Properties

Label 990.2.bh.d.127.3
Level $990$
Weight $2$
Character 990.127
Analytic conductor $7.905$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(73,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 127.3
Character \(\chi\) \(=\) 990.127
Dual form 990.2.bh.d.343.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.891007 - 0.453990i) q^{2} +(0.587785 + 0.809017i) q^{4} +(-0.169731 - 2.22962i) q^{5} +(0.743917 - 4.69691i) q^{7} +(-0.156434 - 0.987688i) q^{8} +(-0.860994 + 2.06366i) q^{10} +(-2.86962 + 1.66292i) q^{11} +(2.34342 - 4.59923i) q^{13} +(-2.79519 + 3.84725i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(-0.748460 - 1.46893i) q^{17} +(-1.69404 - 1.23080i) q^{19} +(1.70403 - 1.44785i) q^{20} +(3.31180 - 0.178892i) q^{22} +(-4.35146 + 4.35146i) q^{23} +(-4.94238 + 0.756869i) q^{25} +(-4.17601 + 3.03405i) q^{26} +(4.23714 - 2.15893i) q^{28} +(5.53644 - 4.02246i) q^{29} +(2.33171 + 7.17628i) q^{31} +(0.707107 - 0.707107i) q^{32} +1.64862i q^{34} +(-10.5986 - 0.861441i) q^{35} +(1.00371 + 0.158971i) q^{37} +(0.950635 + 1.86573i) q^{38} +(-2.17561 + 0.516430i) q^{40} +(-4.45667 + 6.13408i) q^{41} +(8.40230 + 8.40230i) q^{43} +(-3.03205 - 1.34413i) q^{44} +(5.85270 - 1.90166i) q^{46} +(-1.15329 - 7.28159i) q^{47} +(-14.8502 - 4.82511i) q^{49} +(4.74731 + 1.56942i) q^{50} +(5.09829 - 0.807489i) q^{52} +(1.22476 + 0.624046i) q^{53} +(4.19473 + 6.11590i) q^{55} -4.75546 q^{56} +(-6.75916 + 1.07055i) q^{58} +(0.509356 + 0.701068i) q^{59} +(-2.24687 - 0.730053i) q^{61} +(1.18039 - 7.45269i) q^{62} +(-0.951057 + 0.309017i) q^{64} +(-10.6523 - 4.44431i) q^{65} +(-6.82700 - 6.82700i) q^{67} +(0.748460 - 1.46893i) q^{68} +(9.05231 + 5.57920i) q^{70} +(2.92210 - 8.99330i) q^{71} +(-4.47657 - 0.709019i) q^{73} +(-0.822137 - 0.597318i) q^{74} -2.09395i q^{76} +(5.67582 + 14.7154i) q^{77} +(-3.09610 - 9.52881i) q^{79} +(2.17294 + 0.527566i) q^{80} +(6.75573 - 3.44222i) q^{82} +(-4.08300 + 2.08039i) q^{83} +(-3.14812 + 1.91810i) q^{85} +(-3.67194 - 11.3011i) q^{86} +(2.09135 + 2.57415i) q^{88} -13.6217i q^{89} +(-19.8589 - 14.4283i) q^{91} +(-6.07812 - 0.962680i) q^{92} +(-2.27818 + 7.01153i) q^{94} +(-2.45667 + 3.98597i) q^{95} +(0.662306 - 1.29985i) q^{97} +(11.0410 + 11.0410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{7} + 24 q^{16} + 4 q^{22} + 8 q^{25} + 20 q^{28} - 16 q^{31} + 64 q^{37} - 40 q^{46} - 40 q^{52} - 36 q^{55} - 12 q^{58} - 80 q^{61} - 48 q^{67} - 52 q^{70} + 20 q^{73} + 48 q^{82} - 160 q^{85}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) 0 0
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) −0.169731 2.22962i −0.0759059 0.997115i
\(6\) 0 0
\(7\) 0.743917 4.69691i 0.281174 1.77526i −0.292583 0.956240i \(-0.594515\pi\)
0.573758 0.819025i \(-0.305485\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) 0 0
\(10\) −0.860994 + 2.06366i −0.272270 + 0.652586i
\(11\) −2.86962 + 1.66292i −0.865222 + 0.501389i
\(12\) 0 0
\(13\) 2.34342 4.59923i 0.649949 1.27560i −0.297204 0.954814i \(-0.596054\pi\)
0.947153 0.320783i \(-0.103946\pi\)
\(14\) −2.79519 + 3.84725i −0.747045 + 1.02822i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −0.748460 1.46893i −0.181528 0.356269i 0.782254 0.622959i \(-0.214070\pi\)
−0.963782 + 0.266690i \(0.914070\pi\)
\(18\) 0 0
\(19\) −1.69404 1.23080i −0.388640 0.282364i 0.376258 0.926515i \(-0.377211\pi\)
−0.764898 + 0.644151i \(0.777211\pi\)
\(20\) 1.70403 1.44785i 0.381033 0.323749i
\(21\) 0 0
\(22\) 3.31180 0.178892i 0.706077 0.0381400i
\(23\) −4.35146 + 4.35146i −0.907341 + 0.907341i −0.996057 0.0887157i \(-0.971724\pi\)
0.0887157 + 0.996057i \(0.471724\pi\)
\(24\) 0 0
\(25\) −4.94238 + 0.756869i −0.988477 + 0.151374i
\(26\) −4.17601 + 3.03405i −0.818984 + 0.595026i
\(27\) 0 0
\(28\) 4.23714 2.15893i 0.800745 0.408000i
\(29\) 5.53644 4.02246i 1.02809 0.746951i 0.0601649 0.998188i \(-0.480837\pi\)
0.967926 + 0.251237i \(0.0808373\pi\)
\(30\) 0 0
\(31\) 2.33171 + 7.17628i 0.418788 + 1.28890i 0.908818 + 0.417192i \(0.136986\pi\)
−0.490030 + 0.871706i \(0.663014\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 1.64862i 0.282737i
\(35\) −10.5986 0.861441i −1.79149 0.145610i
\(36\) 0 0
\(37\) 1.00371 + 0.158971i 0.165008 + 0.0261347i 0.238392 0.971169i \(-0.423380\pi\)
−0.0733836 + 0.997304i \(0.523380\pi\)
\(38\) 0.950635 + 1.86573i 0.154213 + 0.302661i
\(39\) 0 0
\(40\) −2.17561 + 0.516430i −0.343995 + 0.0816547i
\(41\) −4.45667 + 6.13408i −0.696014 + 0.957982i 0.303971 + 0.952681i \(0.401687\pi\)
−0.999986 + 0.00530062i \(0.998313\pi\)
\(42\) 0 0
\(43\) 8.40230 + 8.40230i 1.28134 + 1.28134i 0.939906 + 0.341432i \(0.110912\pi\)
0.341432 + 0.939906i \(0.389088\pi\)
\(44\) −3.03205 1.34413i −0.457098 0.202635i
\(45\) 0 0
\(46\) 5.85270 1.90166i 0.862933 0.280384i
\(47\) −1.15329 7.28159i −0.168225 1.06213i −0.916878 0.399168i \(-0.869299\pi\)
0.748653 0.662962i \(-0.230701\pi\)
\(48\) 0 0
\(49\) −14.8502 4.82511i −2.12145 0.689301i
\(50\) 4.74731 + 1.56942i 0.671371 + 0.221949i
\(51\) 0 0
\(52\) 5.09829 0.807489i 0.707005 0.111979i
\(53\) 1.22476 + 0.624046i 0.168234 + 0.0857193i 0.536080 0.844167i \(-0.319905\pi\)
−0.367846 + 0.929887i \(0.619905\pi\)
\(54\) 0 0
\(55\) 4.19473 + 6.11590i 0.565618 + 0.824668i
\(56\) −4.75546 −0.635475
\(57\) 0 0
\(58\) −6.75916 + 1.07055i −0.887521 + 0.140570i
\(59\) 0.509356 + 0.701068i 0.0663124 + 0.0912713i 0.840885 0.541214i \(-0.182035\pi\)
−0.774573 + 0.632485i \(0.782035\pi\)
\(60\) 0 0
\(61\) −2.24687 0.730053i −0.287683 0.0934738i 0.161621 0.986853i \(-0.448328\pi\)
−0.449304 + 0.893379i \(0.648328\pi\)
\(62\) 1.18039 7.45269i 0.149910 0.946492i
\(63\) 0 0
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) −10.6523 4.44431i −1.32125 0.551249i
\(66\) 0 0
\(67\) −6.82700 6.82700i −0.834051 0.834051i 0.154017 0.988068i \(-0.450779\pi\)
−0.988068 + 0.154017i \(0.950779\pi\)
\(68\) 0.748460 1.46893i 0.0907641 0.178134i
\(69\) 0 0
\(70\) 9.05231 + 5.57920i 1.08196 + 0.666842i
\(71\) 2.92210 8.99330i 0.346790 1.06731i −0.613829 0.789439i \(-0.710372\pi\)
0.960619 0.277870i \(-0.0896284\pi\)
\(72\) 0 0
\(73\) −4.47657 0.709019i −0.523943 0.0829845i −0.111140 0.993805i \(-0.535450\pi\)
−0.412803 + 0.910820i \(0.635450\pi\)
\(74\) −0.822137 0.597318i −0.0955715 0.0694368i
\(75\) 0 0
