Properties

Label 99.8.f.b.82.3
Level $99$
Weight $8$
Character 99.82
Analytic conductor $30.926$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,8,Mod(37,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9261175229\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.3
Character \(\chi\) \(=\) 99.82
Dual form 99.8.f.b.64.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.813458 - 2.50357i) q^{2} +(97.9481 - 71.1634i) q^{4} +(-78.7070 + 242.235i) q^{5} +(-1135.08 + 824.681i) q^{7} +(-530.435 - 385.384i) q^{8} +670.476 q^{10} +(3175.50 + 3066.49i) q^{11} +(-4283.83 - 13184.3i) q^{13} +(2987.98 + 2170.89i) q^{14} +(4255.49 - 13097.1i) q^{16} +(5268.59 - 16215.1i) q^{17} +(-12568.3 - 9131.40i) q^{19} +(9529.09 + 29327.5i) q^{20} +(5094.03 - 10444.5i) q^{22} +58901.9 q^{23} +(10721.4 + 7789.53i) q^{25} +(-29523.0 + 21449.7i) q^{26} +(-52491.4 + 161552. i) q^{28} +(24930.5 - 18113.0i) q^{29} +(-60252.9 - 185439. i) q^{31} -120175. q^{32} -44881.3 q^{34} +(-110428. - 339864. i) q^{35} +(345677. - 251149. i) q^{37} +(-12637.3 + 38893.5i) q^{38} +(135102. - 98157.7i) q^{40} +(-637965. - 463509. i) q^{41} +20485.0 q^{43} +(529256. + 74377.5i) q^{44} +(-47914.2 - 147465. i) q^{46} +(461937. + 335617. i) q^{47} +(353811. - 1.08892e6i) q^{49} +(10780.2 - 33178.1i) q^{50} +(-1.35783e6 - 986521. i) q^{52} +(-478764. - 1.47349e6i) q^{53} +(-992746. + 527863. i) q^{55} +919904. q^{56} +(-65627.0 - 47680.8i) q^{58} +(-1.41091e6 + 1.02508e6i) q^{59} +(565284. - 1.73976e6i) q^{61} +(-415247. + 301694. i) q^{62} +(-446946. - 1.37556e6i) q^{64} +3.53086e6 q^{65} +176715. q^{67} +(-637871. - 1.96317e6i) q^{68} +(-761042. + 552929. i) q^{70} +(-1.10490e6 + 3.40052e6i) q^{71} +(586597. - 426188. i) q^{73} +(-909961. - 661125. i) q^{74} -1.88086e6 q^{76} +(-6.13331e6 - 861928. i) q^{77} +(322974. + 994012. i) q^{79} +(2.83763e6 + 2.06166e6i) q^{80} +(-641467. + 1.97423e6i) q^{82} +(1.96687e6 - 6.05340e6i) q^{83} +(3.51318e6 + 2.55248e6i) q^{85} +(-16663.7 - 51285.6i) q^{86} +(-502621. - 2.85036e6i) q^{88} -1.82683e6 q^{89} +(1.57353e7 + 1.14324e7i) q^{91} +(5.76933e6 - 4.19166e6i) q^{92} +(464473. - 1.42950e6i) q^{94} +(3.20116e6 - 2.32578e6i) q^{95} +(-2.95746e6 - 9.10212e6i) q^{97} -3.01399e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 6 q^{2} + 160 q^{4} - 773 q^{5} + 1289 q^{7} - 2956 q^{8} - 10640 q^{10} - 13209 q^{11} + 13499 q^{13} + 3318 q^{14} - 113196 q^{16} - 30296 q^{17} - 6858 q^{19} - 76725 q^{20} - 48859 q^{22} + 166984 q^{23}+ \cdots - 140532178 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.813458 2.50357i −0.0719002 0.221286i 0.908649 0.417562i \(-0.137115\pi\)
−0.980549 + 0.196276i \(0.937115\pi\)
\(3\) 0 0
\(4\) 97.9481 71.1634i 0.765219 0.555964i
\(5\) −78.7070 + 242.235i −0.281591 + 0.866647i 0.705809 + 0.708402i \(0.250584\pi\)
−0.987400 + 0.158245i \(0.949416\pi\)
\(6\) 0 0
\(7\) −1135.08 + 824.681i −1.25078 + 0.908747i −0.998267 0.0588455i \(-0.981258\pi\)
−0.252516 + 0.967593i \(0.581258\pi\)
\(8\) −530.435 385.384i −0.366284 0.266121i
\(9\) 0 0
\(10\) 670.476 0.212023
\(11\) 3175.50 + 3066.49i 0.719346 + 0.694652i
\(12\) 0 0
\(13\) −4283.83 13184.3i −0.540792 1.66439i −0.730790 0.682602i \(-0.760848\pi\)
0.189998 0.981784i \(-0.439152\pi\)
\(14\) 2987.98 + 2170.89i 0.291025 + 0.211442i
\(15\) 0 0
\(16\) 4255.49 13097.1i 0.259735 0.799382i
\(17\) 5268.59 16215.1i 0.260090 0.800475i −0.732694 0.680558i \(-0.761737\pi\)
0.992784 0.119916i \(-0.0382626\pi\)
\(18\) 0 0
\(19\) −12568.3 9131.40i −0.420377 0.305422i 0.357413 0.933947i \(-0.383659\pi\)
−0.777789 + 0.628525i \(0.783659\pi\)
\(20\) 9529.09 + 29327.5i 0.266346 + 0.819729i
\(21\) 0 0
\(22\) 5094.03 10444.5i 0.101996 0.209127i
\(23\) 58901.9 1.00944 0.504721 0.863282i \(-0.331595\pi\)
0.504721 + 0.863282i \(0.331595\pi\)
\(24\) 0 0
\(25\) 10721.4 + 7789.53i 0.137234 + 0.0997060i
\(26\) −29523.0 + 21449.7i −0.329422 + 0.239339i
\(27\) 0 0
\(28\) −52491.4 + 161552.i −0.451892 + 1.39078i
\(29\) 24930.5 18113.0i 0.189818 0.137911i −0.488818 0.872386i \(-0.662572\pi\)
0.678635 + 0.734475i \(0.262572\pi\)
\(30\) 0 0
\(31\) −60252.9 185439.i −0.363256 1.11799i −0.951066 0.308987i \(-0.900010\pi\)
0.587811 0.808999i \(-0.299990\pi\)
\(32\) −120175. −0.648318
\(33\) 0 0
\(34\) −44881.3 −0.195834
\(35\) −110428. 339864.i −0.435354 1.33988i
\(36\) 0 0
\(37\) 345677. 251149.i 1.12193 0.815127i 0.137426 0.990512i \(-0.456117\pi\)
0.984500 + 0.175385i \(0.0561170\pi\)
\(38\) −12637.3 + 38893.5i −0.0373604 + 0.114983i
\(39\) 0 0
\(40\) 135102. 98157.7i 0.333775 0.242501i
\(41\) −637965. 463509.i −1.44562 1.05030i −0.986831 0.161756i \(-0.948284\pi\)
−0.458787 0.888547i \(-0.651716\pi\)
\(42\) 0 0
\(43\) 20485.0 0.0392914 0.0196457 0.999807i \(-0.493746\pi\)
0.0196457 + 0.999807i \(0.493746\pi\)
\(44\) 529256. + 74377.5i 0.936659 + 0.131631i
\(45\) 0 0
\(46\) −47914.2 147465.i −0.0725791 0.223376i
\(47\) 461937. + 335617.i 0.648994 + 0.471522i 0.862928 0.505326i \(-0.168628\pi\)
−0.213935 + 0.976848i \(0.568628\pi\)
\(48\) 0 0
\(49\) 353811. 1.08892e6i 0.429620 1.32223i
\(50\) 10780.2 33178.1i 0.0121964 0.0375367i
\(51\) 0 0
\(52\) −1.35783e6 986521.i −1.33916 0.972960i
\(53\) −478764. 1.47349e6i −0.441729 1.35950i −0.886031 0.463626i \(-0.846548\pi\)
0.444302 0.895877i \(-0.353452\pi\)
\(54\) 0 0
\(55\) −992746. + 527863.i −0.804579 + 0.427811i
\(56\) 919904. 0.699978
\(57\) 0 0
\(58\) −65627.0 47680.8i −0.0441657 0.0320882i
\(59\) −1.41091e6 + 1.02508e6i −0.894367 + 0.649796i −0.937013 0.349295i \(-0.886421\pi\)
0.0426459 + 0.999090i \(0.486421\pi\)
\(60\) 0 0
\(61\) 565284. 1.73976e6i 0.318869 0.981377i −0.655264 0.755400i \(-0.727443\pi\)
0.974133 0.225977i \(-0.0725574\pi\)
\(62\) −415247. + 301694.i −0.221276 + 0.160767i
\(63\) 0 0
\(64\) −446946. 1.37556e6i −0.213121 0.655918i
\(65\) 3.53086e6 1.59472
\(66\) 0 0
\(67\) 176715. 0.0717812 0.0358906 0.999356i \(-0.488573\pi\)
0.0358906 + 0.999356i \(0.488573\pi\)
\(68\) −637871. 1.96317e6i −0.246009 0.757139i
\(69\) 0 0
\(70\) −761042. + 552929.i −0.265195 + 0.192676i
\(71\) −1.10490e6 + 3.40052e6i −0.366368 + 1.12757i 0.582752 + 0.812650i \(0.301976\pi\)
−0.949120 + 0.314915i \(0.898024\pi\)
\(72\) 0 0
\(73\) 586597. 426188.i 0.176486 0.128224i −0.496035 0.868302i \(-0.665211\pi\)
0.672521 + 0.740078i \(0.265211\pi\)
\(74\) −909961. 661125.i −0.261043 0.189659i
