + 0.353813i \(0.115115\pi\)
−0.935316 + 0.353813i \(0.884885\pi\)
\(600\) 0 0
\(601\) 1.22631i 0.0500224i 0.999687 + 0.0250112i \(0.00796214\pi\)
−0.999687 + 0.0250112i \(0.992038\pi\)
\(602\) −13.3693 −0.544893
\(603\) 0 0
\(604\) 9.48274i 0.385847i
\(605\) 0 0
\(606\) 0 0
\(607\) 28.8066i 1.16922i −0.811314 0.584611i \(-0.801247\pi\)
0.811314 0.584611i \(-0.198753\pi\)
\(608\) 6.07263i 0.246278i
\(609\) 0 0
\(610\) 0 0
\(611\) −36.0863 −1.45989
\(612\) 0 0
\(613\) 27.4901i 1.11032i −0.831745 0.555158i \(-0.812658\pi\)
0.831745 0.555158i \(-0.187342\pi\)
\(614\) 10.6937i 0.431561i
\(615\) 0 0
\(616\) 4.56155 1.09190i 0.183790 0.0439937i
\(617\) 3.88884i 0.156559i 0.996931 + 0.0782795i \(0.0249426\pi\)
−0.996931 + 0.0782795i \(0.975057\pi\)
\(618\) 0 0
\(619\) −22.7386 −0.913943 −0.456971 0.889481i \(-0.651066\pi\)
−0.456971 + 0.889481i \(0.651066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.41674i 0.177095i
\(623\) −16.2462 −0.650891
\(624\) 0 0
\(625\) 0 0
\(626\) 16.4990 0.659431
\(627\) 0 0
\(628\) 21.1315 0.843238
\(629\) −3.08835 −0.123140
\(630\) 0 0
\(631\) 22.2462 0.885608 0.442804 0.896619i \(-0.353984\pi\)
0.442804 + 0.896619i \(0.353984\pi\)
\(632\) 6.07263i 0.241556i
\(633\) 0 0
\(634\) 27.2219i 1.08112i
\(635\) 0 0
\(636\) 0 0
\(637\) 18.1129i 0.717660i
\(638\) 4.24621 + 17.7392i 0.168109 + 0.702300i
\(639\) 0 0
\(640\) 0 0
\(641\) 31.6350i 1.24951i −0.780822 0.624754i \(-0.785199\pi\)
0.780822 0.624754i \(-0.214801\pi\)
\(642\) 0 0
\(643\) −14.0877 −0.555563 −0.277782 0.960644i \(-0.589599\pi\)
−0.277782 + 0.960644i \(0.589599\pi\)
\(644\) 10.9993 0.433434
\(645\) 0 0
\(646\) 12.1453i 0.477849i
\(647\) 13.3716i 0.525691i 0.964838 + 0.262846i \(0.0846610\pi\)
−0.964838 + 0.262846i \(0.915339\pi\)
\(648\) 0 0
\(649\) −2.56155 + 0.613157i −0.100550 + 0.0240685i
\(650\) 0 0
\(651\) 0 0
\(652\) 7.91096 0.309817
\(653\) 16.0341i 0.627463i −0.949512 0.313732i \(-0.898421\pi\)
0.949512 0.313732i \(-0.101579\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 12.5435 0.489741
\(657\) 0 0
\(658\) −14.0877 −0.549194
\(659\) −23.5428 −0.917097 −0.458549 0.888669i \(-0.651630\pi\)
−0.458549 + 0.888669i \(0.651630\pi\)
\(660\) 0 0
\(661\) −48.7386 −1.89571 −0.947857 0.318697i \(-0.896755\pi\)
−0.947857 + 0.318697i \(0.896755\pi\)
\(662\) −7.36932 −0.286417
\(663\) 0 0
\(664\) 17.3693 0.674060
\(665\) 0 0
\(666\) 0 0
\(667\) 42.7746i 1.65624i
\(668\) −7.36932 −0.285127
\(669\) 0 0
\(670\) 0 0
\(671\) −32.1308 + 7.69113i −1.24040 + 0.296913i
\(672\) 0 0
\(673\) 34.2893i 1.32176i 0.750493 + 0.660878i \(0.229816\pi\)
−0.750493 + 0.660878i \(0.770184\pi\)
\(674\) 16.0786i 0.619326i
\(675\) 0 0
\(676\) −0.123106 −0.00473483
\(677\) −23.6155 −0.907618 −0.453809 0.891099i \(-0.649935\pi\)
−0.453809 + 0.891099i \(0.649935\pi\)
\(678\) 0 0