\(76\) 2.09395i 0.240193i
\(77\) 5.67582 + 14.7154i 0.646820 + 1.67698i
\(78\) 0 0
\(79\) −3.09610 9.52881i −0.348338 1.07207i −0.959772 0.280780i \(-0.909407\pi\)
0.611434 0.791295i \(-0.290593\pi\)
\(80\) 2.17294 + 0.527566i 0.242942 + 0.0589837i
\(81\) 0 0
\(82\) 6.75573 3.44222i 0.746046 0.380129i
\(83\) −4.08300 + 2.08039i −0.448167 + 0.228353i −0.663482 0.748192i \(-0.730922\pi\)
0.215315 + 0.976545i \(0.430922\pi\)
\(84\) 0 0
\(85\) −3.14812 + 1.91810i −0.341462 + 0.208047i
\(86\) −3.67194 11.3011i −0.395955 1.21863i
\(87\) 0 0
\(88\) 2.09135 + 2.57415i 0.222939 + 0.274405i
\(89\) 13.6217i 1.44390i −0.691944 0.721951i \(-0.743246\pi\)
0.691944 0.721951i \(-0.256754\pi\)
\(90\) 0 0
\(91\) −19.8589 14.4283i −2.08177 1.51250i
\(92\) −6.07812 0.962680i −0.633688 0.100366i
\(93\) 0 0
\(94\) −2.27818 + 7.01153i −0.234977 + 0.723184i
\(95\) −2.45667 + 3.98597i −0.252049 + 0.408952i
\(96\) 0 0
\(97\) 0.662306 1.29985i 0.0672469 0.131980i −0.854936 0.518733i \(-0.826404\pi\)
0.922183 + 0.386754i \(0.126404\pi\)
\(98\) 11.0410 + 11.0410i 1.11531 + 1.11531i
\(99\) 0 0
\(100\) −3.51738 3.55360i −0.351738 0.355360i
\(101\) −8.05097 + 2.61592i −0.801101 + 0.260294i −0.680824 0.732447i \(-0.738378\pi\)
−0.120277 + 0.992740i \(0.538378\pi\)
\(102\) 0 0
\(103\) −0.981906 + 6.19951i −0.0967500 + 0.610856i 0.890902 + 0.454195i \(0.150073\pi\)
−0.987652 + 0.156661i \(0.949927\pi\)
\(104\) −4.90920 1.59510i −0.481386 0.156412i
\(105\) 0 0
\(106\) −0.807957 1.11206i −0.0784758 0.108013i
\(107\) 6.18271 0.979246i 0.597705 0.0946672i 0.149751 0.988724i \(-0.452153\pi\)
0.447954 + 0.894056i \(0.352153\pi\)
\(108\) 0 0
\(109\) −1.60428 −0.153662 −0.0768308 0.997044i \(-0.524480\pi\)
−0.0768308 + 0.997044i \(0.524480\pi\)
\(110\) −0.960975 7.35367i −0.0916254 0.701145i
\(111\) 0 0
\(112\) 4.23714 + 2.15893i 0.400372 + 0.204000i
\(113\) −3.19317 + 0.505749i −0.300389 + 0.0475769i −0.304809 0.952413i \(-0.598593\pi\)
0.00442091 + 0.999990i \(0.498593\pi\)
\(114\) 0 0
\(115\) 10.4407 + 8.96350i 0.973596 + 0.835851i
\(116\) 6.50847 + 2.11473i 0.604296 + 0.196348i
\(117\) 0 0
\(118\) −0.135561 0.855899i −0.0124794 0.0787919i
\(119\) −7.45625 + 2.42268i −0.683513 + 0.222087i
\(120\) 0 0
\(121\) 5.46940 9.54388i 0.497219 0.867625i
\(122\) 1.67054 + 1.67054i 0.151244 + 0.151244i
\(123\) 0 0
\(124\) −4.43518 + 6.10451i −0.398291 + 0.548201i
\(125\) 2.52640 + 10.8912i 0.225968 + 0.974135i
\(126\) 0 0
\(127\) 6.78320 + 13.3128i 0.601911 + 1.18132i 0.968050 + 0.250757i \(0.0806795\pi\)
−0.366139 + 0.930560i \(0.619320\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) 0 0
\(130\) 7.47357 + 8.79594i 0.655475 + 0.771455i
\(131\) 13.8516i 1.21022i 0.796142 + 0.605110i \(0.206871\pi\)
−0.796142 + 0.605110i \(0.793129\pi\)
\(132\) 0 0
\(133\) −7.04116 + 7.04116i −0.610546 + 0.610546i
\(134\) 2.98351 + 9.18229i 0.257736 + 0.793229i
\(135\) 0 0
\(136\) −1.33376 + 0.969037i −0.114369 + 0.0830942i
\(137\) 15.3678 7.83027i 1.31296 0.668986i 0.349523 0.936928i \(-0.386344\pi\)
0.963435 + 0.267942i \(0.0863436\pi\)
\(138\) 0 0
\(139\) −4.25485 + 3.09133i −0.360891 + 0.262203i −0.753424 0.657535i \(-0.771599\pi\)
0.392532 + 0.919738i \(0.371599\pi\)
\(140\) −5.53277 9.08077i −0.467604 0.767465i
\(141\) 0 0
\(142\) −6.68649 + 6.68649i −0.561117 + 0.561117i
\(143\) 0.923413 + 17.0950i 0.0772197 + 1.42955i
\(144\) 0 0
\(145\) −9.90824 11.6614i −0.822835 0.968426i
\(146\) 3.66677 + 2.66406i 0.303464 + 0.220479i
\(147\) 0 0
\(148\) 0.461353 + 0.905456i 0.0379230 + 0.0744281i
\(149\) −0.622398 + 1.91554i −0.0509888 + 0.156927i −0.973309 0.229500i \(-0.926291\pi\)
0.922320 + 0.386427i \(0.126291\pi\)
\(150\) 0 0
\(151\) 11.4348 15.7386i 0.930550 1.28079i −0.0290949 0.999577i \(-0.509263\pi\)
0.959645 0.281215i \(-0.0907375\pi\)
\(152\) −0.950635 + 1.86573i −0.0771067 + 0.151330i
\(153\) 0 0
\(154\) 1.62346 15.6883i 0.130822 1.26420i
\(155\) 15.6046 6.41687i 1.25339 0.515415i
\(156\) 0 0
\(157\) −1.90573 12.0323i −0.152093 0.960280i −0.939177 0.343434i \(-0.888410\pi\)
0.787084 0.616846i \(-0.211590\pi\)
\(158\) −1.56735 + 9.89583i −0.124691 + 0.787270i
\(159\) 0 0
\(160\) −1.69659 1.45656i −0.134128 0.115151i
\(161\) 17.2013 + 23.6755i 1.35565 + 1.86589i
\(162\) 0 0
\(163\) −13.6534 6.95673i −1.06941 0.544893i −0.171554 0.985175i \(-0.554879\pi\)
−0.897860 + 0.440282i \(0.854879\pi\)
\(164\) −7.58214 −0.592065
\(165\) 0 0
\(166\) 4.58246 0.355668
\(167\) −3.63689 1.85309i −0.281431 0.143396i 0.307578 0.951523i \(-0.400482\pi\)
−0.589009 + 0.808127i \(0.700482\pi\)
\(168\) 0 0
\(169\) −8.02007 11.0387i −0.616928 0.849129i
\(170\) 3.67580 0.279822i 0.281921 0.0214614i
\(171\) 0 0
\(172\) −1.85886 + 11.7364i −0.141736 + 0.894888i
\(173\) −3.39838 21.4565i −0.258374 1.63131i −0.686176 0.727435i \(-0.740712\pi\)
0.427802 0.903872i \(-0.359288\pi\)
\(174\) 0 0
\(175\) −0.121780 + 23.7770i −0.00920568 + 1.79737i
\(176\) −0.694769 3.24304i −0.0523702 0.244453i
\(177\) 0 0
\(178\) −6.18414 + 12.1371i −0.463521 + 0.909711i
\(179\) −1.45584 + 2.00379i −0.108815 + 0.149771i −0.859951 0.510377i \(-0.829506\pi\)
0.751136 + 0.660147i \(0.229506\pi\)
\(180\) 0 0
\(181\) −2.64657 + 8.14531i −0.196718 + 0.605436i 0.803234 + 0.595663i \(0.203111\pi\)
−0.999952 + 0.00977273i \(0.996889\pi\)
\(182\) 11.1441 + 21.8714i 0.826052 + 1.62122i
\(183\) 0 0
\(184\) 4.97860 + 3.61716i 0.367027 + 0.266661i
\(185\) 0.184086 2.26486i 0.0135342 0.166516i
\(186\) 0 0
\(187\) 4.59051 + 2.97065i 0.335691 + 0.217236i
\(188\) 5.21305 5.21305i 0.380200 0.380200i
\(189\) 0 0
\(190\) 3.99850 2.43622i 0.290082 0.176742i
\(191\) 19.6785 14.2973i 1.42389 1.03452i 0.432774 0.901503i \(-0.357535\pi\)
0.991114 0.133013i \(-0.0424651\pi\)
\(192\) 0 0
\(193\) 11.7321 5.97781i 0.844496 0.430292i 0.0224733 0.999747i \(-0.492846\pi\)
0.822022 + 0.569455i \(0.192846\pi\)
\(194\) −1.18024 + 0.857492i −0.0847361 + 0.0615644i
\(195\) 0 0
\(196\) −4.82511 14.8502i −0.344650 1.06073i
\(197\) 17.3897 17.3897i 1.23897 1.23897i 0.278543 0.960424i \(-0.410149\pi\)
0.960424 0.278543i \(-0.0898514\pi\)
\(198\) 0 0
\(199\) 8.21281i 0.582191i 0.956694 + 0.291095i \(0.0940197\pi\)
−0.956694 + 0.291095i \(0.905980\pi\)
\(200\) 1.52071 + 4.76313i 0.107530 + 0.336804i
\(201\) 0 0
\(202\) 8.36107 + 1.32426i 0.588283 + 0.0931748i