\(75\) 0 0
\(76\) −1.88086e6 −0.491484
\(77\) −6.13331e6 861928.i −1.53101 0.215156i
\(78\) 0 0
\(79\) 322974. + 994012.i 0.0737009 + 0.226828i 0.981120 0.193398i \(-0.0619508\pi\)
−0.907420 + 0.420226i \(0.861951\pi\)
\(80\) 2.83763e6 + 2.06166e6i 0.619643 + 0.450197i
\(81\) 0 0
\(82\) −641467. + 1.97423e6i −0.128477 + 0.395412i
\(83\) 1.96687e6 6.05340e6i 0.377574 1.16205i −0.564152 0.825671i \(-0.690797\pi\)
0.941726 0.336382i \(-0.109203\pi\)
\(84\) 0 0
\(85\) 3.51318e6 + 2.55248e6i 0.620490 + 0.450812i
\(86\) −16663.7 51285.6i −0.00282506 0.00869463i
\(87\) 0 0
\(88\) −502621. 2.85036e6i −0.0786233 0.445872i
\(89\) −1.82683e6 −0.274683 −0.137342 0.990524i \(-0.543856\pi\)
−0.137342 + 0.990524i \(0.543856\pi\)
\(90\) 0 0
\(91\) 1.57353e7 + 1.14324e7i 2.18892 + 1.59034i
\(92\) 5.76933e6 4.19166e6i 0.772445 0.561214i
\(93\) 0 0
\(94\) 464473. 1.42950e6i 0.0576783 0.177516i
\(95\) 3.20116e6 2.32578e6i 0.383067 0.278314i
\(96\) 0 0
\(97\) −2.95746e6 9.10212e6i −0.329016 1.01261i −0.969595 0.244716i \(-0.921305\pi\)
0.640579 0.767893i \(-0.278695\pi\)
\(98\) −3.01399e6 −0.323482
\(99\) 0 0
\(100\) 1.60447e6 0.160447
\(101\) 4.73213e6 + 1.45640e7i 0.457016 + 1.40655i 0.868751 + 0.495248i \(0.164923\pi\)
−0.411735 + 0.911304i \(0.635077\pi\)
\(102\) 0 0
\(103\) −7.21717e6 + 5.24358e6i −0.650783 + 0.472822i −0.863538 0.504284i \(-0.831757\pi\)
0.212755 + 0.977106i \(0.431757\pi\)
\(104\) −2.80871e6 + 8.64432e6i −0.244844 + 0.753553i
\(105\) 0 0
\(106\) −3.29951e6 + 2.39724e6i −0.269079 + 0.195497i
\(107\) −1.30604e7 9.48895e6i −1.03066 0.748816i −0.0622168 0.998063i \(-0.519817\pi\)
−0.968440 + 0.249247i \(0.919817\pi\)
\(108\) 0 0
\(109\) −1.15589e7 −0.854917 −0.427459 0.904035i \(-0.640591\pi\)
−0.427459 + 0.904035i \(0.640591\pi\)
\(110\) 2.12910e6 + 2.05601e6i 0.152518 + 0.147282i
\(111\) 0 0
\(112\) 5.97060e6 + 1.83756e7i 0.401564 + 1.23589i
\(113\) 1.64688e7 + 1.19653e7i 1.07371 + 0.780097i 0.976576 0.215175i \(-0.0690321\pi\)
0.0971352 + 0.995271i \(0.469032\pi\)
\(114\) 0 0
\(115\) −4.63599e6 + 1.42681e7i −0.284250 + 0.874831i
\(116\) 1.15290e6 3.54827e6i 0.0685788 0.211064i
\(117\) 0 0
\(118\) 3.71407e6 + 2.69843e6i 0.208096 + 0.151190i
\(119\) 7.39201e6 + 2.27503e7i 0.402113 + 1.23758i
\(120\) 0 0
\(121\) 680425. + 1.94753e7i 0.0349166 + 0.999390i
\(122\) −4.81545e6 −0.240092
\(123\) 0 0
\(124\) −1.90982e7 1.38756e7i −0.899530 0.653547i
\(125\) −1.88290e7 + 1.36801e7i −0.862267 + 0.626474i
\(126\) 0 0
\(127\) 3.70108e6 1.13908e7i 0.160330 0.493446i −0.838331 0.545161i \(-0.816469\pi\)
0.998662 + 0.0517145i \(0.0164686\pi\)
\(128\) −1.55248e7 + 1.12794e7i −0.654323 + 0.475393i
\(129\) 0 0
\(130\) −2.87221e6 8.83974e6i −0.114660 0.352889i
\(131\) 2.91097e7 1.13133 0.565663 0.824636i \(-0.308620\pi\)
0.565663 + 0.824636i \(0.308620\pi\)
\(132\) 0 0
\(133\) 2.17965e7 0.803351
\(134\) −143750. 442417.i −0.00516108 0.0158842i
\(135\) 0 0
\(136\) −9.04367e6 + 6.57061e6i −0.308289 + 0.223985i
\(137\) 8.49976e6 2.61596e7i 0.282413 0.869178i −0.704749 0.709456i \(-0.748941\pi\)
0.987162 0.159721i \(-0.0510595\pi\)
\(138\) 0 0
\(139\) 6.09754e6 4.43012e6i 0.192576 0.139915i −0.487319 0.873224i \(-0.662025\pi\)
0.679895 + 0.733309i \(0.262025\pi\)
\(140\) −3.50021e7 2.54305e7i −1.07807 0.783262i
\(141\) 0 0
\(142\) 9.41222e6 0.275856
\(143\) 2.68262e7 5.50030e7i 0.767154 1.57293i
\(144\) 0 0
\(145\) 2.42541e6 + 7.46466e6i 0.0660690 + 0.203340i
\(146\) −1.54416e6 1.12190e6i −0.0410636 0.0298345i
\(147\) 0 0
\(148\) 1.59858e7 4.91991e7i 0.405338 1.24750i
\(149\) 11108.9 34189.7i 0.000275118 0.000846727i −0.950919 0.309440i \(-0.899858\pi\)
0.951194 + 0.308594i \(0.0998583\pi\)
\(150\) 0 0
\(151\) 2.81441e7 + 2.04479e7i 0.665224 + 0.483314i 0.868423 0.495824i \(-0.165134\pi\)
−0.203199 + 0.979137i \(0.565134\pi\)
\(152\) 3.14757e6 + 9.68723e6i 0.0726981 + 0.223742i
\(153\) 0 0
\(154\) 2.83130e6 + 1.60563e7i 0.0624688 + 0.354261i
\(155\) 4.96623e7 1.07119
\(156\) 0 0
\(157\) 7.20681e6 + 5.23606e6i 0.148626 + 0.107983i 0.659613 0.751605i \(-0.270720\pi\)
−0.510987 + 0.859588i \(0.670720\pi\)
\(158\) 2.22585e6 1.61717e6i 0.0448948 0.0326179i
\(159\) 0 0
\(160\) 9.45859e6 2.91105e7i 0.182560 0.561863i
\(161\) −6.68582e7 + 4.85753e7i −1.26259 + 0.917328i
\(162\) 0 0
\(163\) −1.12312e7 3.45661e7i −0.203128 0.625163i −0.999785 0.0207319i \(-0.993400\pi\)
0.796657 0.604431i \(-0.206600\pi\)
\(164\) −9.54723e7 −1.69014
\(165\) 0 0
\(166\) −1.67550e7 −0.284294
\(167\) −606562. 1.86681e6i −0.0100778 0.0310164i 0.945891 0.324484i \(-0.105191\pi\)
−0.955969 + 0.293468i \(0.905191\pi\)
\(168\) 0 0
\(169\) −1.04709e8 + 7.60756e7i −1.66871 + 1.21239i
\(170\) 3.53247e6 1.08718e7i 0.0551451 0.169719i
\(171\) 0 0
\(172\) 2.00647e6 1.45779e6i 0.0300665 0.0218446i
\(173\) −2.96466e7 2.15395e7i −0.435324 0.316282i 0.348450 0.937327i \(-0.386708\pi\)
−0.783774 + 0.621046i \(0.786708\pi\)
\(174\) 0 0
\(175\) −1.85935e7 −0.262257
\(176\) 5.36754e7 2.85403e7i 0.742131 0.394606i
\(177\) 0 0
\(178\) 1.48605e6 + 4.57358e6i 0.0197498 + 0.0607835i
\(179\) −7.23809e6 5.25878e6i −0.0943275 0.0685330i 0.539622 0.841908i \(-0.318567\pi\)
−0.633949 + 0.773375i \(0.718567\pi\)
\(180\) 0 0
\(181\) 4.41647e7 1.35925e8i 0.553606 1.70382i −0.145991 0.989286i \(-0.546637\pi\)
0.699597 0.714538i \(-0.253363\pi\)
\(182\) 1.58217e7 4.86941e7i 0.194537 0.598723i
\(183\) 0 0
\(184\) −3.12436e7 2.26998e7i −0.369742 0.268634i
\(185\) 3.36299e7 + 1.03502e8i 0.390503 + 1.20185i
\(186\) 0 0
\(187\) 6.64538e7 3.53348e7i 0.743146 0.395146i
\(188\) 6.91295e7 0.758771
\(189\) 0 0
\(190\) −8.42674e6 6.12239e6i −0.0891296 0.0647565i
\(191\) 6.78436e7 4.92913e7i 0.704518 0.511863i −0.176882 0.984232i \(-0.556601\pi\)
0.881401 + 0.472369i \(0.156601\pi\)
\(192\) 0 0
\(193\) 4.60395e6 1.41695e7i 0.0460978 0.141874i −0.925358 0.379093i \(-0.876236\pi\)
0.971456 + 0.237219i \(0.0762359\pi\)
\(194\) −2.03820e7 + 1.48084e7i −0.200420 + 0.145613i
\(195\) 0 0
\(196\) −4.28360e7 1.31836e8i −0.406362 1.25065i
\(197\) 1.20579e8 1.12367 0.561837 0.827248i \(-0.310095\pi\)
0.561837 + 0.827248i \(0.310095\pi\)
\(198\) 0 0
\(199\) −1.33693e8 −1.20261 −0.601303 0.799021i \(-0.705351\pi\)
−0.601303 + 0.799021i \(0.705351\pi\)
\(200\) −2.68503e6 8.26368e6i −0.0237326 0.0730413i
\(201\) 0 0
\(202\) 3.26125e7 2.36944e7i 0.278391 0.202263i
\(203\) −1.33605e7 + 4.11194e7i −0.112095 + 0.344993i
