Properties

Label 99.8
Level 99
Weight 8
Dimension 1920
Nonzero newspaces 8
Newform subspaces 21
Sturm bound 5760
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 21 \)
Sturm bound: \(5760\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(99))\).

Total New Old
Modular forms 2600 2000 600
Cusp forms 2440 1920 520
Eisenstein series 160 80 80

Trace form

\( 1920 q + 15 q^{2} - 68 q^{3} - 117 q^{4} + 1125 q^{5} + 2446 q^{6} - 1744 q^{7} - 18979 q^{8} - 2000 q^{9} + 27806 q^{10} + 10792 q^{11} - 16144 q^{12} - 25648 q^{13} - 13014 q^{14} + 2356 q^{15} + 45791 q^{16}+ \cdots + 195300576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(99))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
99.8.a \(\chi_{99}(1, \cdot)\) 99.8.a.a 1 1
99.8.a.b 2
99.8.a.c 2
99.8.a.d 2
99.8.a.e 3
99.8.a.f 4
99.8.a.g 4
99.8.a.h 5
99.8.a.i 5
99.8.d \(\chi_{99}(98, \cdot)\) 99.8.d.a 28 1
99.8.e \(\chi_{99}(34, \cdot)\) 99.8.e.a 66 2
99.8.e.b 74
99.8.f \(\chi_{99}(37, \cdot)\) 99.8.f.a 24 4
99.8.f.b 28
99.8.f.c 28
99.8.f.d 56
99.8.g \(\chi_{99}(32, \cdot)\) 99.8.g.a 4 2
99.8.g.b 160
99.8.j \(\chi_{99}(8, \cdot)\) 99.8.j.a 112 4
99.8.m \(\chi_{99}(4, \cdot)\) 99.8.m.a 656 8
99.8.p \(\chi_{99}(2, \cdot)\) 99.8.p.a 656 8

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(99))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(99)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 1}\)