\(203\) −14.7745 28.9965i −1.03696 2.03516i
\(204\) 0 0
\(205\) 14.4331 + 8.89552i 1.00805 + 0.621290i
\(206\) 3.68940 5.07803i 0.257053 0.353803i
\(207\) 0 0
\(208\) 3.64997 + 3.64997i 0.253080 + 0.253080i
\(209\) 6.90797 + 0.714853i 0.477834 + 0.0494474i
\(210\) 0 0
\(211\) −14.9717 + 4.86460i −1.03069 + 0.334893i −0.775065 0.631882i \(-0.782283\pi\)
−0.255629 + 0.966775i \(0.582283\pi\)
\(212\) 0.215032 + 1.35766i 0.0147684 + 0.0932442i
\(213\) 0 0
\(214\) −5.95341 1.93438i −0.406966 0.132231i
\(215\) 17.3078 20.1600i 1.18038 1.37490i
\(216\) 0 0
\(217\) 35.4409 5.61329i 2.40589 0.381055i
\(218\) 1.42942 + 0.728326i 0.0968125 + 0.0493284i
\(219\) 0 0
\(220\) −2.48226 + 6.98845i −0.167354 + 0.471161i
\(221\) −8.50993 −0.572440
\(222\) 0 0
\(223\) 10.3007 1.63147i 0.689784 0.109251i 0.198305 0.980140i \(-0.436456\pi\)
0.491479 + 0.870889i \(0.336456\pi\)
\(224\) −2.79519 3.84725i −0.186761 0.257055i
\(225\) 0 0
\(226\) 3.07474 + 0.999045i 0.204529 + 0.0664555i
\(227\) 0.662946 4.18568i 0.0440013 0.277813i −0.955871 0.293786i \(-0.905085\pi\)
0.999872 + 0.0159731i \(0.00508461\pi\)
\(228\) 0 0
\(229\) −12.4353 + 4.04048i −0.821749 + 0.267002i −0.689566 0.724223i \(-0.742199\pi\)
−0.132183 + 0.991225i \(0.542199\pi\)
\(230\) −5.23335 12.7265i −0.345077 0.839160i
\(231\) 0 0
\(232\) −4.83902 4.83902i −0.317697 0.317697i
\(233\) 7.33973 14.4050i 0.480842 0.943705i −0.515388 0.856957i \(-0.672352\pi\)
0.996230 0.0867486i \(-0.0276477\pi\)
\(234\) 0 0
\(235\) −16.0394 + 3.80731i −1.04630 + 0.248361i
\(236\) −0.267784 + 0.824155i −0.0174313 + 0.0536479i
\(237\) 0 0
\(238\) 7.74344 + 1.22644i 0.501933 + 0.0794983i
\(239\) 2.82823 + 2.05483i 0.182943 + 0.132916i 0.675488 0.737371i \(-0.263933\pi\)
−0.492544 + 0.870287i \(0.663933\pi\)
\(240\) 0 0
\(241\) 8.19797i 0.528078i −0.964512 0.264039i \(-0.914945\pi\)
0.964512 0.264039i \(-0.0850547\pi\)
\(242\) −9.20610 + 6.02060i −0.591791 + 0.387019i
\(243\) 0 0
\(244\) −0.730053 2.24687i −0.0467369 0.143841i
\(245\) −8.23761 + 33.9291i −0.526282 + 2.16765i
\(246\) 0 0
\(247\) −9.63057 + 4.90702i −0.612779 + 0.312226i
\(248\) 6.72317 3.42562i 0.426922 0.217527i
\(249\) 0 0
\(250\) 2.69344 10.8511i 0.170348 0.686281i
\(251\) 2.66715 + 8.20863i 0.168349 + 0.518124i 0.999267 0.0382697i \(-0.0121846\pi\)
−0.830919 + 0.556394i \(0.812185\pi\)
\(252\) 0 0
\(253\) 5.25089 19.7231i 0.330121 1.23998i
\(254\) 14.9413i 0.937499i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −12.1193 1.91952i −0.755984 0.119736i −0.233467 0.972365i \(-0.575007\pi\)
−0.522517 + 0.852629i \(0.675007\pi\)
\(258\) 0 0
\(259\) 1.49335 4.59606i 0.0927922 0.285585i
\(260\) −2.66573 11.2302i −0.165321 0.696465i
\(261\) 0 0
\(262\) 6.28850 12.3419i 0.388505 0.762483i
\(263\) 13.4242 + 13.4242i 0.827774 + 0.827774i 0.987208 0.159435i \(-0.0509671\pi\)
−0.159435 + 0.987208i \(0.550967\pi\)
\(264\) 0 0
\(265\) 1.18350 2.83666i 0.0727021 0.174255i
\(266\) 9.47034 3.07710i 0.580664 0.188669i
\(267\) 0 0
\(268\) 1.51035 9.53597i 0.0922593 0.582502i
\(269\) 25.0851 + 8.15065i 1.52947 + 0.496954i 0.948447 0.316936i \(-0.102654\pi\)
0.581020 + 0.813890i \(0.302654\pi\)
\(270\) 0 0
\(271\) 17.5795 + 24.1961i 1.06788 + 1.46981i 0.872207 + 0.489137i \(0.162688\pi\)
0.195670 + 0.980670i \(0.437312\pi\)
\(272\) 1.62833 0.257902i 0.0987318 0.0156376i
\(273\) 0 0
\(274\) −17.2477 −1.04197
\(275\) 12.9241 10.3907i 0.779355 0.626583i
\(276\) 0 0
\(277\) −4.60192 2.34479i −0.276502 0.140885i 0.310241 0.950658i \(-0.399590\pi\)
−0.586743 + 0.809773i \(0.699590\pi\)
\(278\) 5.19453 0.822732i 0.311547 0.0493442i
\(279\) 0 0
\(280\) 0.807147 + 10.6028i 0.0482363 + 0.633641i
\(281\) −11.3337 3.68254i −0.676111 0.219682i −0.0492193 0.998788i \(-0.515673\pi\)
−0.626892 + 0.779106i \(0.715673\pi\)
\(282\) 0 0
\(283\) 2.07850 + 13.1231i 0.123554 + 0.780087i 0.969188 + 0.246324i \(0.0792227\pi\)
−0.845634 + 0.533763i \(0.820777\pi\)
\(284\) 8.99330 2.92210i 0.533654 0.173395i
\(285\) 0 0
\(286\) 6.93818 15.6509i 0.410263 0.925459i
\(287\) 25.4958 + 25.4958i 1.50497 + 1.50497i
\(288\) 0 0
\(289\) 8.39477 11.5544i 0.493810 0.679671i
\(290\) 3.53414 + 14.8886i 0.207532 + 0.874290i
\(291\) 0 0
\(292\) −2.05765 4.03837i −0.120415 0.236328i
\(293\) 14.3072 + 2.26604i 0.835837 + 0.132384i 0.559659 0.828723i \(-0.310932\pi\)
0.276178 + 0.961107i \(0.410932\pi\)
\(294\) 0 0
\(295\) 1.47666 1.25466i 0.0859744 0.0730492i
\(296\) 1.01622i 0.0590664i
\(297\) 0 0
\(298\) 1.42420 1.42420i 0.0825016 0.0825016i
\(299\) 9.81604 + 30.2107i 0.567676 + 1.74713i
\(300\) 0 0
\(301\) 45.7155 33.2142i 2.63500 1.91444i
\(302\) −17.3337 + 8.83194i −0.997440 + 0.508221i
\(303\) 0 0
\(304\) 1.69404 1.23080i 0.0971601 0.0705909i
\(305\) −1.24638 + 5.13358i −0.0713673 + 0.293948i
\(306\) 0 0
\(307\) 4.77841 4.77841i 0.272718 0.272718i −0.557475 0.830194i \(-0.688230\pi\)
0.830194 + 0.557475i \(0.188230\pi\)
\(308\) −8.56885 + 13.2413i −0.488256 + 0.754495i
\(309\) 0 0
\(310\) −16.8170 1.36687i −0.955141 0.0776328i
\(311\) −4.33101 3.14666i −0.245589 0.178431i 0.458181 0.888859i \(-0.348501\pi\)
−0.703770 + 0.710428i \(0.748501\pi\)
\(312\) 0 0
\(313\) 13.7731 + 27.0312i 0.778500 + 1.52789i 0.847812 + 0.530298i \(0.177920\pi\)
−0.0693114 + 0.997595i \(0.522080\pi\)
\(314\) −3.76452 + 11.5860i −0.212444 + 0.653837i
\(315\) 0 0
\(316\) 5.88913 8.10569i 0.331289 0.455981i
\(317\) −11.5431 + 22.6546i −0.648325 + 1.27241i 0.299645 + 0.954051i \(0.403132\pi\)
−0.947970 + 0.318359i \(0.896868\pi\)
\(318\) 0 0
\(319\) −9.19844 + 20.7496i −0.515013 + 1.16175i
\(320\) 0.850413 + 2.06804i 0.0475395 + 0.115607i
\(321\) 0 0
\(322\) −4.57798 28.9043i −0.255121 1.61077i
\(323\) −0.540034 + 3.40964i −0.0300483 + 0.189717i
\(324\) 0 0
\(325\) −8.10109 + 24.5048i −0.449367 + 1.35928i
\(326\) 9.00694 + 12.3970i 0.498848 + 0.686606i
\(327\) 0 0
\(328\) 6.75573 + 3.44222i 0.373023 + 0.190065i
\(329\) −35.0589 −1.93286
\(330\) 0 0
\(331\) −6.21550 −0.341635 −0.170817 0.985303i \(-0.554641\pi\)
−0.170817 + 0.985303i \(0.554641\pi\)
\(332\) −4.08300 2.08039i −0.224084 0.114176i
\(333\) 0 0
\(334\) 2.39921 + 3.30223i 0.131279 + 0.180690i
\(335\) −14.0628 + 16.3803i −0.768335 + 0.894954i
\(336\) 0 0
\(337\) 4.13628 26.1154i 0.225318 1.42260i −0.572601 0.819834i \(-0.694066\pi\)