\(204\) 0 0
\(205\) 1.62490e8 1.18056e8i 1.31731 0.957084i
\(206\) 1.89985e7 + 1.38032e7i 0.151420 + 0.110013i
\(207\) 0 0
\(208\) −1.90905e8 −1.47094
\(209\) −1.19092e7 6.75373e7i −0.0902344 0.511719i
\(210\) 0 0
\(211\) −1.45065e7 4.46463e7i −0.106310 0.327188i 0.883726 0.468005i \(-0.155027\pi\)
−0.990036 + 0.140817i \(0.955027\pi\)
\(212\) −1.51752e8 1.10254e8i −1.09385 0.794732i
\(213\) 0 0
\(214\) −1.31321e7 + 4.04165e7i −0.0915981 + 0.281910i
\(215\) −1.61232e6 + 4.96220e6i −0.0110641 + 0.0340517i
\(216\) 0 0
\(217\) 2.21320e8 + 1.60799e8i 1.47032 + 1.06825i
\(218\) 9.40268e6 + 2.89385e7i 0.0614687 + 0.189181i
\(219\) 0 0
\(220\) −5.96730e7 + 1.22350e8i −0.377832 + 0.774687i
\(221\) −2.36354e8 −1.47295
\(222\) 0 0
\(223\) 1.01382e8 + 7.36582e7i 0.612200 + 0.444789i 0.850188 0.526479i \(-0.176488\pi\)
−0.237988 + 0.971268i \(0.576488\pi\)
\(224\) 1.36408e8 9.91059e7i 0.810906 0.589157i
\(225\) 0 0
\(226\) 1.65592e7 5.09640e7i 0.0954244 0.293686i
\(227\) −1.68600e8 + 1.22495e8i −0.956682 + 0.695070i −0.952378 0.304921i \(-0.901370\pi\)
−0.00430400 + 0.999991i \(0.501370\pi\)
\(228\) 0 0
\(229\) 8.33162e7 + 2.56421e8i 0.458464 + 1.41101i 0.867020 + 0.498274i \(0.166033\pi\)
−0.408555 + 0.912733i \(0.633967\pi\)
\(230\) 3.94923e7 0.214025
\(231\) 0 0
\(232\) −2.02045e7 −0.106228
\(233\) −2.08449e7 6.41540e7i −0.107958 0.332260i 0.882455 0.470396i \(-0.155889\pi\)
−0.990413 + 0.138136i \(0.955889\pi\)
\(234\) 0 0
\(235\) −1.17656e8 + 8.54820e7i −0.591393 + 0.429672i
\(236\) −6.52470e7 + 2.00810e8i −0.323124 + 0.994472i
\(237\) 0 0
\(238\) 5.09437e7 3.70127e7i 0.244946 0.177964i
\(239\) −1.35612e8 9.85280e7i −0.642549 0.466839i 0.218176 0.975909i \(-0.429989\pi\)
−0.860725 + 0.509070i \(0.829989\pi\)
\(240\) 0 0
\(241\) 1.09790e7 0.0505246 0.0252623 0.999681i \(-0.491958\pi\)
0.0252623 + 0.999681i \(0.491958\pi\)
\(242\) 4.82042e7 1.75458e7i 0.218641 0.0795829i
\(243\) 0 0
\(244\) −6.84391e7 2.10634e8i −0.301606 0.928248i
\(245\) 2.35927e8 + 1.71411e8i 1.02493 + 0.744658i
\(246\) 0 0
\(247\) −6.65504e7 + 2.04821e8i −0.281003 + 0.864839i
\(248\) −3.95051e7 + 1.21584e8i −0.164464 + 0.506170i
\(249\) 0 0
\(250\) 4.95655e7 + 3.60115e7i 0.200627 + 0.145764i
\(251\) −1.78934e7 5.50701e7i −0.0714224 0.219815i 0.908973 0.416854i \(-0.136867\pi\)
−0.980396 + 0.197039i \(0.936867\pi\)
\(252\) 0 0
\(253\) 1.87043e8 + 1.80622e8i 0.726138 + 0.701212i
\(254\) −3.15282e7 −0.120721
\(255\) 0 0
\(256\) −1.08908e8 7.91262e7i −0.405713 0.294768i
\(257\) −8.56638e7 + 6.22384e7i −0.314798 + 0.228714i −0.733952 0.679201i \(-0.762326\pi\)
0.419155 + 0.907915i \(0.362326\pi\)
\(258\) 0 0
\(259\) −1.85252e8 + 5.70147e8i −0.662542 + 2.03909i
\(260\) 3.45841e8 2.51268e8i 1.22031 0.886606i
\(261\) 0 0
\(262\) −2.36795e7 7.28780e7i −0.0813426 0.250347i
\(263\) 1.98561e8 0.673052 0.336526 0.941674i \(-0.390748\pi\)
0.336526 + 0.941674i \(0.390748\pi\)
\(264\) 0 0
\(265\) 3.94612e8 1.30260
\(266\) −1.77305e7 5.45689e7i −0.0577611 0.177770i
\(267\) 0 0
\(268\) 1.73089e7 1.25756e7i 0.0549284 0.0399078i
\(269\) −1.08402e8 + 3.33628e8i −0.339551 + 1.04503i 0.624885 + 0.780717i \(0.285146\pi\)
−0.964436 + 0.264315i \(0.914854\pi\)
\(270\) 0 0
\(271\) 7.18501e7 5.22022e7i 0.219298 0.159329i −0.472712 0.881217i \(-0.656725\pi\)
0.692011 + 0.721887i \(0.256725\pi\)
\(272\) −1.89949e8 1.38006e8i −0.572330 0.415822i
\(273\) 0 0
\(274\) −7.24064e7 −0.212642
\(275\) 1.01592e7 + 5.76126e7i 0.0294574 + 0.167053i
\(276\) 0 0
\(277\) −6.36863e7 1.96006e8i −0.180039 0.554104i 0.819788 0.572666i \(-0.194091\pi\)
−0.999828 + 0.0185627i \(0.994091\pi\)
\(278\) −1.60512e7 1.16619e7i −0.0448075 0.0325545i
\(279\) 0 0
\(280\) −7.24028e7 + 2.22833e8i −0.197107 + 0.606633i
\(281\) −1.28571e8 + 3.95702e8i −0.345679 + 1.06389i 0.615541 + 0.788105i \(0.288938\pi\)
−0.961220 + 0.275784i \(0.911062\pi\)
\(282\) 0 0
\(283\) −1.78935e8 1.30004e8i −0.469292 0.340960i 0.327874 0.944722i \(-0.393668\pi\)
−0.797165 + 0.603761i \(0.793668\pi\)
\(284\) 1.33770e8 + 4.11703e8i 0.346534 + 1.06652i
\(285\) 0 0
\(286\) −1.59525e8 2.24184e7i −0.403226 0.0566662i
\(287\) 1.10639e9 2.76261
\(288\) 0 0
\(289\) 9.68006e7 + 7.03298e7i 0.235904 + 0.171394i
\(290\) 1.67153e7 1.21444e7i 0.0402458 0.0292403i
\(291\) 0 0
\(292\) 2.71271e7 8.34885e7i 0.0637621 0.196240i
\(293\) −1.02733e8 + 7.46400e7i −0.238602 + 0.173355i −0.700660 0.713495i \(-0.747111\pi\)
0.462058 + 0.886850i \(0.347111\pi\)
\(294\) 0 0
\(295\) −1.37263e8 4.22452e8i −0.311298 0.958077i
\(296\) −2.80148e8 −0.627865
\(297\) 0 0
\(298\) −94632.8 −0.000207150
\(299\) −2.52326e8 7.76578e8i −0.545899 1.68010i
\(300\) 0 0
\(301\) −2.32521e7 + 1.68936e7i −0.0491450 + 0.0357059i
\(302\) 2.82986e7 8.70941e7i 0.0591208 0.181955i
\(303\) 0 0
\(304\) −1.73079e8 + 1.25749e8i −0.353335 + 0.256713i
\(305\) 3.76940e8 + 2.73863e8i 0.760717 + 0.552693i
\(306\) 0 0
\(307\) 4.24137e8 0.836608 0.418304 0.908307i \(-0.362625\pi\)
0.418304 + 0.908307i \(0.362625\pi\)
\(308\) −6.62084e8 + 3.52044e8i −1.29118 + 0.686545i
\(309\) 0 0
\(310\) −4.03982e7 1.24333e8i −0.0770186 0.237039i
\(311\) 9.19886e7 + 6.68336e7i 0.173409 + 0.125989i 0.671105 0.741363i \(-0.265820\pi\)
−0.497695 + 0.867352i \(0.665820\pi\)
\(312\) 0 0
\(313\) 1.40449e8 4.32257e8i 0.258889 0.796777i −0.734150 0.678987i \(-0.762419\pi\)
0.993039 0.117790i \(-0.0375809\pi\)
\(314\) 7.24637e6 2.23020e7i 0.0132089 0.0406528i
\(315\) 0 0
\(316\) 1.02372e8 + 7.43776e7i 0.182506 + 0.132598i
\(317\) −3.28362e8 1.01060e9i −0.578957 1.78185i −0.622293 0.782785i \(-0.713799\pi\)
0.0433361 0.999061i \(-0.486201\pi\)
\(318\) 0 0
\(319\) 1.34710e8 + 1.89311e7i 0.232345 + 0.0326519i
\(320\) 3.68387e8 0.628462
\(321\) 0 0
\(322\) 1.75998e8 + 1.27870e8i 0.293773 + 0.213438i
\(323\) −2.14284e8 + 1.55686e8i −0.353818 + 0.257064i
\(324\) 0 0
\(325\) 5.67707e7 1.74722e8i 0.0917345 0.282330i
\(326\) −7.74023e7 + 5.62361e7i −0.123735 + 0.0898987i
\(327\) 0 0
\(328\) 1.59770e8 + 4.91723e8i 0.249999 + 0.769417i
\(329\) −8.01111e8 −1.24024
\(330\) 0 0
\(331\) −5.54435e8 −0.840336 −0.420168 0.907446i \(-0.638029\pi\)
−0.420168 + 0.907446i \(0.638029\pi\)
\(332\) −2.38130e8 7.32888e8i −0.357133 1.09914i
\(333\) 0 0
\(334\) −4.18026e6 + 3.03714e6i −0.00613890 + 0.00446017i
\(335\) −1.39087e7 + 4.28065e7i −0.0202129 + 0.0622090i
\(336\) 0 0
