Properties

Label 99.4.d.c.98.2
Level $99$
Weight $4$
Character 99.98
Analytic conductor $5.841$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,4,Mod(98,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.98"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12261951429820416.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 62x^{6} + 1113x^{4} + 5786x^{2} + 5776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 98.2
Root \(-1.14042i\) of defining polynomial
Character \(\chi\) \(=\) 99.98
Dual form 99.4.d.c.98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00866 q^{2} +17.0866 q^{4} +7.07107i q^{5} -10.4716i q^{7} -45.5118 q^{8} -35.4165i q^{10} +(-13.0640 - 34.0636i) q^{11} +43.7271i q^{13} +52.4484i q^{14} +91.2599 q^{16} +115.416 q^{17} +89.3084i q^{19} +120.821i q^{20} +(65.4332 + 170.613i) q^{22} +213.357i q^{23} +75.0000 q^{25} -219.014i q^{26} -178.924i q^{28} +124.132 q^{29} -149.040 q^{31} -92.9950 q^{32} -578.079 q^{34} +74.0451 q^{35} +161.733 q^{37} -447.315i q^{38} -321.817i q^{40} -172.049 q^{41} +258.081i q^{43} +(-223.220 - 582.033i) q^{44} -1068.63i q^{46} +240.416i q^{47} +233.347 q^{49} -375.649 q^{50} +747.149i q^{52} +334.790i q^{53} +(240.866 - 92.3765i) q^{55} +476.579i q^{56} -621.733 q^{58} -382.685i q^{59} +609.752i q^{61} +746.488 q^{62} -264.299 q^{64} -309.197 q^{65} +260.000 q^{67} +1972.07 q^{68} -370.866 q^{70} -17.3487i q^{71} -787.834i q^{73} -810.063 q^{74} +1525.98i q^{76} +(-356.699 + 136.801i) q^{77} -1000.93i q^{79} +645.305i q^{80} +861.733 q^{82} +183.820 q^{83} +816.115i q^{85} -1292.64i q^{86} +(594.567 + 1550.30i) q^{88} +11.1459i q^{89} +457.891 q^{91} +3645.56i q^{92} -1204.16i q^{94} -631.506 q^{95} +1795.20 q^{97} -1168.75 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4} + 452 q^{16} + 60 q^{22} + 600 q^{25} - 80 q^{31} - 2400 q^{34} - 560 q^{37} + 1496 q^{49} + 1000 q^{55} - 3120 q^{58} - 724 q^{64} + 2080 q^{67} - 2040 q^{70} + 5040 q^{82} + 5220 q^{88}+ \cdots + 8800 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00866 −1.77083 −0.885414 0.464804i \(-0.846125\pi\)
−0.885414 + 0.464804i \(0.846125\pi\)
\(3\) 0 0
\(4\) 17.0866 2.13583
\(5\) 7.07107i 0.632456i 0.948683 + 0.316228i \(0.102416\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) 0 0
\(7\) 10.4716i 0.565411i −0.959207 0.282705i \(-0.908768\pi\)
0.959207 0.282705i \(-0.0912319\pi\)
\(8\) −45.5118 −2.01136
\(9\) 0 0
\(10\) 35.4165i 1.11997i
\(11\) −13.0640 34.0636i −0.358086 0.933689i
\(12\) 0 0
\(13\) 43.7271i 0.932901i 0.884547 + 0.466451i \(0.154467\pi\)
−0.884547 + 0.466451i \(0.845533\pi\)
\(14\) 52.4484i 1.00124i
\(15\) 0 0
\(16\) 91.2599 1.42594