0.797919 0.602765i \(-0.205934\pi\)
\(338\) 2.13448 + 13.4766i 0.116100 + 0.733028i
\(339\) 0 0
\(340\) −3.40220 1.41945i −0.184510 0.0769807i
\(341\) −18.6247 16.7157i −1.00858 0.905207i
\(342\) 0 0
\(343\) −18.5978 + 36.5003i −1.00419 + 1.97083i
\(344\) 6.98444 9.61326i 0.376576 0.518312i
\(345\) 0 0
\(346\) −6.71307 + 20.6607i −0.360897 + 1.11073i
\(347\) −11.2271 22.0344i −0.602703 1.18287i −0.967757 0.251885i \(-0.918950\pi\)
0.365054 0.930986i \(-0.381050\pi\)
\(348\) 0 0
\(349\) −24.7447 17.9781i −1.32455 0.962345i −0.999863 0.0165246i \(-0.994740\pi\)
−0.324691 0.945820i \(-0.605260\pi\)
\(350\) 10.9030 21.1302i 0.582791 1.12945i
\(351\) 0 0
\(352\) −0.853265 + 3.20499i −0.0454792 + 0.170826i
\(353\) 1.33899 1.33899i 0.0712673 0.0712673i −0.670575 0.741842i \(-0.733952\pi\)
0.741842 + 0.670575i \(0.233952\pi\)
\(354\) 0 0
\(355\) −20.5476 4.98873i −1.09055 0.264774i
\(356\) 11.0202 8.00666i 0.584070 0.424352i
\(357\) 0 0
\(358\) 2.20687 1.12445i 0.116637 0.0594293i
\(359\) 13.2269 9.60992i 0.698091 0.507192i −0.181219 0.983443i \(-0.558004\pi\)
0.879310 + 0.476250i \(0.158004\pi\)
\(360\) 0 0
\(361\) −4.51639 13.9000i −0.237705 0.731581i
\(362\) 6.05601 6.05601i 0.318297 0.318297i
\(363\) 0 0
\(364\) 24.5469i 1.28661i
\(365\) −0.821030 + 10.1014i −0.0429747 + 0.528731i
\(366\) 0 0
\(367\) 16.8102 + 2.66247i 0.877483 + 0.138980i 0.578895 0.815402i \(-0.303484\pi\)
0.298588 + 0.954382i \(0.403484\pi\)
\(368\) −2.79381 5.48315i −0.145637 0.285829i
\(369\) 0 0
\(370\) −1.19225 + 1.93443i −0.0619820 + 0.100566i
\(371\) 3.84221 5.28834i 0.199477 0.274557i
\(372\) 0 0
\(373\) −0.462167 0.462167i −0.0239301 0.0239301i 0.695040 0.718971i \(-0.255386\pi\)
−0.718971 + 0.695040i \(0.755386\pi\)
\(374\) −2.74153 4.73092i −0.141761 0.244630i
\(375\) 0 0
\(376\) −7.01153 + 2.27818i −0.361592 + 0.117488i
\(377\) −5.52598 34.8897i −0.284602 1.79691i
\(378\) 0 0
\(379\) −3.65175 1.18653i −0.187578 0.0609478i 0.213722 0.976895i \(-0.431441\pi\)
−0.401300 + 0.915947i \(0.631441\pi\)
\(380\) −4.66871 + 0.355408i −0.239500 + 0.0182321i
\(381\) 0 0
\(382\) −24.0245 + 3.80511i −1.22920 + 0.194686i
\(383\) −32.3357 16.4759i −1.65228 0.841877i −0.996192 0.0871894i \(-0.972211\pi\)
−0.656085 0.754687i \(-0.727789\pi\)
\(384\) 0 0
\(385\) 31.8464 15.1526i 1.62304 0.772246i
\(386\) −13.1673 −0.670195
\(387\) 0 0
\(388\) 1.44089 0.228215i 0.0731502 0.0115859i
\(389\) −5.97501 8.22390i −0.302945 0.416968i 0.630220 0.776417i \(-0.282965\pi\)
−0.933165 + 0.359449i \(0.882965\pi\)
\(390\) 0 0
\(391\) 9.64889 + 3.13512i 0.487965 + 0.158550i
\(392\) −2.44263 + 15.4221i −0.123371 + 0.778935i
\(393\) 0 0
\(394\) −23.3891 + 7.59959i −1.17833 + 0.382862i
\(395\) −20.7201 + 8.52044i −1.04254 + 0.428710i
\(396\) 0 0
\(397\) −3.43344 3.43344i −0.172320 0.172320i 0.615678 0.787998i \(-0.288882\pi\)
−0.787998 + 0.615678i \(0.788882\pi\)
\(398\) 3.72854 7.31767i 0.186895 0.366802i
\(399\) 0 0
\(400\) 0.807455 4.93437i 0.0403728 0.246719i
\(401\) 4.26805 13.1357i 0.213136 0.655966i −0.786144 0.618043i \(-0.787926\pi\)
0.999281 0.0379229i \(-0.0120741\pi\)
\(402\) 0 0
\(403\) 38.4696 + 6.09298i 1.91631 + 0.303513i
\(404\) −6.84856 4.97577i −0.340729 0.247554i
\(405\) 0 0
\(406\) 32.5436i 1.61511i
\(407\) −3.14461 + 1.21289i −0.155872 + 0.0601209i
\(408\) 0 0
\(409\) 10.4918 + 32.2903i 0.518784 + 1.59665i 0.776290 + 0.630376i \(0.217099\pi\)
−0.257506 + 0.966277i \(0.582901\pi\)
\(410\) −8.82148 14.4784i −0.435662 0.715039i
\(411\) 0 0
\(412\) −5.59266 + 2.84960i −0.275530 + 0.140390i
\(413\) 3.67177 1.87086i 0.180676 0.0920590i
\(414\) 0 0
\(415\) 5.33149 + 8.75042i 0.261712 + 0.429541i
\(416\) −1.59510 4.90920i −0.0782060 0.240693i
\(417\) 0 0
\(418\) −5.83051 3.77309i −0.285180 0.184548i
\(419\) 15.6273i 0.763444i 0.924277 + 0.381722i \(0.124669\pi\)
−0.924277 + 0.381722i \(0.875331\pi\)
\(420\) 0 0
\(421\) 1.14190 + 0.829637i 0.0556527 + 0.0404340i 0.615264 0.788321i \(-0.289049\pi\)
−0.559611 + 0.828755i \(0.689049\pi\)
\(422\) 15.5484 + 2.46262i 0.756882 + 0.119878i
\(423\) 0 0
\(424\) 0.424768 1.30730i 0.0206286 0.0634882i
\(425\) 4.81096 + 6.69355i 0.233366 + 0.324685i
\(426\) 0 0
\(427\) −5.10048 + 10.0103i −0.246830 + 0.484431i
\(428\) 4.42633 + 4.42633i 0.213955 + 0.213955i
\(429\) 0 0
\(430\) −24.5738 + 10.1052i −1.18505 + 0.487314i
\(431\) 12.5006 4.06170i 0.602133 0.195645i 0.00794167 0.999968i \(-0.497472\pi\)
0.594192 + 0.804323i \(0.297472\pi\)
\(432\) 0 0
\(433\) 3.03796 19.1809i 0.145995 0.921777i −0.800564 0.599247i \(-0.795467\pi\)
0.946559 0.322530i \(-0.104533\pi\)
\(434\) −34.1265 11.0884i −1.63812 0.532259i
\(435\) 0 0
\(436\) −0.942969 1.29789i −0.0451600 0.0621575i
\(437\) 12.7273 2.01581i 0.608830 0.0964292i
\(438\) 0 0
\(439\) −6.60798 −0.315382 −0.157691 0.987489i \(-0.550405\pi\)
−0.157691 + 0.987489i \(0.550405\pi\)
\(440\) 5.38440 5.09983i 0.256691 0.243125i
\(441\) 0 0
\(442\) 7.58240 + 3.86343i 0.360658 + 0.183764i
\(443\) −14.6857 + 2.32598i −0.697737 + 0.110511i −0.495220 0.868768i \(-0.664912\pi\)
−0.202518 + 0.979279i \(0.564912\pi\)
\(444\) 0 0
\(445\) −30.3713 + 2.31203i −1.43974 + 0.109601i
\(446\) −9.91863 3.22276i −0.469661 0.152602i
\(447\) 0 0
\(448\) 0.743917 + 4.69691i 0.0351468 + 0.221908i
\(449\) 16.2299 5.27342i 0.765937 0.248868i 0.100112 0.994976i \(-0.468080\pi\)
0.665825 + 0.746108i \(0.268080\pi\)
\(450\) 0 0
\(451\) 2.58846 25.0135i 0.121886 1.17784i
\(452\) −2.28606 2.28606i −0.107527 0.107527i
\(453\) 0 0
\(454\) −2.49095 + 3.42849i −0.116906 + 0.160907i
\(455\) −28.7989 + 46.7266i −1.35011 + 2.19057i
\(456\) 0 0
\(457\) 6.59994 + 12.9531i 0.308732 + 0.605921i 0.992285 0.123980i \(-0.0395659\pi\)
−0.683552 + 0.729901i \(0.739566\pi\)
\(458\) 12.9143 + 2.04542i 0.603445 + 0.0955763i
\(459\) 0 0
\(460\) −1.11476 + 13.7153i −0.0519761 + 0.639478i
\(461\) 1.06440i 0.0495742i −0.999693 0.0247871i \(-0.992109\pi\)
0.999693 0.0247871i \(-0.00789079\pi\)
\(462\) 0 0
\(463\) −4.89966 + 4.89966i −0.227707 + 0.227707i −0.811734 0.584027i \(-0.801476\pi\)
0.584027 + 0.811734i \(0.301476\pi\)
\(464\) 2.11473 + 6.50847i 0.0981739 + 0.302148i
\(465\) 0 0
\(466\) −13.0795 + 9.50281i −0.605896 + 0.440209i
\(467\) −23.0578 + 11.7486i −1.06699 + 0.543658i −0.897110 0.441807i \(-0.854338\pi\)