\(337\) −2.88719e8 + 2.09767e8i −0.410933 + 0.298561i −0.773980 0.633211i \(-0.781737\pi\)
0.363046 + 0.931771i \(0.381737\pi\)
\(338\) 2.75637e8 + 2.00262e8i 0.388265 + 0.282091i
\(339\) 0 0
\(340\) 5.25753e8 0.725446
\(341\) 3.77315e8 7.73628e8i 0.515305 1.05655i
\(342\) 0 0
\(343\) 1.39352e8 + 4.28881e8i 0.186459 + 0.573862i
\(344\) −1.08660e7 7.89460e6i −0.0143918 0.0104562i
\(345\) 0 0
\(346\) −2.98093e7 + 9.17436e7i −0.0386888 + 0.119072i
\(347\) −1.64537e8 + 5.06391e8i −0.211402 + 0.650629i 0.787987 + 0.615691i \(0.211123\pi\)
−0.999390 + 0.0349373i \(0.988877\pi\)
\(348\) 0 0
\(349\) −9.26512e8 6.73150e8i −1.16671 0.847663i −0.176096 0.984373i \(-0.556347\pi\)
−0.990611 + 0.136710i \(0.956347\pi\)
\(350\) 1.51250e7 + 4.65499e7i 0.0188563 + 0.0580338i
\(351\) 0 0
\(352\) −3.81615e8 3.68515e8i −0.466365 0.450356i
\(353\) −4.20718e8 −0.509072 −0.254536 0.967063i \(-0.581923\pi\)
−0.254536 + 0.967063i \(0.581923\pi\)
\(354\) 0 0
\(355\) −7.36763e8 5.35290e8i −0.874035 0.635024i
\(356\) −1.78934e8 + 1.30003e8i −0.210193 + 0.152714i
\(357\) 0 0
\(358\) −7.27782e6 + 2.23988e7i −0.00838322 + 0.0258009i
\(359\) 4.86535e8 3.53488e8i 0.554988 0.403222i −0.274633 0.961549i \(-0.588557\pi\)
0.829621 + 0.558327i \(0.188557\pi\)
\(360\) 0 0
\(361\) −2.01642e8 6.20590e8i −0.225583 0.694272i
\(362\) −3.76224e8 −0.416837
\(363\) 0 0
\(364\) 2.35481e9 2.55918
\(365\) 5.70684e7 + 1.75638e8i 0.0614286 + 0.189058i
\(366\) 0 0
\(367\) 8.36144e8 6.07494e8i 0.882978 0.641521i −0.0510595 0.998696i \(-0.516260\pi\)
0.934038 + 0.357174i \(0.116260\pi\)
\(368\) 2.50657e8 7.71442e8i 0.262187 0.806930i
\(369\) 0 0
\(370\) 2.31768e8 1.68389e8i 0.237874 0.172826i
\(371\) 1.75859e9 + 1.27769e9i 1.78795 + 1.29902i
\(372\) 0 0
\(373\) −1.78117e9 −1.77715 −0.888575 0.458731i \(-0.848304\pi\)
−0.888575 + 0.458731i \(0.848304\pi\)
\(374\) −1.42520e8 1.37628e8i −0.140873 0.136037i
\(375\) 0 0
\(376\) −1.15686e8 3.56046e8i −0.112234 0.345421i
\(377\) −3.45605e8 2.51097e8i −0.332189 0.241349i
\(378\) 0 0
\(379\) −1.83004e8 + 5.63228e8i −0.172672 + 0.531431i −0.999520 0.0309956i \(-0.990132\pi\)
0.826847 + 0.562427i \(0.190132\pi\)
\(380\) 1.48037e8 4.55611e8i 0.138397 0.425943i
\(381\) 0 0
\(382\) −1.78592e8 1.29755e8i −0.163923 0.119097i
\(383\) −5.11794e8 1.57514e9i −0.465479 1.43260i −0.858379 0.513015i \(-0.828528\pi\)
0.392901 0.919581i \(-0.371472\pi\)
\(384\) 0 0
\(385\) 6.91524e8 1.41786e9i 0.617582 1.26626i
\(386\) −3.92194e7 −0.0347093
\(387\) 0 0
\(388\) −9.37415e8 6.81072e8i −0.814744 0.591946i
\(389\) −5.75264e8 + 4.17954e8i −0.495500 + 0.360002i −0.807295 0.590147i \(-0.799070\pi\)
0.311796 + 0.950149i \(0.399070\pi\)
\(390\) 0 0
\(391\) 3.10330e8 9.55098e8i 0.262546 0.808033i
\(392\) −6.07325e8 + 4.41247e8i −0.509237 + 0.369982i
\(393\) 0 0
\(394\) −9.80860e7 3.01878e8i −0.0807923 0.248653i
\(395\) −2.66205e8 −0.217333
\(396\) 0 0
\(397\) 1.35778e7 0.0108909 0.00544544 0.999985i \(-0.498267\pi\)
0.00544544 + 0.999985i \(0.498267\pi\)
\(398\) 1.08754e8 + 3.34709e8i 0.0864676 + 0.266120i
\(399\) 0 0
\(400\) 1.47645e8 1.07270e8i 0.115347 0.0838048i
\(401\) −6.02875e8 + 1.85546e9i −0.466898 + 1.43696i 0.389682 + 0.920949i \(0.372585\pi\)
−0.856580 + 0.516014i \(0.827415\pi\)
\(402\) 0 0
\(403\) −2.18677e9 + 1.58878e9i −1.66431 + 1.20920i
\(404\) 1.49993e9 + 1.08976e9i 1.13171 + 0.822236i
\(405\) 0 0
\(406\) 1.13813e8 0.0844018
\(407\) 1.86784e9 + 2.62492e8i 1.37328 + 0.192990i
\(408\) 0 0
\(409\) −3.31520e8 1.02031e9i −0.239595 0.737399i −0.996479 0.0838485i \(-0.973279\pi\)
0.756883 0.653550i \(-0.226721\pi\)
\(410\) −4.27740e8 3.10772e8i −0.306504 0.222689i
\(411\) 0 0
\(412\) −3.33756e8 + 1.02720e9i −0.235120 + 0.723625i
\(413\) 7.56119e8 2.32709e9i 0.528159 1.62551i
\(414\) 0 0
\(415\) 1.31154e9 + 9.52889e8i 0.900768 + 0.654446i
\(416\) 5.14808e8 + 1.58442e9i 0.350605 + 1.07905i
\(417\) 0 0
\(418\) −1.59396e8 + 8.47543e7i −0.106748 + 0.0567603i
\(419\) −6.32009e8 −0.419734 −0.209867 0.977730i \(-0.567303\pi\)
−0.209867 + 0.977730i \(0.567303\pi\)
\(420\) 0 0
\(421\) 2.34865e9 + 1.70639e9i 1.53402 + 1.11453i 0.953951 + 0.299962i \(0.0969739\pi\)
0.580068 + 0.814568i \(0.303026\pi\)
\(422\) −9.99746e7 + 7.26358e7i −0.0647584 + 0.0470497i
\(423\) 0 0
\(424\) −3.13904e8 + 9.66097e8i −0.199994 + 0.615517i
\(425\) 1.82794e8 1.32808e8i 0.115505 0.0839194i
\(426\) 0 0
\(427\) 7.93111e8 + 2.44094e9i 0.492988 + 1.51726i
\(428\) −1.95451e9 −1.20499
\(429\) 0 0
\(430\) 1.37347e7 0.00833068
\(431\) 9.35203e7 + 2.87826e8i 0.0562647 + 0.173165i 0.975239 0.221151i \(-0.0709815\pi\)
−0.918975 + 0.394316i \(0.870981\pi\)
\(432\) 0 0
\(433\) −5.08287e8 + 3.69292e8i −0.300886 + 0.218606i −0.727976 0.685603i \(-0.759539\pi\)
0.427090 + 0.904209i \(0.359539\pi\)
\(434\) 2.22535e8 6.84892e8i 0.130673 0.402169i
\(435\) 0 0
\(436\) −1.13217e9 + 8.22572e8i −0.654199 + 0.475303i
\(437\) −7.40296e8 5.37857e8i −0.424346 0.308306i
\(438\) 0 0
\(439\) 5.93586e8 0.334856 0.167428 0.985884i \(-0.446454\pi\)
0.167428 + 0.985884i \(0.446454\pi\)
\(440\) 7.30018e8 + 1.02591e8i 0.408554 + 0.0574149i
\(441\) 0 0
\(442\) 1.92264e8 + 5.91726e8i 0.105906 + 0.325944i
\(443\) 5.98625e8 + 4.34927e8i 0.327146 + 0.237686i 0.739219 0.673465i \(-0.235195\pi\)
−0.412073 + 0.911151i \(0.635195\pi\)
\(444\) 0 0
\(445\) 1.43784e8 4.42521e8i 0.0773482 0.238053i
\(446\) 1.01938e8 3.13734e8i 0.0544083 0.167452i
\(447\) 0 0
\(448\) 1.64172e9 + 1.19278e9i 0.862631 + 0.626738i
\(449\) −2.42574e8 7.46566e8i −0.126468 0.389230i 0.867697 0.497093i \(-0.165599\pi\)
−0.994166 + 0.107863i \(0.965599\pi\)
\(450\) 0 0
\(451\) −6.04512e8 3.42819e9i −0.310304 1.75973i
\(452\) 2.46458e9 1.25533
\(453\) 0 0
\(454\) 4.43824e8 + 3.22457e8i 0.222595 + 0.161725i
\(455\) −4.00780e9 + 2.91183e9i −1.99465 + 1.44920i
\(456\) 0 0
\(457\) −6.19943e8 + 1.90799e9i −0.303840 + 0.935123i 0.676268 + 0.736656i \(0.263596\pi\)
−0.980108 + 0.198467i \(0.936404\pi\)
\(458\) 5.74192e8 4.17175e8i 0.279273 0.202903i
\(459\) 0 0
\(460\) 5.61281e8 + 1.72745e9i 0.268861 + 0.827470i
\(461\) −2.66565e9 −1.26721 −0.633607 0.773655i \(-0.718426\pi\)
−0.633607 + 0.773655i \(0.718426\pi\)
\(462\) 0 0
\(463\) 2.88189e9 1.34941 0.674705 0.738087i \(-0.264271\pi\)
0.674705 + 0.738087i \(0.264271\pi\)
\(464\) −1.31136e8 4.03596e8i −0.0609410 0.187557i
\(465\) 0 0
\(466\) −1.43657e8 + 1.04373e8i −0.0657623 + 0.0477791i