\(17\) 115.416 1.64662 0.823309 0.567594i \(-0.192126\pi\)
0.823309 + 0.567594i \(0.192126\pi\)
\(18\) 0 0
\(19\) 89.3084i 1.07836i 0.842192 + 0.539178i \(0.181265\pi\)
−0.842192 + 0.539178i \(0.818735\pi\)
\(20\) 120.821i 1.35082i
\(21\) 0 0
\(22\) 65.4332 + 170.613i 0.634109 + 1.65340i
\(23\) 213.357i 1.93426i 0.254277 + 0.967131i \(0.418162\pi\)
−0.254277 + 0.967131i \(0.581838\pi\)
\(24\) 0 0
\(25\) 75.0000 0.600000
\(26\) 219.014i 1.65201i
\(27\) 0 0
\(28\) 178.924i 1.20762i
\(29\) 124.132 0.794851 0.397425 0.917635i \(-0.369904\pi\)
0.397425 + 0.917635i \(0.369904\pi\)
\(30\) 0 0
\(31\) −149.040 −0.863493 −0.431747 0.901995i \(-0.642103\pi\)
−0.431747 + 0.901995i \(0.642103\pi\)
\(32\) −92.9950 −0.513729
\(33\) 0 0
\(34\) −578.079 −2.91588
\(35\) 74.0451 0.357597
\(36\) 0 0
\(37\) 161.733 0.718613 0.359306 0.933220i \(-0.383013\pi\)
0.359306 + 0.933220i \(0.383013\pi\)
\(38\) 447.315i 1.90958i
\(39\) 0 0
\(40\) 321.817i 1.27209i
\(41\) −172.049 −0.655353 −0.327677 0.944790i \(-0.606266\pi\)
−0.327677 + 0.944790i \(0.606266\pi\)
\(42\) 0 0
\(43\) 258.081i 0.915277i 0.889138 + 0.457639i \(0.151305\pi\)
−0.889138 + 0.457639i \(0.848695\pi\)
\(44\) −223.220 582.033i −0.764811 1.99420i
\(45\) 0 0
\(46\) 1068.63i 3.42525i
\(47\) 240.416i 0.746135i 0.927804 + 0.373067i \(0.121694\pi\)
−0.927804 + 0.373067i \(0.878306\pi\)
\(48\) 0 0
\(49\) 233.347 0.680311
\(50\) −375.649 −1.06250
\(51\) 0 0
\(52\) 747.149i 1.99252i
\(53\) 334.790i 0.867679i 0.900990 + 0.433840i \(0.142842\pi\)
−0.900990 + 0.433840i \(0.857158\pi\)
\(54\) 0 0
\(55\) 240.866 92.3765i 0.590516 0.226474i
\(56\) 476.579i 1.13724i
\(57\) 0 0
\(58\) −621.733 −1.40754
\(59\) 382.685i 0.844429i −0.906496 0.422214i \(-0.861253\pi\)
0.906496 0.422214i \(-0.138747\pi\)
\(60\) 0 0
\(61\) 609.752i 1.27985i 0.768438 + 0.639924i \(0.221034\pi\)
−0.768438 + 0.639924i \(0.778966\pi\)
\(62\) 746.488 1.52910
\(63\) 0 0
\(64\) −264.299 −0.516210
\(65\) −309.197 −0.590019
\(66\) 0 0
\(67\) 260.000 0.474090 0.237045 0.971499i \(-0.423821\pi\)
0.237045 + 0.971499i \(0.423821\pi\)
\(68\) 1972.07 3.51689
\(69\) 0 0
\(70\) −370.866 −0.633243
\(71\) 17.3487i 0.0289988i −0.999895 0.0144994i \(-0.995385\pi\)
0.999895 0.0144994i \(-0.00461546\pi\)
\(72\) 0 0
\(73\) 787.834i 1.26314i −0.775320 0.631569i \(-0.782411\pi\)
0.775320 0.631569i \(-0.217589\pi\)
\(74\) −810.063 −1.27254
\(75\) 0 0
\(76\) 1525.98i 2.30318i
\(77\) −356.699 + 136.801i −0.527918 + 0.202466i
\(78\) 0 0
\(79\) 1000.93i 1.42549i −0.701422 0.712746i \(-0.747451\pi\)
0.701422 0.712746i \(-0.252549\pi\)
\(80\) 645.305i 0.901841i
\(81\) 0 0
\(82\) 861.733 1.16052
\(83\) 183.820 0.243095 0.121548 0.992586i \(-0.461214\pi\)