−0.169879 + 0.985465i \(0.554338\pi\)
\(468\) 0 0
\(469\) −37.1445 + 26.9871i −1.71517 + 1.24615i
\(470\) 16.0197 + 3.88941i 0.738934 + 0.179405i
\(471\) 0 0
\(472\) 0.612756 0.612756i 0.0282044 0.0282044i
\(473\) −38.0837 10.1390i −1.75109 0.466194i
\(474\) 0 0
\(475\) 9.30416 + 4.80089i 0.426904 + 0.220280i
\(476\) −6.34266 4.60821i −0.290715 0.211217i
\(477\) 0 0
\(478\) −1.58710 3.11486i −0.0725923 0.142470i
\(479\) 10.6612 32.8118i 0.487123 1.49921i −0.341759 0.939788i \(-0.611023\pi\)
0.828882 0.559424i \(-0.188977\pi\)
\(480\) 0 0
\(481\) 3.08326 4.24374i 0.140584 0.193498i
\(482\) −3.72180 + 7.30444i −0.169523 + 0.332708i
\(483\) 0 0
\(484\) 10.9360 1.18491i 0.497091 0.0538596i
\(485\) −3.01058 1.25606i −0.136703 0.0570349i
\(486\) 0 0
\(487\) −5.92156 37.3872i −0.268331 1.69418i −0.642072 0.766644i \(-0.721925\pi\)
0.373741 0.927533i \(-0.378075\pi\)
\(488\) −0.369577 + 2.33342i −0.0167300 + 0.105629i
\(489\) 0 0
\(490\) 22.7433 26.4913i 1.02744 1.19675i
\(491\) 7.89501 + 10.8666i 0.356297 + 0.490401i 0.949112 0.314938i \(-0.101984\pi\)
−0.592815 + 0.805338i \(0.701984\pi\)
\(492\) 0 0
\(493\) −10.0525 5.12202i −0.452743 0.230684i
\(494\) 10.8086 0.486304
\(495\) 0 0
\(496\) −7.54559 −0.338807
\(497\) −40.0669 20.4151i −1.79725 0.915743i
\(498\) 0 0
\(499\) 13.7713 + 18.9545i 0.616487 + 0.848521i 0.997091 0.0762166i \(-0.0242841\pi\)
−0.380604 + 0.924738i \(0.624284\pi\)
\(500\) −7.32615 + 8.44556i −0.327635 + 0.377697i
\(501\) 0 0
\(502\) 1.35020 8.52480i 0.0602622 0.380480i
\(503\) −2.07894 13.1259i −0.0926952 0.585254i −0.989691 0.143216i \(-0.954256\pi\)
0.896996 0.442038i \(-0.145744\pi\)
\(504\) 0 0
\(505\) 7.19899 + 17.5066i 0.320351 + 0.779032i
\(506\) −13.6327 + 15.1896i −0.606047 + 0.675259i
\(507\) 0 0
\(508\) −6.78320 + 13.3128i −0.300956 + 0.590659i
\(509\) −15.3894 + 21.1818i −0.682125 + 0.938865i −0.999957 0.00928243i \(-0.997045\pi\)
0.317832 + 0.948147i \(0.397045\pi\)
\(510\) 0 0
\(511\) −6.66040 + 20.4986i −0.294639 + 0.906805i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) 0 0
\(514\) 9.92697 + 7.21237i 0.437860 + 0.318124i
\(515\) 13.9892 + 1.13703i 0.616437 + 0.0501034i
\(516\) 0 0
\(517\) 15.4182 + 18.9776i 0.678092 + 0.834632i
\(518\) −3.41715 + 3.41715i −0.150141 + 0.150141i
\(519\) 0 0
\(520\) −2.72321 + 11.2164i −0.119421 + 0.491870i
\(521\) −20.6875 + 15.0303i −0.906335 + 0.658491i −0.940085 0.340939i \(-0.889255\pi\)
0.0337502 + 0.999430i \(0.489255\pi\)
\(522\) 0 0
\(523\) 3.36222 1.71313i 0.147019 0.0749101i −0.378933 0.925424i \(-0.623709\pi\)
0.525953 + 0.850514i \(0.323709\pi\)
\(524\) −11.2062 + 8.14177i −0.489544 + 0.355675i
\(525\) 0 0
\(526\) −5.86661 18.0556i −0.255796 0.787260i
\(527\) 8.79629 8.79629i 0.383172 0.383172i
\(528\) 0 0
\(529\) 14.8703i 0.646536i
\(530\) −2.34233 + 1.99019i −0.101744 + 0.0864481i
\(531\) 0 0
\(532\) −9.83511 1.55773i −0.426406 0.0675361i
\(533\) 17.7682 + 34.8720i 0.769625 + 1.51047i
\(534\) 0 0
\(535\) −3.23274 13.6189i −0.139763 0.588795i
\(536\) −5.67497 + 7.81093i −0.245121 + 0.337381i
\(537\) 0 0
\(538\) −18.6507 18.6507i −0.804088 0.804088i
\(539\) 50.6380 10.8484i 2.18113 0.467273i
\(540\) 0 0
\(541\) −30.8586 + 10.0266i −1.32672 + 0.431076i −0.884796 0.465978i \(-0.845702\pi\)
−0.441920 + 0.897055i \(0.645702\pi\)
\(542\) −4.67864 29.5398i −0.200965 1.26884i
\(543\) 0 0
\(544\) −1.56793 0.509453i −0.0672246 0.0218426i
\(545\) 0.272295 + 3.57692i 0.0116638 + 0.153218i
\(546\) 0 0
\(547\) 37.9366 6.00856i 1.62205 0.256908i 0.721743 0.692161i \(-0.243341\pi\)
0.900308 + 0.435253i \(0.143341\pi\)
\(548\) 15.3678 + 7.83027i 0.656479 + 0.334493i
\(549\) 0 0
\(550\) −16.2328 + 3.39075i −0.692168 + 0.144582i
\(551\) −14.3298 −0.610469
\(552\) 0 0
\(553\) −47.0592 + 7.45345i −2.00116 + 0.316953i
\(554\) 3.03582 + 4.17845i 0.128980 + 0.177525i
\(555\) 0 0
\(556\) −5.00187 1.62521i −0.212127 0.0689241i
\(557\) 4.83457 30.5243i 0.204847 1.29335i −0.644126 0.764919i \(-0.722779\pi\)
0.848974 0.528435i \(-0.177221\pi\)
\(558\) 0 0
\(559\) 58.3343 18.9539i 2.46728 0.801667i
\(560\) 4.09442 9.81364i 0.173021 0.414702i
\(561\) 0 0
\(562\) 8.42655 + 8.42655i 0.355453 + 0.355453i
\(563\) 0.974370 1.91231i 0.0410648 0.0805942i −0.869562 0.493823i \(-0.835599\pi\)
0.910627 + 0.413229i \(0.135599\pi\)
\(564\) 0 0
\(565\) 1.66961 + 7.03371i 0.0702409 + 0.295911i
\(566\) 4.10581 12.6364i 0.172580 0.531147i
\(567\) 0 0
\(568\) −9.33970 1.47926i −0.391885 0.0620685i
\(569\) 8.59298 + 6.24316i 0.360236 + 0.261727i 0.753151 0.657848i \(-0.228533\pi\)
−0.392914 + 0.919575i \(0.628533\pi\)
\(570\) 0 0
\(571\) 34.9236i 1.46151i 0.682642 + 0.730753i \(0.260831\pi\)
−0.682642 + 0.730753i \(0.739169\pi\)
\(572\) −13.2873 + 10.7952i −0.555571 + 0.451371i
\(573\) 0 0
\(574\) −11.1421 34.2918i −0.465061 1.43131i
\(575\) 18.2131 24.8000i 0.759538 1.03423i
\(576\) 0 0
\(577\) 6.70184 3.41476i 0.279001 0.142158i −0.308891 0.951097i \(-0.599958\pi\)
0.587892 + 0.808939i \(0.299958\pi\)
\(578\) −12.7254 + 6.48391i −0.529306 + 0.269695i
\(579\) 0 0
\(580\) 3.61035 14.8703i 0.149912 0.617457i
\(581\) 6.73400 + 20.7251i 0.279373 + 0.859823i
\(582\) 0 0
\(583\) −4.55233 + 0.245902i −0.188538 + 0.0101842i
\(584\) 4.53237i 0.187551i
\(585\) 0 0
\(586\) −11.7191 8.51440i −0.484110 0.351727i
\(587\) −25.9408 4.10863i −1.07069 0.169581i −0.403884 0.914810i \(-0.632340\pi\)
−0.666809 + 0.745229i \(0.732340\pi\)
\(588\) 0 0
\(589\) 4.88250 15.0268i 0.201180 0.619168i
\(590\) −1.88532 + 0.447521i −0.0776173 + 0.0184242i
\(591\) 0 0
\(592\) −0.461353 + 0.905456i −0.0189615 + 0.0372140i
\(593\) 11.5459 + 11.5459i 0.474133 + 0.474133i 0.903249 0.429116i \(-0.141175\pi\)
−0.429116 + 0.903249i \(0.641175\pi\)
\(594\) 0 0
\(595\) 6.66720 + 16.2134i 0.273329 + 0.664683i
\(596\) −1.91554 + 0.622398i −0.0784637 + 0.0254944i
\(597\) 0 0
\(598\) 4.96920 31.3743i 0.203206 1.28299i
\(599\) −18.3450 5.96065i −0.749556 0.243546i −0.0907661 0.995872i \(-0.528932\pi\)
−0.658790 + 0.752327i \(0.728932\pi\)
\(600\) 0 0
\(601\) −19.1210 26.3177i −0.779960 1.07352i −0.995286 0.0969810i \(-0.969081\pi\)
0.215326 0.976542i \(-0.430919\pi\)
\(602\) −55.8117 + 8.83971i −2.27472 + 0.360280i
\(603\) 0 0
\(604\) 19.4540 0.791573