\(467\) 6.35733e8 1.95658e9i 0.288846 0.888975i −0.696374 0.717679i \(-0.745205\pi\)
0.985220 0.171296i \(-0.0547955\pi\)
\(468\) 0 0
\(469\) −2.00585e8 + 1.45733e8i −0.0897828 + 0.0652310i
\(470\) 3.09718e8 + 2.25023e8i 0.137602 + 0.0999735i
\(471\) 0 0
\(472\) 1.14344e9 0.500516
\(473\) 6.50502e7 + 6.28172e7i 0.0282641 + 0.0272938i
\(474\) 0 0
\(475\) −6.36200e7 1.95802e8i −0.0272374 0.0838282i
\(476\) 2.34302e9 + 1.70230e9i 0.995753 + 0.723457i
\(477\) 0 0
\(478\) −1.36357e8 + 4.19662e8i −0.0571056 + 0.175753i
\(479\) 6.62997e7 2.04049e8i 0.0275637 0.0848322i −0.936328 0.351126i \(-0.885799\pi\)
0.963892 + 0.266293i \(0.0857990\pi\)
\(480\) 0 0
\(481\) −4.79203e9 3.48162e9i −1.96342 1.42650i
\(482\) −8.93095e6 2.74866e7i −0.00363273 0.0111804i
\(483\) 0 0
\(484\) 1.45257e9 + 1.85915e9i 0.582344 + 0.745340i
\(485\) 2.43763e9 0.970222
\(486\) 0 0
\(487\) 2.18325e9 + 1.58622e9i 0.856548 + 0.622319i 0.926944 0.375201i \(-0.122426\pi\)
−0.0703957 + 0.997519i \(0.522426\pi\)
\(488\) −9.70323e8 + 7.04981e8i −0.377961 + 0.274605i
\(489\) 0 0
\(490\) 2.37222e8 7.30093e8i 0.0910895 0.280345i
\(491\) −3.13389e9 + 2.27690e9i −1.19481 + 0.868079i −0.993764 0.111503i \(-0.964434\pi\)
−0.201044 + 0.979582i \(0.564434\pi\)
\(492\) 0 0
\(493\) −1.62356e8 4.99679e8i −0.0610243 0.187814i
\(494\) 5.66919e8 0.211581
\(495\) 0 0
\(496\) −2.68512e9 −0.988047
\(497\) −1.55021e9 4.77104e9i −0.566425 1.74328i
\(498\) 0 0
\(499\) −1.32646e9 + 9.63731e8i −0.477906 + 0.347219i −0.800515 0.599313i \(-0.795440\pi\)
0.322608 + 0.946533i \(0.395440\pi\)
\(500\) −8.70743e8 + 2.67987e9i −0.311526 + 0.958780i
\(501\) 0 0
\(502\) −1.23316e8 + 8.95945e7i −0.0435068 + 0.0316095i
\(503\) 1.16889e9 + 8.49249e8i 0.409530 + 0.297541i 0.773412 0.633904i \(-0.218549\pi\)
−0.363881 + 0.931445i \(0.618549\pi\)
\(504\) 0 0
\(505\) −3.90036e9 −1.34768
\(506\) 3.00048e8 6.15203e8i 0.102959 0.211102i
\(507\) 0 0
\(508\) −4.48092e8 1.37909e9i −0.151651 0.466733i
\(509\) 2.84767e9 + 2.06895e9i 0.957144 + 0.695406i 0.952486 0.304583i \(-0.0985172\pi\)
0.00465836 + 0.999989i \(0.498517\pi\)
\(510\) 0 0
\(511\) −3.14364e8 + 9.67512e8i −0.104222 + 0.320762i
\(512\) −8.68540e8 + 2.67309e9i −0.285986 + 0.880175i
\(513\) 0 0
\(514\) 2.25502e8 + 1.63837e8i 0.0732452 + 0.0532157i
\(515\) −7.02138e8 2.16096e9i −0.226515 0.697142i
\(516\) 0 0
\(517\) 4.37715e8 + 2.48228e9i 0.139307 + 0.790012i
\(518\) 1.57809e9 0.498860
\(519\) 0 0
\(520\) −1.87289e9 1.36074e9i −0.584119 0.424387i
\(521\) 2.62867e9 1.90984e9i 0.814336 0.591650i −0.100749 0.994912i \(-0.532124\pi\)
0.915084 + 0.403262i \(0.132124\pi\)
\(522\) 0 0
\(523\) 1.92151e9 5.91379e9i 0.587335 1.80763i −0.00234717 0.999997i \(-0.500747\pi\)
0.589683 0.807635i \(-0.299253\pi\)
\(524\) 2.85124e9 2.07155e9i 0.865713 0.628977i
\(525\) 0 0
\(526\) −1.61521e8 4.97110e8i −0.0483925 0.148937i
\(527\) −3.32436e9 −0.989398
\(528\) 0 0
\(529\) 6.46069e7 0.0189751
\(530\) −3.21000e8 9.87937e8i −0.0936569 0.288246i
\(531\) 0 0
\(532\) 2.13492e9 1.55111e9i 0.614740 0.446635i
\(533\) −3.37809e9 + 1.03967e10i −0.966331 + 2.97406i
\(534\) 0 0
\(535\) 3.32651e9 2.41685e9i 0.939182 0.682356i
\(536\) −9.37357e7 6.81030e7i −0.0262923 0.0191025i
\(537\) 0 0
\(538\) 9.23440e8 0.255665
\(539\) 4.46268e9 2.37290e9i 1.22754 0.652707i
\(540\) 0 0
\(541\) −6.12651e8 1.88555e9i −0.166350 0.511973i 0.832783 0.553599i \(-0.186746\pi\)
−0.999133 + 0.0416266i \(0.986746\pi\)
\(542\) −1.89139e8 1.37417e8i −0.0510250 0.0370718i
\(543\) 0 0
\(544\) −6.33152e8 + 1.94864e9i −0.168621 + 0.518962i
\(545\) 9.09767e8 2.79997e9i 0.240737 0.740911i
\(546\) 0 0
\(547\) 1.33445e9 + 9.69532e8i 0.348615 + 0.253283i 0.748288 0.663374i \(-0.230876\pi\)
−0.399673 + 0.916658i \(0.630876\pi\)
\(548\) −1.02907e9 3.16715e9i −0.267124 0.822123i
\(549\) 0 0
\(550\) 1.35973e8 7.22996e7i 0.0348484 0.0185296i
\(551\) −4.78731e8 −0.121916
\(552\) 0 0
\(553\) −1.18634e9 8.61929e8i −0.298313 0.216737i
\(554\) −4.38909e8 + 3.18886e8i −0.109671 + 0.0796803i
\(555\) 0 0
\(556\) 2.81980e8 8.67844e8i 0.0695754 0.214131i
\(557\) 3.93895e9 2.86181e9i 0.965799 0.701694i 0.0113089 0.999936i \(-0.496400\pi\)
0.954490 + 0.298242i \(0.0964002\pi\)
\(558\) 0 0
\(559\) −8.77544e7 2.70080e8i −0.0212485 0.0653960i
\(560\) −4.92114e9 −1.18415
\(561\) 0 0
\(562\) 1.09525e9 0.260278
\(563\) −1.98867e9 6.12050e9i −0.469660 1.44546i −0.853026 0.521868i \(-0.825235\pi\)
0.383366 0.923596i \(-0.374765\pi\)
\(564\) 0 0
\(565\) −4.19462e9 + 3.04757e9i −0.978415 + 0.710860i
\(566\) −1.79917e8 + 5.53728e8i −0.0417076 + 0.128363i
\(567\) 0 0
\(568\) 1.89658e9 1.37795e9i 0.434263 0.315511i
\(569\) −3.04969e9 2.21573e9i −0.694005 0.504224i 0.183969 0.982932i \(-0.441105\pi\)
−0.877974 + 0.478708i \(0.841105\pi\)
\(570\) 0 0
\(571\) −1.24590e9 −0.280063 −0.140032 0.990147i \(-0.544720\pi\)
−0.140032 + 0.990147i \(0.544720\pi\)
\(572\) −1.28663e9 7.29647e9i −0.287453 1.63015i
\(573\) 0 0
\(574\) −8.99998e8 2.76991e9i −0.198632 0.611328i
\(575\) 6.31509e8 + 4.58818e8i 0.138529 + 0.100648i
\(576\) 0 0
\(577\) −2.30342e9 + 7.08920e9i −0.499181 + 1.53632i 0.311157 + 0.950359i \(0.399284\pi\)
−0.810338 + 0.585963i \(0.800716\pi\)
\(578\) 9.73320e7 2.99557e8i 0.0209656 0.0645256i
\(579\) 0 0
\(580\) 7.68775e8 + 5.58548e8i 0.163607 + 0.118867i
\(581\) 2.75958e9 + 8.49311e9i 0.583749 + 1.79660i
\(582\) 0 0
\(583\) 2.99811e9 6.14718e9i 0.626626 1.28480i
\(584\) −4.75398e8 −0.0987671
\(585\) 0 0
\(586\) 2.70435e8 + 1.96483e8i 0.0555165 + 0.0403351i
\(587\) −5.53296e9 + 4.01993e9i −1.12908 + 0.820324i −0.985561 0.169323i \(-0.945842\pi\)
−0.143519 + 0.989648i \(0.545842\pi\)
\(588\) 0 0
\(589\) −9.36045e8 + 2.88085e9i −0.188753 + 0.580921i
\(590\) −9.45978e8 + 6.87294e8i −0.189627 + 0.137772i
\(591\) 0 0
\(592\) −1.81829e9 5.59612e9i −0.360194 1.10856i
\(593\) 3.59261e9 0.707487 0.353743 0.935342i \(-0.384909\pi\)
0.353743 + 0.935342i \(0.384909\pi\)
\(594\) 0 0
\(595\) −6.09271e9 −1.18577
\(596\) −1.34496e6 4.13936e6i −0.000260224 0.000800888i
\(597\) 0 0
\(598\) −1.73896e9 + 1.26343e9i −0.332533 + 0.241599i
\(599\) −1.25482e9 + 3.86194e9i −0.238555 + 0.734196i 0.758075 + 0.652167i \(0.226140\pi\)
−0.996630 + 0.0820289i \(0.973860\pi\)
\(600\) 0 0
\(601\) 6.45943e9 4.69305e9i 1.21376 0.881850i 0.218195 0.975905i \(-0.429983\pi\)
0.995567 + 0.0940554i \(0.0299831\pi\)