0.121548 + 0.992586i \(0.461214\pi\)
\(84\) 0 0
\(85\) 816.115i 1.04141i
\(86\) 1292.64i 1.62080i
\(87\) 0 0
\(88\) 594.567 + 1550.30i 0.720239 + 1.87798i
\(89\) 11.1459i 0.0132748i 0.999978 + 0.00663741i \(0.00211277\pi\)
−0.999978 + 0.00663741i \(0.997887\pi\)
\(90\) 0 0
\(91\) 457.891 0.527473
\(92\) 3645.56i 4.13125i
\(93\) 0 0
\(94\) 1204.16i 1.32128i
\(95\) −631.506 −0.682012
\(96\) 0 0
\(97\) 1795.20 1.87912 0.939560 0.342383i \(-0.111234\pi\)
0.939560 + 0.342383i \(0.111234\pi\)
\(98\) −1168.75 −1.20471
\(99\) 0 0
\(100\) 1281.50 1.28150
\(101\) −346.173 −0.341044 −0.170522 0.985354i \(-0.554545\pi\)
−0.170522 + 0.985354i \(0.554545\pi\)
\(102\) 0 0
\(103\) −940.000 −0.899233 −0.449616 0.893222i \(-0.648439\pi\)
−0.449616 + 0.893222i \(0.648439\pi\)
\(104\) 1990.10i 1.87640i
\(105\) 0 0
\(106\) 1676.85i 1.53651i
\(107\) −1826.66 −1.65037 −0.825186 0.564861i \(-0.808930\pi\)
−0.825186 + 0.564861i \(0.808930\pi\)
\(108\) 0 0
\(109\) 1419.73i 1.24757i −0.781595 0.623787i \(-0.785593\pi\)
0.781595 0.623787i \(-0.214407\pi\)
\(110\) −1206.42 + 462.682i −1.04570 + 0.401046i
\(111\) 0 0
\(112\) 955.633i 0.806240i
\(113\) 763.955i 0.635990i −0.948092 0.317995i \(-0.896991\pi\)
0.948092 0.317995i \(-0.103009\pi\)
\(114\) 0 0
\(115\) −1508.66 −1.22334
\(116\) 2120.99 1.69766
\(117\) 0 0
\(118\) 1916.74i 1.49534i
\(119\) 1208.59i 0.931015i
\(120\) 0 0
\(121\) −989.663 + 890.016i −0.743548 + 0.668682i
\(122\) 3054.04i 2.26639i
\(123\) 0 0
\(124\) −2546.58 −1.84427
\(125\) 1414.21i 1.01193i
\(126\) 0 0
\(127\) 453.826i 0.317091i −0.987352 0.158545i \(-0.949320\pi\)
0.987352 0.158545i \(-0.0506804\pi\)
\(128\) 2067.74 1.42785
\(129\) 0 0
\(130\) 1548.66 1.04482
\(131\) 2674.02 1.78344 0.891718 0.452591i \(-0.149500\pi\)
0.891718 + 0.452591i \(0.149500\pi\)
\(132\) 0 0
\(133\) 935.198 0.609714
\(134\) −1302.25 −0.839532
\(135\) 0 0
\(136\) −5252.79 −3.31193
\(137\) 1209.71i 0.754399i 0.926132 + 0.377200i \(0.123113\pi\)
−0.926132 + 0.377200i \(0.876887\pi\)
\(138\) 0 0
\(139\) 175.615i 0.107162i 0.998564 + 0.0535809i \(0.0170635\pi\)
−0.998564 + 0.0535809i \(0.982937\pi\)
\(140\) 1265.18 0.763766
\(141\) 0 0
\(142\) 86.8937i 0.0513518i
\(143\) 1489.50 571.252i 0.871039 0.334059i
\(144\) 0 0
\(145\) 877.743i 0.502708i
\(146\) 3945.99i 2.23680i
\(147\) 0 0
\(148\) 2763.47 1.53483
\(149\) −1578.81 −0.868062 −0.434031 0.900898i \(-0.642909\pi\)
−0.434031 + 0.900898i \(0.642909\pi\)
\(150\) 0 0
\(151\) 1333.62i 0.718733i 0.933197 + 0.359366i \(0.117007\pi\)
−0.933197 + 0.359366i \(0.882993\pi\)
\(152\) 4064.59i 2.16896i
\(153\) 0 0
\(154\) 1786.58 685.187i 0.934851 0.358532i
\(155\) 1053.87i 0.546121i