\(605\) −22.2075 10.5748i −0.902864 0.429926i
\(606\) 0 0
\(607\) 1.69934 + 0.865858i 0.0689742 + 0.0351441i 0.488137 0.872767i \(-0.337676\pi\)
−0.419163 + 0.907911i \(0.637676\pi\)
\(608\) −2.06817 + 0.327567i −0.0838755 + 0.0132846i
\(609\) 0 0
\(610\) 3.44113 4.00821i 0.139327 0.162288i
\(611\) −36.1924 11.7596i −1.46419 0.475743i
\(612\) 0 0
\(613\) −6.67136 42.1213i −0.269454 1.70126i −0.636677 0.771131i \(-0.719691\pi\)
0.367223 0.930133i \(-0.380309\pi\)
\(614\) −6.42695 + 2.08824i −0.259371 + 0.0842746i
\(615\) 0 0
\(616\) 13.6463 7.90794i 0.549827 0.318620i
\(617\) 9.44671 + 9.44671i 0.380310 + 0.380310i 0.871214 0.490904i \(-0.163333\pi\)
−0.490904 + 0.871214i \(0.663333\pi\)
\(618\) 0 0
\(619\) −1.06348 + 1.46376i −0.0427449 + 0.0588333i −0.829854 0.557980i \(-0.811577\pi\)
0.787110 + 0.616813i \(0.211577\pi\)
\(620\) 14.3635 + 8.85264i 0.576852 + 0.355531i
\(621\) 0 0
\(622\) 2.43040 + 4.76993i 0.0974502 + 0.191257i
\(623\) −63.9801 10.1334i −2.56331 0.405988i
\(624\) 0 0
\(625\) 23.8543 7.48147i 0.954172 0.299259i
\(626\) 30.3378i 1.21254i
\(627\) 0 0
\(628\) 8.61416 8.61416i 0.343742 0.343742i
\(629\) −0.517715 1.59336i −0.0206426 0.0635315i
\(630\) 0 0
\(631\) 2.40387 1.74651i 0.0956964 0.0695275i −0.538908 0.842365i \(-0.681163\pi\)
0.634605 + 0.772837i \(0.281163\pi\)
\(632\) −8.92716 + 4.54861i −0.355103 + 0.180934i
\(633\) 0 0
\(634\) 20.5699 14.9449i 0.816937 0.593540i
\(635\) 28.5311 17.3835i 1.13222 0.689844i
\(636\) 0 0
\(637\) −56.9920 + 56.9920i −2.25810 + 2.25810i
\(638\) 17.6160 14.3120i 0.697423 0.566617i
\(639\) 0 0
\(640\) 0.181148 2.22872i 0.00716050 0.0880978i
\(641\) 21.7906 + 15.8318i 0.860678 + 0.625319i 0.928069 0.372407i \(-0.121468\pi\)
−0.0673914 + 0.997727i \(0.521468\pi\)
\(642\) 0 0
\(643\) 3.86084 + 7.57733i 0.152257 + 0.298821i 0.954518 0.298152i \(-0.0963701\pi\)
−0.802262 + 0.596972i \(0.796370\pi\)
\(644\) −9.04324 + 27.8322i −0.356354 + 1.09674i
\(645\) 0 0
\(646\) 2.02912 2.79284i 0.0798346 0.109883i
\(647\) −16.7208 + 32.8165i −0.657364 + 1.29015i 0.285949 + 0.958245i \(0.407691\pi\)
−0.943313 + 0.331905i \(0.892309\pi\)
\(648\) 0 0
\(649\) −2.62747 1.16478i −0.103137 0.0457216i
\(650\) 18.3431 18.1561i 0.719475 0.712142i
\(651\) 0 0
\(652\) −2.39713 15.1349i −0.0938787 0.592727i
\(653\) 6.41284 40.4891i 0.250954 1.58446i −0.464354 0.885650i \(-0.653713\pi\)
0.715307 0.698810i \(-0.246287\pi\)
\(654\) 0 0
\(655\) 30.8838 2.35104i 1.20673 0.0918628i
\(656\) −4.45667 6.13408i −0.174004 0.239495i
\(657\) 0 0
\(658\) 31.2377 + 15.9164i 1.21777 + 0.620487i
\(659\) 31.1223 1.21235 0.606176 0.795331i \(-0.292703\pi\)
0.606176 + 0.795331i \(0.292703\pi\)
\(660\) 0 0
\(661\) −14.6020 −0.567950 −0.283975 0.958832i \(-0.591653\pi\)
−0.283975 + 0.958832i \(0.591653\pi\)
\(662\) 5.53805 + 2.82178i 0.215242 + 0.109671i
\(663\) 0 0
\(664\) 2.69350 + 3.70728i 0.104528 + 0.143871i
\(665\) 16.8942 + 14.5040i 0.655129 + 0.562441i
\(666\) 0 0
\(667\) −6.58802 + 41.5951i −0.255089 + 1.61057i
\(668\) −0.638531 4.03152i −0.0247055 0.155984i
\(669\) 0 0
\(670\) 19.9666 8.21060i 0.771377 0.317203i
\(671\) 7.66169 1.64139i 0.295776 0.0633653i
\(672\) 0 0
\(673\) 17.5210 34.3870i 0.675387 1.32552i −0.257824 0.966192i \(-0.583006\pi\)
0.933211 0.359329i \(-0.116994\pi\)
\(674\) −15.5416 + 21.3912i −0.598641 + 0.823958i
\(675\) 0 0
\(676\) 4.21640 12.9767i 0.162169 0.499105i
\(677\) −8.95622 17.5776i −0.344215 0.675561i 0.652390 0.757883i \(-0.273766\pi\)
−0.996606 + 0.0823224i \(0.973766\pi\)
\(678\) 0 0
\(679\) −5.61257 4.07777i −0.215391 0.156490i
\(680\) 2.38696 + 2.80931i 0.0915358 + 0.107732i
\(681\) 0 0
\(682\) 9.00595 + 23.3493i 0.344856 + 0.894089i
\(683\) 4.29467 4.29467i 0.164331 0.164331i −0.620151 0.784482i \(-0.712929\pi\)
0.784482 + 0.620151i \(0.212929\pi\)
\(684\) 0 0
\(685\) −20.0669 32.9352i −0.766717 1.25839i
\(686\) 33.1416 24.0788i 1.26535 0.919332i
\(687\) 0 0
\(688\) −10.5875 + 5.39461i −0.403645 + 0.205668i
\(689\) 5.74026 4.17054i 0.218687 0.158885i
\(690\) 0 0
\(691\) 7.82815 + 24.0926i 0.297797 + 0.916524i 0.982268 + 0.187484i \(0.0600333\pi\)
−0.684471 + 0.729040i \(0.739967\pi\)
\(692\) 15.3612 15.3612i 0.583944 0.583944i
\(693\) 0 0
\(694\) 24.7298i 0.938732i
\(695\) 7.61465 + 8.96198i 0.288840 + 0.339947i
\(696\) 0 0
\(697\) 12.3462 + 1.95544i 0.467645 + 0.0740678i
\(698\) 13.8858 + 27.2525i 0.525586 + 1.03152i
\(699\) 0 0
\(700\) −19.3076 + 13.8772i −0.729757 + 0.524510i
\(701\) −2.80274 + 3.85764i −0.105858 + 0.145701i −0.858659 0.512547i \(-0.828702\pi\)
0.752801 + 0.658248i \(0.228702\pi\)
\(702\) 0 0
\(703\) −1.50466 1.50466i −0.0567494 0.0567494i
\(704\) 2.21530 2.46829i 0.0834922 0.0930272i
\(705\) 0 0
\(706\) −1.80094 + 0.585161i −0.0677793 + 0.0220228i
\(707\) 6.29748 + 39.7607i 0.236841 + 1.49535i
\(708\) 0 0
\(709\) 23.3542 + 7.58823i 0.877085 + 0.284982i 0.712746 0.701422i \(-0.247451\pi\)
0.164338 + 0.986404i \(0.447451\pi\)
\(710\) 16.0432 + 13.7734i 0.602091 + 0.516907i
\(711\) 0 0
\(712\) −13.4540 + 2.13091i −0.504211 + 0.0798592i
\(713\) −41.3736 21.0809i −1.54945 0.789486i
\(714\) 0 0
\(715\) 37.9585 4.96040i 1.41957 0.185508i
\(716\) −2.47682 −0.0925633
\(717\) 0 0
\(718\) −16.1481 + 2.55761i −0.602641 + 0.0954490i
\(719\) −18.9442 26.0744i −0.706498 0.972411i −0.999865 0.0164110i \(-0.994776\pi\)
0.293368 0.956000i \(-0.405224\pi\)
\(720\) 0 0
\(721\) 28.3881 + 9.22384i 1.05723 + 0.343514i
\(722\) −2.28635 + 14.4354i −0.0850890 + 0.537231i
\(723\) 0 0
\(724\) −8.14531 + 2.64657i −0.302718 + 0.0983591i
\(725\) −24.3187 + 24.0709i −0.903175 + 0.893970i
\(726\) 0 0
\(727\) −7.06662 7.06662i −0.262087 0.262087i 0.563815 0.825901i \(-0.309333\pi\)
−0.825901 + 0.563815i \(0.809333\pi\)
\(728\) −11.1441 + 21.8714i −0.413026 + 0.810609i
\(729\) 0 0
\(730\) 5.31748 8.62766i 0.196809 0.319324i
\(731\) 6.05365 18.6312i 0.223902 0.689100i
\(732\) 0 0
\(733\) 0.681210 + 0.107893i 0.0251610 + 0.00398512i 0.169002 0.985616i \(-0.445945\pi\)
−0.143841 + 0.989601i \(0.545945\pi\)
\(734\) −13.7692 10.0039i −0.508231 0.369252i
\(735\) 0 0
\(736\) 6.15389i 0.226835i
\(737\) 30.9436 + 8.23813i 1.13982 + 0.303455i
\(738\) 0 0
\(739\) −9.33968 28.7446i −0.343566 1.05739i −0.962347 0.271823i \(-0.912373\pi\)
0.618782 0.785563i \(-0.287627\pi\)