\(602\) 6.12089e7 + 4.44709e7i 0.0114348 + 0.00830784i
\(603\) 0 0
\(604\) 4.21180e9 0.777747
\(605\) −4.77115e9 1.36802e9i −0.875951 0.251159i
\(606\) 0 0
\(607\) −1.12194e9 3.45299e9i −0.203615 0.626664i −0.999767 0.0215671i \(-0.993134\pi\)
0.796152 0.605097i \(-0.206866\pi\)
\(608\) 1.51039e9 + 1.09736e9i 0.272538 + 0.198010i
\(609\) 0 0
\(610\) 3.79009e8 1.16647e9i 0.0676076 0.208075i
\(611\) 2.44600e9 7.52803e9i 0.433824 1.33517i
\(612\) 0 0
\(613\) 8.99143e9 + 6.53266e9i 1.57658 + 1.14546i 0.920482 + 0.390784i \(0.127796\pi\)
0.656102 + 0.754672i \(0.272204\pi\)
\(614\) −3.45018e8 1.06186e9i −0.0601523 0.185130i
\(615\) 0 0
\(616\) 2.92115e9 + 2.82088e9i 0.503526 + 0.486241i
\(617\) 4.55088e9 0.780004 0.390002 0.920814i \(-0.372474\pi\)
0.390002 + 0.920814i \(0.372474\pi\)
\(618\) 0 0
\(619\) 4.34497e8 + 3.15680e8i 0.0736325 + 0.0534971i 0.623993 0.781430i \(-0.285510\pi\)
−0.550360 + 0.834927i \(0.685510\pi\)
\(620\) 4.86432e9 3.53414e9i 0.819694 0.595542i
\(621\) 0 0
\(622\) 9.24935e7 2.84666e8i 0.0154115 0.0474317i
\(623\) 2.07359e9 1.50655e9i 0.343569 0.249618i
\(624\) 0 0
\(625\) −1.51188e9 4.65309e9i −0.247707 0.762363i
\(626\) −1.19643e9 −0.194930
\(627\) 0 0
\(628\) 1.07851e9 0.173766
\(629\) −2.25117e9 6.92837e9i −0.360687 1.11008i
\(630\) 0 0
\(631\) 4.25854e9 3.09401e9i 0.674773 0.490251i −0.196847 0.980434i \(-0.563070\pi\)
0.871619 + 0.490183i \(0.163070\pi\)
\(632\) 2.11759e8 6.51728e8i 0.0333682 0.102697i
\(633\) 0 0
\(634\) −2.26298e9 + 1.64415e9i −0.352670 + 0.256230i
\(635\) 2.46794e9 + 1.79307e9i 0.382496 + 0.277900i
\(636\) 0 0
\(637\) −1.58722e10 −2.43305
\(638\) −6.21857e7 3.52655e8i −0.00948022 0.0537623i
\(639\) 0 0
\(640\) −1.51037e9 4.64843e9i −0.227747 0.700933i
\(641\) −1.23774e9 8.99269e8i −0.185620 0.134861i 0.491094 0.871106i \(-0.336597\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(642\) 0 0
\(643\) 2.82338e9 8.68948e9i 0.418824 1.28901i −0.489962 0.871744i \(-0.662989\pi\)
0.908786 0.417263i \(-0.137011\pi\)
\(644\) −3.09184e9 + 9.51571e9i −0.456160 + 1.40391i
\(645\) 0 0
\(646\) 5.64081e8 + 4.09829e8i 0.0823242 + 0.0598120i
\(647\) 3.37047e9 + 1.03732e10i 0.489244 + 1.50574i 0.825738 + 0.564053i \(0.190759\pi\)
−0.336494 + 0.941686i \(0.609241\pi\)
\(648\) 0 0
\(649\) −7.62374e9 1.07138e9i −1.09474 0.153846i
\(650\) −4.83609e8 −0.0690714
\(651\) 0 0
\(652\) −3.55991e9 2.58643e9i −0.503006 0.365455i
\(653\) 5.73199e9 4.16453e9i 0.805581 0.585289i −0.106965 0.994263i \(-0.534113\pi\)
0.912546 + 0.408974i \(0.134113\pi\)
\(654\) 0 0
\(655\) −2.29114e9 + 7.05139e9i −0.318571 + 0.980461i
\(656\) −8.78546e9 + 6.38301e9i −1.21507 + 0.882800i
\(657\) 0 0
\(658\) 6.51670e8 + 2.00563e9i 0.0891738 + 0.274449i
\(659\) 3.97176e9 0.540611 0.270305 0.962775i \(-0.412875\pi\)
0.270305 + 0.962775i \(0.412875\pi\)
\(660\) 0 0
\(661\) 4.61874e9 0.622040 0.311020 0.950403i \(-0.399329\pi\)
0.311020 + 0.950403i \(0.399329\pi\)
\(662\) 4.51010e8 + 1.38806e9i 0.0604203 + 0.185955i
\(663\) 0 0
\(664\) −3.37618e9 + 2.45294e9i −0.447545 + 0.325161i
\(665\) −1.71553e9 + 5.27987e9i −0.226216 + 0.696222i
\(666\) 0 0
\(667\) 1.46845e9 1.06689e9i 0.191610 0.139213i
\(668\) −1.92260e8 1.39685e8i −0.0249558 0.0181314i
\(669\) 0 0
\(670\) 1.18483e8 0.0152193
\(671\) 7.13003e9 3.79118e9i 0.911093 0.484447i
\(672\) 0 0
\(673\) 1.42742e9 + 4.39314e9i 0.180509 + 0.555549i 0.999842 0.0177683i \(-0.00565613\pi\)
−0.819333 + 0.573318i \(0.805656\pi\)
\(674\) 7.60026e8 + 5.52191e8i 0.0956135 + 0.0694672i
\(675\) 0 0
\(676\) −4.84225e9 + 1.49029e10i −0.602884 + 1.85549i
\(677\) −1.36263e9 + 4.19374e9i −0.168779 + 0.519447i −0.999295 0.0375472i \(-0.988046\pi\)
0.830516 + 0.556994i \(0.188046\pi\)
\(678\) 0 0
\(679\) 1.08633e10 + 7.89264e9i 1.33173 + 0.967561i
\(680\) −8.79833e8 2.70785e9i −0.107305 0.330250i
\(681\) 0 0
\(682\) −2.24376e9 3.15320e8i −0.270851 0.0380633i
\(683\) 1.34123e10 1.61076 0.805378 0.592761i \(-0.201962\pi\)
0.805378 + 0.592761i \(0.201962\pi\)
\(684\) 0 0
\(685\) 5.66778e9 + 4.11788e9i 0.673745 + 0.489505i
\(686\) 9.60374e8 6.97753e8i 0.113581 0.0825215i
\(687\) 0 0
\(688\) 8.71740e7 2.68294e8i 0.0102053 0.0314088i
\(689\) −1.73759e10 + 1.26243e10i −2.02386 + 1.47042i
\(690\) 0 0
\(691\) 3.78591e9 + 1.16518e10i 0.436513 + 1.34345i 0.891529 + 0.452964i \(0.149634\pi\)
−0.455016 + 0.890483i \(0.650366\pi\)
\(692\) −4.43665e9 −0.508960
\(693\) 0 0
\(694\) 1.40163e9 0.159175
\(695\) 5.93213e8 + 1.82572e9i 0.0670291 + 0.206294i
\(696\) 0 0
\(697\) −1.08770e10 + 7.90261e9i −1.21673 + 0.884007i
\(698\) −9.31597e8 + 2.86716e9i −0.103689 + 0.319123i
\(699\) 0 0
\(700\) −1.82119e9 + 1.32317e9i −0.200684 + 0.145805i
\(701\) 8.27646e9 + 6.01320e9i 0.907468 + 0.659314i 0.940373 0.340144i \(-0.110476\pi\)
−0.0329050 + 0.999458i \(0.510476\pi\)
\(702\) 0 0
\(703\) −6.63791e9 −0.720589
\(704\) 2.79886e9 5.73864e9i 0.302327 0.619876i
\(705\) 0 0
\(706\) 3.42236e8 + 1.05329e9i 0.0366024 + 0.112651i
\(707\) −1.73820e10 1.26288e10i −1.84983 1.34398i
\(708\) 0 0
\(709\) 2.20176e9 6.77631e9i 0.232011 0.714055i −0.765493 0.643444i \(-0.777505\pi\)
0.997504 0.0706112i \(-0.0224950\pi\)
\(710\) −7.40808e8 + 2.27997e9i −0.0776786 + 0.239070i
\(711\) 0 0
\(712\) 9.69013e8 + 7.04029e8i 0.100612 + 0.0730988i
\(713\) −3.54901e9 1.09227e10i −0.366686 1.12854i
\(714\) 0 0
\(715\) 1.12122e10 + 1.08274e10i 1.14715 + 1.10777i
\(716\) −1.08319e9 −0.110283
\(717\) 0 0
\(718\) −1.28076e9 9.30524e8i −0.129131 0.0938192i
\(719\) −5.94949e9 + 4.32256e9i −0.596938 + 0.433701i −0.844791 0.535097i \(-0.820275\pi\)
0.247853 + 0.968798i \(0.420275\pi\)
\(720\) 0 0
\(721\) 3.86776e9 1.19037e10i 0.384313 1.18280i
\(722\) −1.38966e9 + 1.00965e9i −0.137413 + 0.0998366i
\(723\) 0 0
\(724\) −5.34705e9 1.64565e10i −0.523635 1.61158i
\(725\) 4.08381e8 0.0397999
\(726\) 0 0
\(727\) 1.90225e10 1.83610 0.918052 0.396459i \(-0.129761\pi\)
0.918052 + 0.396459i \(0.129761\pi\)
\(728\) −3.94071e9 1.21283e10i −0.378542 1.16503i
\(729\) 0 0
\(730\) 3.93299e8 2.85749e8i 0.0374191 0.0271866i
\(731\) 1.07927e8 3.32166e8i 0.0102193 0.0314517i
\(732\) 0 0
\(733\) −6.22682e9 + 4.52405e9i −0.583986 + 0.424291i −0.840159 0.542340i \(-0.817538\pi\)
0.256173 + 0.966631i \(0.417538\pi\)
\(734\) −2.20107e9 1.59917e9i −0.205446 0.149265i
\(735\) 0 0
\(736\) −7.07852e9 −0.654440
\(737\) 5.61157e8 + 5.41894e8i 0.0516355 + 0.0498630i
\(738\) 0 0