\(156\) 0 0
\(157\) −970.000 −0.493086 −0.246543 0.969132i \(-0.579295\pi\)
−0.246543 + 0.969132i \(0.579295\pi\)
\(158\) 5013.33i 2.52430i
\(159\) 0 0
\(160\) 657.574i 0.324911i
\(161\) 2234.18 1.09365
\(162\) 0 0
\(163\) −2499.06 −1.20087 −0.600434 0.799675i \(-0.705005\pi\)
−0.600434 + 0.799675i \(0.705005\pi\)
\(164\) −2939.73 −1.39972
\(165\) 0 0
\(166\) −920.693 −0.430480
\(167\) 2314.23 1.07234 0.536168 0.844111i \(-0.319871\pi\)
0.536168 + 0.844111i \(0.319871\pi\)
\(168\) 0 0
\(169\) 284.940 0.129695
\(170\) 4087.64i 1.84416i
\(171\) 0 0
\(172\) 4409.73i 1.95488i
\(173\) 929.968 0.408695 0.204347 0.978898i \(-0.434493\pi\)
0.204347 + 0.978898i \(0.434493\pi\)
\(174\) 0 0
\(175\) 785.367i 0.339247i
\(176\) −1192.22 3108.64i −0.510608 1.33138i
\(177\) 0 0
\(178\) 55.8258i 0.0235074i
\(179\) 973.917i 0.406670i −0.979109 0.203335i \(-0.934822\pi\)
0.979109 0.203335i \(-0.0651781\pi\)
\(180\) 0 0
\(181\) 560.377 0.230124 0.115062 0.993358i \(-0.463293\pi\)
0.115062 + 0.993358i \(0.463293\pi\)
\(182\) −2293.42 −0.934063
\(183\) 0 0
\(184\) 9710.27i 3.89049i
\(185\) 1143.62i 0.454491i
\(186\) 0 0
\(187\) −1507.80 3931.49i −0.589631 1.53743i
\(188\) 4107.90i 1.59362i
\(189\) 0 0
\(190\) 3162.99 1.20772
\(191\) 2226.87i 0.843615i −0.906685 0.421808i \(-0.861396\pi\)
0.906685 0.421808i \(-0.138604\pi\)
\(192\) 0 0
\(193\) 4036.71i 1.50554i 0.658284 + 0.752769i \(0.271282\pi\)
−0.658284 + 0.752769i \(0.728718\pi\)
\(194\) −8991.53 −3.32760
\(195\) 0 0
\(196\) 3987.11 1.45303
\(197\) −1369.56 −0.495316 −0.247658 0.968848i \(-0.579661\pi\)
−0.247658 + 0.968848i \(0.579661\pi\)
\(198\) 0 0
\(199\) −2363.47 −0.841918 −0.420959 0.907080i \(-0.638306\pi\)
−0.420959 + 0.907080i \(0.638306\pi\)
\(200\) −3413.39 −1.20681
\(201\) 0 0
\(202\) 1733.86 0.603931
\(203\) 1299.85i 0.449417i
\(204\) 0 0
\(205\) 1216.57i 0.414482i
\(206\) 4708.14 1.59239
\(207\) 0 0
\(208\) 3990.53i 1.33026i
\(209\) 3042.17 1166.73i 1.00685 0.386144i
\(210\) 0 0
\(211\) 3156.87i 1.02999i 0.857193 + 0.514996i \(0.172206\pi\)
−0.857193 + 0.514996i \(0.827794\pi\)
\(212\) 5720.44i 1.85321i
\(213\) 0 0
\(214\) 9149.11 2.92252
\(215\) −1824.91 −0.578872
\(216\) 0 0
\(217\) 1560.68i 0.488229i
\(218\) 7110.94i 2.20924i
\(219\) 0 0
\(220\) 4115.59 1578.40i 1.26124 0.483709i
\(221\) 5046.81i 1.53613i
\(222\) 0 0
\(223\) −1572.13 −0.472096 −0.236048 0.971741i \(-0.575852\pi\)
−0.236048 + 0.971741i \(0.575852\pi\)
\(224\) 973.802i 0.290468i
\(225\) 0 0
\(226\) 3826.39i 1.12623i
\(227\) 1189.02 0.347657 0.173829 0.984776i \(-0.444386\pi\)
0.173829 + 0.984776i \(0.444386\pi\)
\(228\) 0 0
\(229\) 2068.27 0.596834 0.298417 0.954436i \(-0.403541\pi\)