\(740\) 1.94051 1.18232i 0.0713347 0.0434631i
\(741\) 0 0
\(742\) −5.82429 + 2.96762i −0.213816 + 0.108945i
\(743\) 10.2773 5.23656i 0.377039 0.192111i −0.255193 0.966890i \(-0.582139\pi\)
0.632232 + 0.774779i \(0.282139\pi\)
\(744\) 0 0
\(745\) 4.37657 + 1.06258i 0.160345 + 0.0389300i
\(746\) 0.201975 + 0.621614i 0.00739481 + 0.0227589i
\(747\) 0 0
\(748\) 0.294926 + 5.45991i 0.0107836 + 0.199634i
\(749\) 29.7681i 1.08770i
\(750\) 0 0
\(751\) −21.3255 15.4939i −0.778178 0.565379i 0.126254 0.991998i \(-0.459705\pi\)
−0.904432 + 0.426619i \(0.859705\pi\)
\(752\) 7.28159 + 1.15329i 0.265532 + 0.0420562i
\(753\) 0 0
\(754\) −10.9159 + 33.5957i −0.397533 + 1.22348i
\(755\) −37.0320 22.8239i −1.34773 0.830646i
\(756\) 0 0
\(757\) −20.2523 + 39.7474i −0.736083 + 1.44464i 0.153633 + 0.988128i \(0.450903\pi\)
−0.889715 + 0.456516i \(0.849097\pi\)
\(758\) 2.71506 + 2.71506i 0.0986156 + 0.0986156i
\(759\) 0 0
\(760\) 4.32121 + 1.80288i 0.156747 + 0.0653974i
\(761\) 29.4770 9.57767i 1.06854 0.347190i 0.278622 0.960401i \(-0.410122\pi\)
0.789920 + 0.613210i \(0.210122\pi\)
\(762\) 0 0
\(763\) −1.19345 + 7.53514i −0.0432057 + 0.272790i
\(764\) 23.1335 + 7.51653i 0.836940 + 0.271938i
\(765\) 0 0
\(766\) 21.3314 + 29.3602i 0.770736 + 1.06083i
\(767\) 4.41801 0.699744i 0.159525 0.0252663i
\(768\) 0 0
\(769\) 32.4773 1.17116 0.585581 0.810614i \(-0.300866\pi\)
0.585581 + 0.810614i \(0.300866\pi\)
\(770\) −35.2544 0.956913i −1.27048 0.0344847i
\(771\) 0 0
\(772\) 11.7321 + 5.97781i 0.422248 + 0.215146i
\(773\) 46.5712 7.37615i 1.67505 0.265302i 0.754606 0.656178i \(-0.227828\pi\)
0.920443 + 0.390876i \(0.127828\pi\)
\(774\) 0 0
\(775\) −16.9557 33.7031i −0.609068 1.21065i
\(776\) −1.38745 0.450810i −0.0498066 0.0161832i
\(777\) 0 0
\(778\) 1.59020 + 10.0401i 0.0570115 + 0.359957i
\(779\) 15.0996 4.90615i 0.540999 0.175781i
\(780\) 0 0
\(781\) 6.56982 + 30.6666i 0.235087 + 1.09734i
\(782\) −7.17391 7.17391i −0.256539 0.256539i
\(783\) 0 0
\(784\) 9.17790 12.6323i 0.327782 0.451153i
\(785\) −26.5039 + 6.29128i −0.945965 + 0.224546i
\(786\) 0 0
\(787\) −3.44617 6.76350i −0.122843 0.241093i 0.821393 0.570363i \(-0.193197\pi\)
−0.944236 + 0.329270i \(0.893197\pi\)
\(788\) 24.2900 + 3.84716i 0.865296 + 0.137049i
\(789\) 0 0
\(790\) 22.3299 + 1.81495i 0.794464 + 0.0645732i
\(791\) 15.3743i 0.546647i
\(792\) 0 0
\(793\) −8.62306 + 8.62306i −0.306214 + 0.306214i
\(794\) 1.50047 + 4.61797i 0.0532497 + 0.163886i
\(795\) 0 0
\(796\) −6.64430 + 4.82737i −0.235501 + 0.171102i
\(797\) 11.0724 5.64165i 0.392203 0.199838i −0.246757 0.969077i \(-0.579365\pi\)
0.638960 + 0.769240i \(0.279365\pi\)
\(798\) 0 0
\(799\) −9.83299 + 7.14409i −0.347866 + 0.252740i
\(800\) −2.95961 + 4.02998i −0.104638 + 0.142481i
\(801\) 0 0
\(802\) −9.76634 + 9.76634i −0.344862 + 0.344862i
\(803\) 14.0251 5.40956i 0.494935 0.190899i
\(804\) 0 0
\(805\) 49.8678 42.3707i 1.75761 1.49337i
\(806\) −31.5105 22.8937i −1.10991 0.806396i
\(807\) 0 0
\(808\) 3.84316 + 7.54263i 0.135202 + 0.265349i
\(809\) −12.2225 + 37.6170i −0.429721 + 1.32254i 0.468680 + 0.883368i \(0.344730\pi\)
−0.898401 + 0.439177i \(0.855270\pi\)
\(810\) 0 0
\(811\) 11.4987 15.8266i 0.403775 0.555749i −0.557911 0.829900i \(-0.688397\pi\)
0.961686 + 0.274152i \(0.0883971\pi\)
\(812\) 14.7745 28.9965i 0.518482 1.01758i
\(813\) 0 0
\(814\) 3.35251 + 0.346926i 0.117505 + 0.0121597i
\(815\) −13.1935 + 31.6225i −0.462147 + 1.10769i
\(816\) 0 0
\(817\) −3.89236 24.5754i −0.136176 0.859783i
\(818\) 5.31127 33.5340i 0.185704 1.17249i
\(819\) 0 0
\(820\) 1.28692 + 16.9053i 0.0449412 + 0.590357i
\(821\) 7.06218 + 9.72026i 0.246472 + 0.339239i 0.914272 0.405102i \(-0.132764\pi\)
−0.667800 + 0.744341i \(0.732764\pi\)
\(822\) 0 0
\(823\) −15.0651 7.67607i −0.525137 0.267571i 0.171262 0.985226i \(-0.445216\pi\)
−0.696399 + 0.717655i \(0.745216\pi\)
\(824\) 6.27679 0.218662
\(825\) 0 0
\(826\) −4.12092 −0.143385
\(827\) 12.4573 + 6.34731i 0.433183 + 0.220718i 0.656964 0.753922i \(-0.271840\pi\)
−0.223781 + 0.974639i \(0.571840\pi\)
\(828\) 0 0
\(829\) −12.7391 17.5339i −0.442448 0.608977i 0.528306 0.849054i \(-0.322827\pi\)
−0.970754 + 0.240077i \(0.922827\pi\)
\(830\) −0.777783 10.2171i −0.0269973 0.354641i
\(831\) 0 0
\(832\) −0.807489 + 5.09829i −0.0279946 + 0.176751i
\(833\) 4.02697 + 25.4253i 0.139526 + 0.880934i
\(834\) 0 0
\(835\) −3.51438 + 8.42340i −0.121620 + 0.291504i
\(836\) 3.48207 + 6.00884i 0.120430 + 0.207820i
\(837\) 0 0
\(838\) 7.09465 13.9240i 0.245081 0.480998i
\(839\) −9.09171 + 12.5137i −0.313881 + 0.432020i −0.936587 0.350436i \(-0.886033\pi\)
0.622706 + 0.782456i \(0.286033\pi\)
\(840\) 0 0
\(841\) 5.51048 16.9595i 0.190017 0.584811i
\(842\) −0.640791 1.25762i −0.0220831 0.0433405i
\(843\) 0 0
\(844\) −12.7357 9.25302i −0.438380 0.318502i
\(845\) −23.2508 + 19.7553i −0.799851 + 0.679602i
\(846\) 0 0
\(847\) −40.7580 32.7892i −1.40046 1.12665i
\(848\) −0.971974 + 0.971974i −0.0333777 + 0.0333777i
\(849\) 0 0
\(850\) −1.24779 8.14813i −0.0427989 0.279479i
\(851\) −5.05934 + 3.67583i −0.173432 + 0.126006i
\(852\) 0 0
\(853\) −3.89903 + 1.98665i −0.133500 + 0.0680218i −0.519465 0.854492i \(-0.673869\pi\)
0.385965 + 0.922514i \(0.373869\pi\)
\(854\) 9.08913 6.60364i 0.311024 0.225972i
\(855\) 0 0
\(856\) −1.93438 5.95341i −0.0661157 0.203483i
\(857\) −1.64475 + 1.64475i −0.0561834 + 0.0561834i −0.734640 0.678457i \(-0.762649\pi\)
0.678457 + 0.734640i \(0.262649\pi\)
\(858\) 0 0
\(859\) 8.87969i 0.302971i 0.988459 + 0.151486i \(0.0484057\pi\)
−0.988459 + 0.151486i \(0.951594\pi\)
\(860\) 26.4831 + 2.15252i 0.903065 + 0.0734002i
\(861\) 0 0
\(862\) −12.9821 2.05616i −0.442172 0.0700332i
\(863\) −4.09217 8.03134i −0.139299 0.273390i 0.810809 0.585311i \(-0.199028\pi\)
−0.950108 + 0.311921i \(0.899028\pi\)
\(864\) 0 0
\(865\) −47.2630 + 11.2189i −1.60699 + 0.381454i
\(866\) −11.4148 + 15.7111i −0.387891 + 0.533886i
\(867\) 0 0
\(868\) 25.3729 + 25.3729i 0.861213 + 0.861213i
\(869\) 24.7303 + 22.1955i 0.838916 + 0.752930i
\(870\) 0 0
\(871\) −47.3975 + 15.4004i −1.60600 + 0.521822i
\(872\) 0.250964 + 1.58452i 0.00849871 + 0.0536588i
\(873\) 0 0
\(874\) −12.2553 3.98198i −0.414541 0.134692i
\(875\) 53.0342 3.76416i 1.79288 0.127252i
\(876\) 0 0
\(877\) 5.34492 0.846552i 0.180485 0.0285860i −0.0655376 0.997850i \(-0.520876\pi\)