\(739\) 4.51689e9 + 1.39016e10i 0.411703 + 1.26709i 0.915167 + 0.403076i \(0.132059\pi\)
−0.503464 + 0.864016i \(0.667941\pi\)
\(740\) 1.06596e10 + 7.74462e9i 0.967004 + 0.702570i
\(741\) 0 0
\(742\) 1.76824e9 5.44209e9i 0.158902 0.489049i
\(743\) −5.13843e8 + 1.58145e9i −0.0459589 + 0.141447i −0.971403 0.237438i \(-0.923692\pi\)
0.925444 + 0.378885i \(0.123692\pi\)
\(744\) 0 0
\(745\) 7.40760e6 + 5.38194e6i 0.000656343 + 0.000476861i
\(746\) 1.44891e9 + 4.45927e9i 0.127777 + 0.393258i
\(747\) 0 0
\(748\) 3.99447e9 8.19006e9i 0.348983 0.715536i
\(749\) 2.26499e10 1.96961
\(750\) 0 0
\(751\) 1.16796e10 + 8.48570e9i 1.00621 + 0.731052i 0.963410 0.268032i \(-0.0863734\pi\)
0.0427962 + 0.999084i \(0.486373\pi\)
\(752\) 6.36137e9 4.62181e9i 0.545492 0.396323i
\(753\) 0 0
\(754\) −3.47502e8 + 1.06950e9i −0.0295228 + 0.0908618i
\(755\) −7.16833e9 + 5.20810e9i −0.606183 + 0.440418i
\(756\) 0 0
\(757\) 2.68924e8 + 8.27663e8i 0.0225317 + 0.0693454i 0.961690 0.274139i \(-0.0883928\pi\)
−0.939158 + 0.343484i \(0.888393\pi\)
\(758\) 1.55894e9 0.130013
\(759\) 0 0
\(760\) −2.59432e9 −0.214376
\(761\) −5.76503e9 1.77429e10i −0.474193 1.45942i −0.847043 0.531525i \(-0.821619\pi\)
0.372850 0.927892i \(-0.378381\pi\)
\(762\) 0 0
\(763\) 1.31202e10 9.53242e9i 1.06932 0.776904i
\(764\) 3.13742e9 9.65597e9i 0.254534 0.783374i
\(765\) 0 0
\(766\) −3.52715e9 + 2.56262e9i −0.283545 + 0.206008i
\(767\) 1.95590e10 + 1.42105e10i 1.56518 + 1.13717i
\(768\) 0 0
\(769\) 5.65386e9 0.448335 0.224167 0.974551i \(-0.428034\pi\)
0.224167 + 0.974551i \(0.428034\pi\)
\(770\) −4.11224e9 5.77902e8i −0.324609 0.0456181i
\(771\) 0 0
\(772\) −5.57403e8 1.71551e9i −0.0436022 0.134194i
\(773\) −8.11450e9 5.89553e9i −0.631878 0.459087i 0.225172 0.974319i \(-0.427706\pi\)
−0.857050 + 0.515233i \(0.827706\pi\)
\(774\) 0 0
\(775\) 7.98492e8 2.45751e9i 0.0616190 0.189644i
\(776\) −1.93907e9 + 5.96784e9i −0.148963 + 0.458460i
\(777\) 0 0
\(778\) 1.51433e9 + 1.10022e9i 0.115290 + 0.0837630i
\(779\) 3.78565e9 + 1.16510e10i 0.286919 + 0.883046i
\(780\) 0 0
\(781\) −1.39363e10 + 7.41021e9i −1.04681 + 0.556611i
\(782\) −2.64359e9 −0.197684
\(783\) 0 0
\(784\) −1.27560e10 9.26776e9i −0.945383 0.686861i
\(785\) −1.83558e9 + 1.33363e9i −0.135435 + 0.0983991i
\(786\) 0 0
\(787\) −6.95170e9 + 2.13951e10i −0.508369 + 1.56460i 0.286663 + 0.958032i \(0.407454\pi\)
−0.795032 + 0.606568i \(0.792546\pi\)
\(788\) 1.18105e10 8.58082e9i 0.859857 0.624722i
\(789\) 0 0
\(790\) 2.16546e8 + 6.66461e8i 0.0156263 + 0.0480928i
\(791\) −2.85609e10 −2.05189
\(792\) 0 0
\(793\) −2.53591e10 −1.80583
\(794\) −1.10450e7 3.39930e7i −0.000783057 0.00241000i
\(795\) 0 0
\(796\) −1.30950e10 + 9.51406e9i −0.920257 + 0.668606i
\(797\) −6.49597e9 + 1.99925e10i −0.454506 + 1.39883i 0.417208 + 0.908811i \(0.363009\pi\)
−0.871714 + 0.490015i \(0.836991\pi\)
\(798\) 0 0
\(799\) 7.87581e9 5.72211e9i 0.546238 0.396865i
\(800\) −1.28844e9 9.36105e8i −0.0889710 0.0646412i
\(801\) 0 0
\(802\) 5.13567e9 0.351550
\(803\) 3.16964e9 + 4.45436e8i 0.216026 + 0.0303586i
\(804\) 0 0
\(805\) −6.50444e9 2.00186e10i −0.439465 1.35253i
\(806\) 5.75646e9 + 4.18232e9i 0.387243 + 0.281348i
\(807\) 0 0
\(808\) 3.10264e9 9.54895e9i 0.206915 0.636818i
\(809\) 3.33730e9 1.02712e10i 0.221603 0.682024i −0.777016 0.629481i \(-0.783267\pi\)
0.998619 0.0525426i \(-0.0167325\pi\)
\(810\) 0 0
\(811\) 5.40531e9 + 3.92719e9i 0.355834 + 0.258529i 0.751313 0.659947i \(-0.229421\pi\)
−0.395478 + 0.918475i \(0.629421\pi\)
\(812\) 1.61756e9 + 4.97834e9i 0.106027 + 0.326316i
\(813\) 0 0
\(814\) −8.62245e8 4.88979e9i −0.0560332 0.317764i
\(815\) 9.25709e9 0.598995
\(816\) 0 0
\(817\) −2.57462e8 1.87057e8i −0.0165172 0.0120004i
\(818\) −2.28475e9 + 1.65997e9i −0.145949 + 0.106038i
\(819\) 0 0
\(820\) 7.51434e9 2.31267e10i 0.475929 1.46476i
\(821\) 5.60406e9 4.07159e9i 0.353429 0.256781i −0.396877 0.917872i \(-0.629906\pi\)
0.750306 + 0.661091i \(0.229906\pi\)
\(822\) 0 0
\(823\) −6.53196e9 2.01033e10i −0.408455 1.25709i −0.917976 0.396636i \(-0.870177\pi\)
0.509521 0.860458i \(-0.329823\pi\)
\(824\) 5.84903e9 0.364199
\(825\) 0 0
\(826\) −6.44110e9 −0.397677
\(827\) 8.35592e9 + 2.57169e10i 0.513718 + 1.58106i 0.785602 + 0.618732i \(0.212353\pi\)
−0.271884 + 0.962330i \(0.587647\pi\)
\(828\) 0 0
\(829\) 1.60321e10 1.16480e10i 0.977351 0.710087i 0.0202363 0.999795i \(-0.493558\pi\)
0.957115 + 0.289708i \(0.0935581\pi\)
\(830\) 1.31874e9 4.05866e9i 0.0800544 0.246382i
\(831\) 0 0
\(832\) −1.62211e10 + 1.17853e10i −0.976447 + 0.709430i
\(833\) −1.57928e10 1.14741e10i −0.946676 0.687800i
\(834\) 0 0
\(835\) 4.99947e8 0.0297181
\(836\) −5.97268e9 5.76765e9i −0.353547 0.341410i
\(837\) 0 0
\(838\) 5.14113e8 + 1.58228e9i 0.0301790 + 0.0928813i
\(839\) 5.18702e9 + 3.76859e9i 0.303215 + 0.220299i 0.728980 0.684535i \(-0.239995\pi\)
−0.425765 + 0.904834i \(0.639995\pi\)
\(840\) 0 0
\(841\) −5.03706e9 + 1.55025e10i −0.292006 + 0.898701i
\(842\) 2.36154e9 7.26807e9i 0.136334 0.419592i
\(843\) 0 0
\(844\) −4.59807e9 3.34069e9i −0.263255 0.191266i
\(845\) −1.01869e10 3.13519e10i −0.580820 1.78758i
\(846\) 0 0
\(847\) −1.68332e10 2.15448e10i −0.951866 1.21829i
\(848\) −2.13357e10 −1.20149
\(849\) 0 0
\(850\) −4.81188e8 3.49604e8i −0.0268750 0.0195259i
\(851\) 2.03610e10 1.47931e10i 1.13252 0.822824i
\(852\) 0 0
\(853\) 5.23023e9 1.60970e10i 0.288535 0.888020i −0.696781 0.717284i \(-0.745385\pi\)
0.985317 0.170737i \(-0.0546148\pi\)
\(854\) 5.46590e9 3.97121e9i 0.300303 0.218183i
\(855\) 0 0
\(856\) 3.27082e9 + 1.00666e10i 0.178237 + 0.548558i
\(857\) −1.19710e10 −0.649678 −0.324839 0.945769i \(-0.605310\pi\)
−0.324839 + 0.945769i \(0.605310\pi\)
\(858\) 0 0
\(859\) 3.00358e10 1.61682 0.808412 0.588617i \(-0.200327\pi\)
0.808412 + 0.588617i \(0.200327\pi\)
\(860\) 1.95204e8 + 6.00775e8i 0.0104651 + 0.0322083i
\(861\) 0 0
\(862\) 6.44516e8 4.68269e8i 0.0342735 0.0249012i
\(863\) −6.06852e9 + 1.86770e10i −0.321399 + 0.989165i 0.651641 + 0.758528i \(0.274081\pi\)
−0.973040 + 0.230637i \(0.925919\pi\)
\(864\) 0 0
\(865\) 7.55101e9 5.48613e9i 0.396688 0.288211i
\(866\) 1.33802e9 + 9.72126e8i 0.0700082 + 0.0508640i
\(867\) 0 0
\(868\) 3.31209e10 1.71903
\(869\) −2.02253e9 + 4.14688e9i −0.104550 + 0.214364i
\(870\) 0 0
\(871\) −7.57015e8 2.32985e9i −0.0388187 0.119472i
\(872\) 6.13125e9 + 4.45462e9i 0.313142 + 0.227511i
\(873\) 0 0