\(679\) 15.5554i 0.596961i
\(680\) 0 0
\(681\) 0 0
\(682\) −4.82262 20.1472i −0.184668 0.771476i
\(683\) 51.0337i 1.95275i −0.216082 0.976375i \(-0.569328\pi\)
0.216082 0.976375i \(-0.430672\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) 9.45353i 0.360413i
\(689\) −21.9986 −0.838081
\(690\) 0 0
\(691\) −25.6155 −0.974461 −0.487230 0.873274i \(-0.661993\pi\)
−0.487230 + 0.873274i \(0.661993\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) −23.6155 −0.896433
\(695\) 0 0
\(696\) 0 0
\(697\) 25.0870 0.950237
\(698\) 29.8844i 1.13114i
\(699\) 0 0
\(700\) 0 0
\(701\) 39.8517 1.50518 0.752588 0.658491i \(-0.228805\pi\)
0.752588 + 0.658491i \(0.228805\pi\)
\(702\) 0 0
\(703\) 9.37720i 0.353668i
\(704\) −0.772087 3.22550i −0.0290991 0.121566i
\(705\) 0 0
\(706\) 16.0341i 0.603452i
\(707\) 23.3331i 0.877530i
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11.4878i 0.430524i
\(713\) 48.5811i 1.81938i
\(714\) 0 0
\(715\) 0 0
\(716\) 10.8677i 0.406147i
\(717\) 0 0
\(718\) −21.9986 −0.820981
\(719\) 26.6960i 0.995591i −0.867294 0.497796i \(-0.834143\pi\)
0.867294 0.497796i \(-0.165857\pi\)
\(720\) 0 0
\(721\) 5.59390i 0.208328i
\(722\) −17.8769 −0.665309
\(723\) 0 0
\(724\) −9.12311 −0.339058
\(725\) 0 0
\(726\) 0 0
\(727\) 38.3075 1.42075 0.710373 0.703825i \(-0.248526\pi\)
0.710373 + 0.703825i \(0.248526\pi\)
\(728\) −5.12311 −0.189875
\(729\) 0 0
\(730\) 0 0
\(731\) 18.9071i 0.699303i
\(732\) 0 0
\(733\) 4.31897i 0.159525i −0.996814 0.0797625i \(-0.974584\pi\)
0.996814 0.0797625i \(-0.0254162\pi\)
\(734\) 7.04383 0.259992
\(735\) 0 0
\(736\) 7.77769i 0.286689i
\(737\) 2.38447 + 9.96148i 0.0878332 + 0.366936i
\(738\) 0 0
\(739\) 25.0381i 0.921042i −0.887649 0.460521i \(-0.847663\pi\)
0.887649 0.460521i \(-0.152337\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −8.58800 −0.315275
\(743\) −14.6307 −0.536748 −0.268374 0.963315i \(-0.586486\pi\)
−0.268374 + 0.963315i \(0.586486\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 24.1180i 0.883021i
\(747\) 0 0
\(748\) −1.54417 6.45101i −0.0564606 0.235872i
\(749\) 15.7304i 0.574778i
\(750\) 0 0
\(751\) 10.2462 0.373890 0.186945 0.982370i \(-0.440141\pi\)
0.186945 + 0.982370i \(0.440141\pi\)
\(752\) 9.96148i 0.363258i
\(753\) 0 0
\(754\) 19.9230i 0.725551i
\(755\) 0 0
\(756\) 0 0
\(757\) −43.8071 −1.59220 −0.796099 0.605166i \(-0.793107\pi\)
−0.796099 + 0.605166i \(0.793107\pi\)
\(758\) −0.492423 −0.0178856
\(759\) 0 0
\(760\) 0 0
\(761\) −21.8085 −0.790558 −0.395279 0.918561i \(-0.629352\pi\)
−0.395279 + 0.918561i \(0.629352\pi\)
\(762\) 0 0
\(763\) 3.08835 0.111806
\(764\) 20.1472i 0.728900i
\(765\) 0 0
\(766\) 22.1067i 0.798749i
\(767\) 2.87689 0.103879
\(768\) 0 0
\(769\) 45.4398i 1.63860i −0.573364 0.819301i \(-0.694362\pi\)