0.246023 + 0.969264i \(0.420876\pi\)
\(878\) 5.88775 + 2.99996i 0.198702 + 0.101244i
\(879\) 0 0
\(880\) −7.11281 + 2.09951i −0.239773 + 0.0707745i
\(881\) 38.3930 1.29349 0.646747 0.762704i \(-0.276129\pi\)
0.646747 + 0.762704i \(0.276129\pi\)
\(882\) 0 0
\(883\) 8.11968 1.28603i 0.273249 0.0432784i −0.0183061 0.999832i \(-0.505827\pi\)
0.291555 + 0.956554i \(0.405827\pi\)
\(884\) −5.00201 6.88468i −0.168236 0.231557i
\(885\) 0 0
\(886\) 14.1410 + 4.59469i 0.475076 + 0.154362i
\(887\) −7.14889 + 45.1363i −0.240036 + 1.51553i 0.513481 + 0.858101i \(0.328356\pi\)
−0.753517 + 0.657428i \(0.771644\pi\)
\(888\) 0 0
\(889\) 67.5750 21.9565i 2.26639 0.736396i
\(890\) 28.1106 + 11.7282i 0.942271 + 0.393131i
\(891\) 0 0
\(892\) 7.37447 + 7.37447i 0.246915 + 0.246915i
\(893\) −7.00842 + 13.7548i −0.234528 + 0.460287i
\(894\) 0 0
\(895\) 4.71479 + 2.90586i 0.157598 + 0.0971323i
\(896\) 1.46952 4.52271i 0.0490931 0.151093i
\(897\) 0 0
\(898\) −16.8550 2.66958i −0.562460 0.0890849i
\(899\) 41.7757 + 30.3518i 1.39330 + 1.01229i
\(900\) 0 0
\(901\) 2.26616i 0.0754969i
\(902\) −13.6622 + 21.1121i −0.454903 + 0.702955i
\(903\) 0 0
\(904\) 0.999045 + 3.07474i 0.0332277 + 0.102264i
\(905\) 18.6101 + 4.51833i 0.618622 + 0.150194i
\(906\) 0 0
\(907\) −18.8390 + 9.59897i −0.625540 + 0.318728i −0.737870 0.674942i \(-0.764168\pi\)
0.112331 + 0.993671i \(0.464168\pi\)
\(908\) 3.77595 1.92394i 0.125309 0.0638484i
\(909\) 0 0
\(910\) 46.8734 28.5592i 1.55384 0.946729i
\(911\) 5.76951 + 17.7567i 0.191153 + 0.588307i 1.00000 0.000288399i \(9.18004e-5\pi\)
−0.808847 + 0.588019i \(0.799908\pi\)
\(912\) 0 0
\(913\) 8.25712 12.7596i 0.273271 0.422282i
\(914\) 14.5376i 0.480862i
\(915\) 0 0
\(916\) −10.5781 7.68545i −0.349511 0.253934i
\(917\) 65.0597 + 10.3044i 2.14846 + 0.340283i
\(918\) 0 0
\(919\) 3.04475 9.37076i 0.100437 0.309113i −0.888196 0.459466i \(-0.848041\pi\)
0.988632 + 0.150353i \(0.0480409\pi\)
\(920\) 7.21987 11.7143i 0.238032 0.386209i
\(921\) 0 0
\(922\) −0.483229 + 0.948390i −0.0159143 + 0.0312336i
\(923\) −34.5145 34.5145i −1.13606 1.13606i
\(924\) 0 0
\(925\) −5.08102 0.0260237i −0.167063 0.000855655i
\(926\) 6.59003 2.14123i 0.216562 0.0703652i
\(927\) 0 0
\(928\) 1.07055 6.75916i 0.0351424 0.221880i
\(929\) 16.0572 + 5.21732i 0.526821 + 0.171175i 0.560339 0.828264i \(-0.310671\pi\)
−0.0335176 + 0.999438i \(0.510671\pi\)
\(930\) 0 0
\(931\) 19.2181 + 26.4514i 0.629848 + 0.866911i
\(932\) 15.9681 2.52910i 0.523053 0.0828434i
\(933\) 0 0
\(934\) 25.8784 0.846767
\(935\) 5.84427 10.7393i 0.191128 0.351212i
\(936\) 0 0
\(937\) 19.9944 + 10.1876i 0.653188 + 0.332816i 0.748987 0.662585i \(-0.230541\pi\)
−0.0957989 + 0.995401i \(0.530541\pi\)
\(938\) 45.3479 7.18240i 1.48066 0.234514i
\(939\) 0 0
\(940\) −12.5079 10.7383i −0.407963 0.350244i
\(941\) 11.4644 + 3.72500i 0.373728 + 0.121431i 0.489857 0.871803i \(-0.337049\pi\)
−0.116130 + 0.993234i \(0.537049\pi\)
\(942\) 0 0
\(943\) −7.29917 46.0852i −0.237694 1.50074i
\(944\) −0.824155 + 0.267784i −0.0268239 + 0.00871563i
\(945\) 0 0
\(946\) 29.3298 + 26.3236i 0.953595 + 0.855854i
\(947\) 7.00199 + 7.00199i 0.227534 + 0.227534i 0.811662 0.584128i \(-0.198563\pi\)
−0.584128 + 0.811662i \(0.698563\pi\)
\(948\) 0 0
\(949\) −13.7515 + 18.9273i −0.446391 + 0.614405i
\(950\) −6.11051 8.50163i −0.198251 0.275829i
\(951\) 0 0
\(952\) 3.55927 + 6.98546i 0.115357 + 0.226400i
\(953\) 7.86508 + 1.24571i 0.254775 + 0.0403524i 0.282515 0.959263i \(-0.408831\pi\)
−0.0277404 + 0.999615i \(0.508831\pi\)
\(954\) 0 0
\(955\) −35.2175 41.4489i −1.13961 1.34125i
\(956\) 3.49589i 0.113065i
\(957\) 0 0
\(958\) −24.3955 + 24.3955i −0.788182 + 0.788182i
\(959\) −25.3457 78.0061i −0.818456 2.51895i
\(960\) 0 0
\(961\) −20.9826 + 15.2447i −0.676857 + 0.491765i
\(962\) −4.67382 + 2.38143i −0.150690 + 0.0767803i
\(963\) 0 0
\(964\) 6.63230 4.81865i 0.213612 0.155198i
\(965\) −15.3195 25.1435i −0.493153 0.809397i
\(966\) 0 0
\(967\) 13.9164 13.9164i 0.447521 0.447521i −0.447008 0.894530i \(-0.647511\pi\)
0.894530 + 0.447008i \(0.147511\pi\)
\(968\) −10.2820 3.90907i −0.330475 0.125642i
\(969\) 0 0
\(970\) 2.11220 + 2.48593i 0.0678187 + 0.0798185i
\(971\) −21.8763 15.8940i −0.702043 0.510064i 0.178554 0.983930i \(-0.442858\pi\)
−0.880597 + 0.473866i \(0.842858\pi\)
\(972\) 0 0
\(973\) 11.3544 + 22.2843i 0.364006 + 0.714402i
\(974\) −11.6973 + 36.0006i −0.374806 + 1.15353i
\(975\) 0 0
\(976\) 1.38864 1.91130i 0.0444494 0.0611794i
\(977\) 22.5857 44.3269i 0.722580 1.41814i −0.178255 0.983984i \(-0.557045\pi\)
0.900836 0.434160i \(-0.142955\pi\)
\(978\) 0 0
\(979\) 22.6518 + 39.0892i 0.723956 + 1.24930i
\(980\) −32.2912 + 13.2787i −1.03150 + 0.424171i
\(981\) 0 0
\(982\) −2.10120 13.2664i −0.0670519 0.423349i
\(983\) −6.21533 + 39.2421i −0.198238 + 1.25163i 0.665005 + 0.746839i \(0.268429\pi\)
−0.863243 + 0.504788i \(0.831571\pi\)
\(984\) 0 0
\(985\) −41.7240 35.8209i −1.32944 1.14135i
\(986\) 6.63152 + 9.12750i 0.211191 + 0.290679i
\(987\) 0 0
\(988\) −9.63057 4.90702i −0.306389 0.156113i
\(989\) −73.1245 −2.32522
\(990\) 0 0
\(991\) −30.6185 −0.972628 −0.486314 0.873784i \(-0.661659\pi\)
−0.486314 + 0.873784i \(0.661659\pi\)
\(992\) 6.72317 + 3.42562i 0.213461 + 0.108764i
\(993\) 0 0
\(994\) 26.4316 + 36.3800i 0.838360 + 1.15390i
\(995\) 18.3114 1.39397i 0.580511 0.0441917i
\(996\) 0 0
\(997\) 2.95332 18.6466i 0.0935327 0.590542i −0.895753 0.444552i \(-0.853363\pi\)
0.989286 0.145991i \(-0.0466370\pi\)
\(998\) −3.66512 23.1406i −0.116017 0.732504i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.d.127.3 96
3.2 odd 2 inner 990.2.bh.d.127.10 yes 96
5.3 odd 4 inner 990.2.bh.d.523.5 yes 96
11.2 odd 10 inner 990.2.bh.d.937.5 yes 96
15.8 even 4 inner 990.2.bh.d.523.8 yes 96
33.2 even 10 inner 990.2.bh.d.937.8 yes 96
55.13 even 20 inner 990.2.bh.d.343.3 yes 96
165.68 odd 20 inner 990.2.bh.d.343.10 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.bh.d.127.3 96 1.1 even 1 trivial
990.2.bh.d.127.10 yes 96 3.2 odd 2 inner
990.2.bh.d.343.3 yes 96 55.13 even 20 inner
990.2.bh.d.343.10 yes 96 165.68 odd 20 inner
990.2.bh.d.523.5 yes 96 5.3 odd 4 inner
990.2.bh.d.523.8 yes 96 15.8 even 4 inner
990.2.bh.d.937.5 yes 96 11.2 odd 10 inner
990.2.bh.d.937.8 yes 96 33.2 even 10 inner