\(874\) −7.44360e8 + 2.29090e9i −0.0377132 + 0.116069i
\(875\) 1.00907e10 3.10558e10i 0.509203 1.56717i
\(876\) 0 0
\(877\) −2.83339e10 2.05858e10i −1.41843 1.03055i −0.992028 0.126018i \(-0.959780\pi\)
−0.426404 0.904533i \(-0.640220\pi\)
\(878\) −4.82857e8 1.48608e9i −0.0240762 0.0740989i
\(879\) 0 0
\(880\) 2.68884e9 + 1.52484e10i 0.133007 + 0.754283i
\(881\) −3.55317e10 −1.75065 −0.875326 0.483532i \(-0.839354\pi\)
−0.875326 + 0.483532i \(0.839354\pi\)
\(882\) 0 0
\(883\) −9.41080e9 6.83735e9i −0.460007 0.334214i 0.333527 0.942740i \(-0.391761\pi\)
−0.793534 + 0.608526i \(0.791761\pi\)
\(884\) −2.31504e10 + 1.68197e10i −1.12713 + 0.818910i
\(885\) 0 0
\(886\) 6.01911e8 1.85249e9i 0.0290746 0.0894825i
\(887\) 2.33369e10 1.69552e10i 1.12282 0.815777i 0.138187 0.990406i \(-0.455873\pi\)
0.984634 + 0.174629i \(0.0558726\pi\)
\(888\) 0 0
\(889\) 5.19274e9 + 1.59816e10i 0.247879 + 0.762894i
\(890\) −1.22484e9 −0.0582392
\(891\) 0 0
\(892\) 1.51719e10 0.715754
\(893\) −2.74111e9 8.43627e9i −0.128809 0.396433i
\(894\) 0 0
\(895\) 1.84355e9 1.33942e9i 0.0859556 0.0624504i
\(896\) 8.31992e9 2.56061e10i 0.386403 1.18923i
\(897\) 0 0
\(898\) −1.67175e9 + 1.21460e9i −0.0770380 + 0.0559714i
\(899\) −4.86101e9 3.53173e9i −0.223135 0.162117i
\(900\) 0 0
\(901\) −2.64151e10 −1.20314
\(902\) −8.09094e9 + 4.30212e9i −0.367093 + 0.195191i
\(903\) 0 0
\(904\) −4.12441e9 1.26936e10i −0.185683 0.571473i
\(905\) 2.94498e10 + 2.13965e10i 1.32072 + 0.959562i
\(906\) 0 0
\(907\) −2.96422e9 + 9.12294e9i −0.131912 + 0.405984i −0.995097 0.0989040i \(-0.968466\pi\)
0.863185 + 0.504888i \(0.168466\pi\)
\(908\) −7.79688e9 + 2.39963e10i −0.345637 + 1.06376i
\(909\) 0 0
\(910\) 1.05501e10 + 7.66513e9i 0.464102 + 0.337190i
\(911\) −1.08217e10 3.33058e10i −0.474223 1.45951i −0.847003 0.531588i \(-0.821596\pi\)
0.372781 0.927919i \(-0.378404\pi\)
\(912\) 0 0
\(913\) 2.48085e10 1.31912e10i 1.07883 0.573635i
\(914\) 5.28107e9 0.228776
\(915\) 0 0
\(916\) 2.64085e10 + 1.91869e10i 1.13530 + 0.824840i
\(917\) −3.30417e10 + 2.40062e10i −1.41504 + 1.02809i
\(918\) 0 0
\(919\) −9.80963e9 + 3.01909e10i −0.416916 + 1.28313i 0.493610 + 0.869683i \(0.335677\pi\)
−0.910526 + 0.413452i \(0.864323\pi\)
\(920\) 7.95779e9 5.78167e9i 0.336926 0.244791i
\(921\) 0 0
\(922\) 2.16839e9 + 6.67363e9i 0.0911129 + 0.280417i
\(923\) 4.95666e10 2.07483
\(924\) 0 0
\(925\) 5.66246e9 0.235239
\(926\) −2.34430e9 7.21500e9i −0.0970229 0.298606i
\(927\) 0 0
\(928\) −2.99601e9 + 2.17673e9i −0.123062 + 0.0894101i
\(929\) 6.55945e9 2.01879e10i 0.268418 0.826107i −0.722468 0.691405i \(-0.756992\pi\)
0.990886 0.134702i \(-0.0430078\pi\)
\(930\) 0 0
\(931\) −1.43901e10 + 1.04550e10i −0.584441 + 0.424622i
\(932\) −6.60713e9 4.80036e9i −0.267336 0.194231i
\(933\) 0 0
\(934\) −5.41558e9 −0.217486
\(935\) 3.32896e9 + 1.88785e10i 0.133189 + 0.755315i
\(936\) 0 0
\(937\) −2.98336e8 9.18183e8i −0.0118472 0.0364620i 0.944958 0.327191i \(-0.106102\pi\)
−0.956805 + 0.290729i \(0.906102\pi\)
\(938\) 5.28020e8 + 3.83629e8i 0.0208901 + 0.0151775i
\(939\) 0 0
\(940\) −5.44097e9 + 1.67456e10i −0.213663 + 0.657587i
\(941\) −5.82146e9 + 1.79166e10i −0.227755 + 0.700959i 0.770245 + 0.637748i \(0.220134\pi\)
−0.998000 + 0.0632106i \(0.979866\pi\)
\(942\) 0 0
\(943\) −3.75773e10 2.73015e10i −1.45927 1.06022i
\(944\) 7.42148e9 + 2.28410e10i 0.287136 + 0.883715i
\(945\) 0 0
\(946\) 1.04351e8 2.13957e8i 0.00400755 0.00821688i
\(947\) −9.77060e9 −0.373849 −0.186925 0.982374i \(-0.559852\pi\)
−0.186925 + 0.982374i \(0.559852\pi\)
\(948\) 0 0
\(949\) −8.13185e9 5.90814e9i −0.308857 0.224398i
\(950\) −4.38451e8 + 3.18554e8i −0.0165916 + 0.0120545i
\(951\) 0 0
\(952\) 4.84660e9 1.49163e10i 0.182057 0.560314i
\(953\) −8.10446e9 + 5.88824e9i −0.303319 + 0.220374i −0.729024 0.684488i \(-0.760026\pi\)
0.425706 + 0.904862i \(0.360026\pi\)
\(954\) 0 0
\(955\) 6.60032e9 + 2.03137e10i 0.245218 + 0.754704i
\(956\) −2.02945e10 −0.751236
\(957\) 0 0
\(958\) −5.64783e8 −0.0207540
\(959\) 1.19254e10 + 3.67027e10i 0.436625 + 1.34379i
\(960\) 0 0
\(961\) −8.49921e9 + 6.17504e9i −0.308920 + 0.224444i
\(962\) −4.81834e9 + 1.48293e10i −0.174496 + 0.537042i
\(963\) 0 0
\(964\) 1.07537e9 7.81303e8i 0.0386624 0.0280899i
\(965\) 3.06999e9 + 2.23048e9i 0.109974 + 0.0799010i
\(966\) 0 0
\(967\) 3.79569e10 1.34989 0.674944 0.737869i \(-0.264168\pi\)
0.674944 + 0.737869i \(0.264168\pi\)
\(968\) 7.14454e9 1.05926e10i 0.253169 0.375352i
\(969\) 0 0
\(970\) −1.98291e9 6.10276e9i −0.0697591 0.214696i
\(971\) −9.04105e9 6.56871e9i −0.316921 0.230257i 0.417939 0.908475i \(-0.362752\pi\)
−0.734861 + 0.678218i \(0.762752\pi\)
\(972\) 0 0
\(973\) −3.26774e9 + 1.00571e10i −0.113724 + 0.350006i
\(974\) 2.19523e9 6.75623e9i 0.0761244 0.234287i
\(975\) 0 0
\(976\) −2.03802e10 1.48071e10i −0.701673 0.509796i
\(977\) −2.99951e9 9.23154e9i −0.102901 0.316696i 0.886331 0.463052i \(-0.153246\pi\)
−0.989232 + 0.146356i \(0.953246\pi\)
\(978\) 0 0
\(979\) −5.80108e9 5.60195e9i −0.197592 0.190809i
\(980\) 3.53067e10 1.19830
\(981\) 0 0
\(982\) 8.24966e9 + 5.99373e9i 0.278001 + 0.201979i
\(983\) −2.27603e9 + 1.65363e9i −0.0764259 + 0.0555266i −0.625342 0.780351i \(-0.715041\pi\)
0.548916 + 0.835877i \(0.315041\pi\)
\(984\) 0 0
\(985\) −9.49042e9 + 2.92085e10i −0.316416 + 0.973828i
\(986\) −1.11891e9 + 8.12936e8i −0.0371729 + 0.0270077i
\(987\) 0 0
\(988\) 8.05729e9 + 2.47978e10i 0.265791 + 0.818019i
\(989\) 1.20661e9 0.0396624
\(990\) 0 0
\(991\) −2.01304e10 −0.657043 −0.328522 0.944496i \(-0.606550\pi\)
−0.328522 + 0.944496i \(0.606550\pi\)
\(992\) 7.24088e9 + 2.22851e10i 0.235505 + 0.724811i
\(993\) 0 0
\(994\) −1.06836e10 + 7.76209e9i −0.345036 + 0.250684i
\(995\) 1.05226e10 3.23852e10i 0.338642 1.04223i
\(996\) 0 0
\(997\) 1.29314e10 9.39518e9i 0.413248 0.300243i −0.361667 0.932307i \(-0.617792\pi\)
0.774916 + 0.632065i \(0.217792\pi\)
\(998\) 3.49178e9 + 2.53693e9i 0.111196 + 0.0807889i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.8.f.b.82.3 28
3.2 odd 2 33.8.e.b.16.5 28
11.9 even 5 inner 99.8.f.b.64.3 28
33.8 even 10 363.8.a.r.1.7 14
33.14 odd 10 363.8.a.o.1.8 14
33.20 odd 10 33.8.e.b.31.5 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.b.16.5 28 3.2 odd 2
33.8.e.b.31.5 yes 28 33.20 odd 10
99.8.f.b.64.3 28 11.9 even 5 inner
99.8.f.b.82.3 28 1.1 even 1 trivial
363.8.a.o.1.8 14 33.14 odd 10
363.8.a.r.1.7 14 33.8 even 10