0.573364 0.819301i \(-0.305638\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.3188i 0.623316i
\(773\) 42.7773i 1.53859i 0.638893 + 0.769296i \(0.279393\pi\)
−0.638893 + 0.769296i \(0.720607\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.9993 −0.394852
\(777\) 0 0
\(778\) 36.1495i 1.29602i
\(779\) 76.1720i 2.72915i
\(780\) 0 0
\(781\) 0 0
\(782\) 15.5554i 0.556259i
\(783\) 0 0
\(784\) 5.00000 0.178571
\(785\) 0 0
\(786\) 0 0
\(787\) 4.14488i 0.147749i −0.997268 0.0738744i \(-0.976464\pi\)
0.997268 0.0738744i \(-0.0235364\pi\)
\(788\) −0.876894 −0.0312381
\(789\) 0 0
\(790\) 0 0
\(791\) −11.6763 −0.415163
\(792\) 0 0
\(793\) 36.0863 1.28146
\(794\) 23.5428 0.835503
\(795\) 0 0
\(796\) 16.4924 0.584558
\(797\) 10.4402i 0.369811i −0.982756 0.184906i \(-0.940802\pi\)
0.982756 0.184906i \(-0.0591980\pi\)
\(798\) 0 0
\(799\) 19.9230i 0.704824i
\(800\) 0 0
\(801\) 0 0
\(802\) 9.89949i 0.349563i
\(803\) 13.1231 3.14127i 0.463104 0.110853i
\(804\) 0 0
\(805\) 0 0
\(806\) 22.6274i 0.797017i
\(807\) 0 0
\(808\) −16.4990 −0.580432
\(809\) 21.8085 0.766747 0.383373 0.923593i \(-0.374762\pi\)
0.383373 + 0.923593i \(0.374762\pi\)
\(810\) 0 0
\(811\) 22.8543i 0.802524i 0.915963 + 0.401262i \(0.131428\pi\)
−0.915963 + 0.401262i \(0.868572\pi\)
\(812\) 7.77769i 0.272943i
\(813\) 0 0
\(814\) 1.19224 + 4.98074i 0.0417878 + 0.174575i
\(815\) 0 0
\(816\) 0 0
\(817\) −57.4079 −2.00845
\(818\) 18.9655i 0.663112i
\(819\) 0 0
\(820\) 0 0
\(821\) 5.49966 0.191939 0.0959697 0.995384i \(-0.469405\pi\)
0.0959697 + 0.995384i \(0.469405\pi\)
\(822\) 0 0
\(823\) 10.1322 0.353185 0.176593 0.984284i \(-0.443492\pi\)
0.176593 + 0.984284i \(0.443492\pi\)
\(824\) 3.95548 0.137796
\(825\) 0 0
\(826\) 1.12311 0.0390778
\(827\) −29.3693 −1.02127 −0.510636 0.859797i \(-0.670590\pi\)
−0.510636 + 0.859797i \(0.670590\pi\)
\(828\) 0 0
\(829\) 32.7386 1.13706 0.568530 0.822663i \(-0.307512\pi\)
0.568530 + 0.822663i \(0.307512\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.62258i 0.125590i
\(833\) 10.0000 0.346479
\(834\) 0 0
\(835\) 0 0
\(836\) 19.5873 4.68860i 0.677441 0.162159i
\(837\) 0 0
\(838\) 13.3480i 0.461098i
\(839\) 2.82843i 0.0976481i −0.998807 0.0488241i \(-0.984453\pi\)
0.998807 0.0488241i \(-0.0155474\pi\)
\(840\) 0 0
\(841\) 1.24621 0.0429728
\(842\) −14.8769 −0.512692
\(843\) 0 0
\(844\) 3.88884i 0.133860i
\(845\) 0 0
\(846\) 0 0
\(847\) −7.04383 13.8703i −0.242029 0.476588i
\(848\) 6.07263i 0.208535i
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0101i 0.411701i
\(852\) 0 0
\(853\) 9.62763i 0.329644i −0.986323 0.164822i \(-0.947295\pi\)
0.986323 0.164822i \(-0.0527049\pi\)
\(854\) 14.0877 0.482070
\(855\) 0 0
\(856\) 11.1231 0.380180
\(857\) −26.4924 −0.904964 −0.452482 0.891774i \(-0.649461\pi\)
−0.452482 + 0.891774i \(0.649461\pi\)
\(858\) 0 0
\(859\) 12.9848 0.443037 0.221519 0.975156i \(-0.428899\pi\)
0.221519 + 0.975156i \(0.428899\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 36.7633 1.25216
\(863\) 16.5129i 0.562104i −0.959693 0.281052i \(-0.909317\pi\)
0.959693 0.281052i \(-0.0906833\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.49966 −0.186886
\(867\) 0 0
\(868\) 8.83348i 0.299828i
\(869\) 19.5873 4.68860i 0.664454 0.159050i
\(870\) 0 0
\(871\) 11.1878i 0.379084i
\(872\) 2.18379i 0.0739525i
\(873\) 0 0
\(874\) 47.2311 1.59761
\(875\) 0 0
\(876\) 0 0
\(877\) 40.3921i 1.36395i −0.731378 0.681973i \(-0.761122\pi\)
0.731378 0.681973i \(-0.238878\pi\)
\(878\) 6.07263i 0.204942i
\(879\) 0 0
\(880\) 0 0
\(881\) 12.1842i 0.410496i −0.978710 0.205248i \(-0.934200\pi\)
0.978710 0.205248i \(-0.0658001\pi\)
\(882\) 0 0
\(883\) 47.0856 1.58456 0.792278 0.610160i \(-0.208895\pi\)
0.792278 + 0.610160i \(0.208895\pi\)
\(884\) 7.24517i 0.243681i
\(885\) 0 0
\(886\) 12.1453i 0.408028i
\(887\) 10.0000 0.335767 0.167884 0.985807i \(-0.446307\pi\)
0.167884 + 0.985807i \(0.446307\pi\)
\(888\) 0 0
\(889\) −14.0000 −0.469545
\(890\) 0 0
\(891\) 0 0
\(892\) 3.95548 0.132439
\(893\) −60.4924 −2.02430
\(894\) 0 0
\(895\) 0 0
\(896\) 1.41421i 0.0472456i
\(897\) 0 0
\(898\) 21.9096i 0.731133i
\(899\) −34.3520 −1.14570
\(900\) 0 0
\(901\) 12.1453i 0.404618i
\(902\) −9.68466 40.4591i −0.322464 1.34714i
\(903\) 0 0
\(904\) 8.25643i 0.274605i
\(905\) 0 0
\(906\) 0 0
\(907\) 6.17669 0.205094 0.102547 0.994728i \(-0.467301\pi\)
0.102547 + 0.994728i \(0.467301\pi\)
\(908\) 5.36932 0.178187
\(909\) 0 0
\(910\) 0 0
\(911\) 10.4218i 0.345289i −0.984984 0.172645i \(-0.944769\pi\)
0.984984 0.172645i \(-0.0552312\pi\)
\(912\) 0 0
\(913\) −13.4106 56.0248i −0.443827 1.85415i
\(914\) 12.0101i 0.397259i
\(915\) 0 0
\(916\) −20.2462 −0.668954
\(917\) 2.18379i 0.0721151i
\(918\) 0 0
\(919\) 8.52526i 0.281222i −0.990065 0.140611i \(-0.955093\pi\)
0.990065 0.140611i \(-0.0449068\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 14.7647 0.486249
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −22.8658 −0.751415
\(927\) 0 0
\(928\) −5.49966 −0.180535
\(929\) 24.7380i 0.811628i −0.913956 0.405814i \(-0.866988\pi\)
0.913956 0.405814i \(-0.133012\pi\)
\(930\) 0 0
\(931\) 30.3632i 0.995113i
\(932\) 14.4924 0.474715
\(933\) 0 0
\(934\) 12.1453i 0.397405i
\(935\) 0 0
\(936\) 0 0
\(937\) 47.1913i 1.54167i 0.637032 + 0.770837i \(0.280162\pi\)
−0.637032 + 0.770837i \(0.719838\pi\)
\(938\) 4.36758i 0.142607i
\(939\) 0 0
\(940\) 0 0
\(941\) −2.41131 −0.0786064 −0.0393032 0.999227i \(-0.512514\pi\)
−0.0393032 + 0.999227i \(0.512514\pi\)
\(942\) 0 0
\(943\) 97.5593i 3.17697i
\(944\) 0.794156i 0.0258476i
\(945\) 0 0
\(946\) 30.4924 7.29895i 0.991394 0.237309i
\(947\) 15.5554i 0.505482i 0.967534 + 0.252741i \(0.0813320\pi\)
−0.967534 + 0.252741i \(0.918668\pi\)
\(948\) 0 0
\(949\) −14.7386 −0.478436
\(950\) 0 0
\(951\) 0 0
\(952\) 2.82843i 0.0916698i
\(953\) −48.2462 −1.56285 −0.781424 0.624000i \(-0.785506\pi\)
−0.781424 + 0.624000i \(0.785506\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −16.4990 −0.533615
\(957\) 0 0
\(958\) 27.4983 0.888429
\(959\) −0.677039 −0.0218627
\(960\) 0 0
\(961\) 8.01515 0.258553
\(962\) 5.59390i 0.180354i
\(963\) 0 0
\(964\) 2.18379i 0.0703352i
\(965\) 0 0
\(966\) 0 0
\(967\) 16.7965i 0.540138i −0.962841 0.270069i \(-0.912954\pi\)
0.962841 0.270069i \(-0.0870465\pi\)
\(968\) −9.80776 + 4.98074i −0.315233 + 0.160087i
\(969\) 0 0
\(970\) 0 0
\(971\) 7.14740i 0.229371i 0.993402 + 0.114685i \(0.0365860\pi\)
−0.993402 + 0.114685i \(0.963414\pi\)
\(972\) 0 0
\(973\) 27.4983 0.881554
\(974\) −41.3958 −1.32641
\(975\) 0 0
\(976\) 9.96148i 0.318859i
\(977\) 59.2901i 1.89686i 0.316988 + 0.948430i \(0.397329\pi\)
−0.316988 + 0.948430i \(0.602671\pi\)
\(978\) 0 0
\(979\) 37.0540 8.86958i 1.18425 0.283473i
\(980\) 0 0
\(981\) 0 0
\(982\) 43.1301 1.37634
\(983\) 13.3716i 0.426487i −0.976999 0.213244i \(-0.931597\pi\)
0.976999 0.213244i \(-0.0684028\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10.9993 −0.350289
\(987\) 0 0
\(988\) −21.9986 −0.699869
\(989\) 73.5266 2.33801
\(990\) 0 0
\(991\) −12.4924 −0.396835 −0.198417 0.980118i \(-0.563580\pi\)
−0.198417 + 0.980118i \(0.563580\pi\)
\(992\) 6.24621 0.198317
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 48.3337i 1.53074i −0.643589 0.765372i \(-0.722555\pi\)
0.643589 0.765372i \(-0.277445\pi\)
\(998\) 14.8769 0.470920
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.d.n.4751.6 8
3.2 odd 2 4950.2.d.g.4751.7 8
5.2 odd 4 990.2.f.c.989.10 yes 16
5.3 odd 4 990.2.f.c.989.8 yes 16
5.4 even 2 4950.2.d.g.4751.2 8
11.10 odd 2 4950.2.d.g.4751.3 8
15.2 even 4 990.2.f.c.989.7 yes 16
15.8 even 4 990.2.f.c.989.9 yes 16
15.14 odd 2 inner 4950.2.d.n.4751.3 8
33.32 even 2 inner 4950.2.d.n.4751.2 8
55.32 even 4 990.2.f.c.989.2 yes 16
55.43 even 4 990.2.f.c.989.16 yes 16
55.54 odd 2 inner 4950.2.d.n.4751.7 8
165.32 odd 4 990.2.f.c.989.15 yes 16
165.98 odd 4 990.2.f.c.989.1 16
165.164 even 2 4950.2.d.g.4751.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.f.c.989.1 16 165.98 odd 4
990.2.f.c.989.2 yes 16 55.32 even 4
990.2.f.c.989.7 yes 16 15.2 even 4
990.2.f.c.989.8 yes 16 5.3 odd 4
990.2.f.c.989.9 yes 16 15.8 even 4
990.2.f.c.989.10 yes 16 5.2 odd 4
990.2.f.c.989.15 yes 16 165.32 odd 4
990.2.f.c.989.16 yes 16 55.43 even 4
4950.2.d.g.4751.2 8 5.4 even 2
4950.2.d.g.4751.3 8 11.10 odd 2
4950.2.d.g.4751.6 8 165.164 even 2
4950.2.d.g.4751.7 8 3.2 odd 2
4950.2.d.n.4751.2 8 33.32 even 2 inner
4950.2.d.n.4751.3 8 15.14 odd 2 inner
4950.2.d.n.4751.6 8 1.1 even 1 trivial
4950.2.d.n.4751.7 8 55.54 odd 2 inner