0.298417 + 0.954436i \(0.403541\pi\)
\(230\) 7556.37 2.16632
\(231\) 0 0
\(232\) −5649.45 −1.59873
\(233\) −2563.83 −0.720867 −0.360433 0.932785i \(-0.617371\pi\)
−0.360433 + 0.932785i \(0.617371\pi\)
\(234\) 0 0
\(235\) −1700.00 −0.471897
\(236\) 6538.79i 1.80356i
\(237\) 0 0
\(238\) 6053.39i 1.64867i
\(239\) −2556.68 −0.691957 −0.345979 0.938242i \(-0.612453\pi\)
−0.345979 + 0.938242i \(0.612453\pi\)
\(240\) 0 0
\(241\) 5996.13i 1.60268i −0.598212 0.801338i \(-0.704122\pi\)
0.598212 0.801338i \(-0.295878\pi\)
\(242\) 4956.88 4457.78i 1.31670 1.18412i
\(243\) 0 0
\(244\) 10418.6i 2.73353i
\(245\) 1650.01i 0.430266i
\(246\) 0 0
\(247\) −3905.20 −1.00600
\(248\) 6783.06 1.73679
\(249\) 0 0
\(250\) 7083.31i 1.79195i
\(251\) 1959.54i 0.492769i −0.969172 0.246385i \(-0.920757\pi\)
0.969172 0.246385i \(-0.0792427\pi\)
\(252\) 0 0
\(253\) 7267.72 2787.30i 1.80600 0.692633i
\(254\) 2273.06i 0.561513i
\(255\) 0 0
\(256\) −8242.22 −2.01226
\(257\) 5441.22i 1.32068i −0.750968 0.660339i \(-0.770413\pi\)
0.750968 0.660339i \(-0.229587\pi\)
\(258\) 0 0
\(259\) 1693.59i 0.406312i
\(260\) −5283.14 −1.26018
\(261\) 0 0
\(262\) −13393.2 −3.15816
\(263\) 4960.72 1.16308 0.581542 0.813516i \(-0.302450\pi\)
0.581542 + 0.813516i \(0.302450\pi\)
\(264\) 0 0
\(265\) −2367.33 −0.548769
\(266\) −4684.08 −1.07970
\(267\) 0 0
\(268\) 4442.52 1.01258
\(269\) 3662.16i 0.830058i 0.909808 + 0.415029i \(0.136229\pi\)
−0.909808 + 0.415029i \(0.863771\pi\)
\(270\) 0 0
\(271\) 3106.99i 0.696443i −0.937412 0.348221i \(-0.886786\pi\)
0.937412 0.348221i \(-0.113214\pi\)
\(272\) 10532.9 2.34797
\(273\) 0 0
\(274\) 6059.03i 1.33591i
\(275\) −979.801 2554.77i −0.214852 0.560213i
\(276\) 0 0
\(277\) 4313.35i 0.935610i 0.883832 + 0.467805i \(0.154955\pi\)
−0.883832 + 0.467805i \(0.845045\pi\)
\(278\) 879.595i 0.189765i
\(279\) 0 0
\(280\) −3369.92 −0.719255
\(281\) −6300.34 −1.33753 −0.668767 0.743472i \(-0.733177\pi\)
−0.668767 + 0.743472i \(0.733177\pi\)
\(282\) 0 0
\(283\) 5388.72i 1.13189i 0.824442 + 0.565947i \(0.191489\pi\)
−0.824442 + 0.565947i \(0.808511\pi\)
\(284\) 296.431i 0.0619364i
\(285\) 0 0
\(286\) −7460.41 + 2861.20i −1.54246 + 0.591561i
\(287\) 1801.62i 0.370544i
\(288\) 0 0
\(289\) 8407.86 1.71135
\(290\) 4396.31i 0.890208i
\(291\) 0 0
\(292\) 13461.4i 2.69785i
\(293\) −1569.12 −0.312862 −0.156431 0.987689i \(-0.549999\pi\)
−0.156431 + 0.987689i \(0.549999\pi\)
\(294\) 0 0
\(295\) 2705.99 0.534064
\(296\) −7360.74 −1.44539
\(297\) 0 0
\(298\) 7907.72 1.53719
\(299\) −9329.49 −1.80448
\(300\) 0 0
\(301\) 2702.50 0.517508
\(302\) 6679.66i 1.27275i
\(303\) 0 0
\(304\) 8150.27i 1.53767i
\(305\) −4311.59 −0.809447
\(306\) 0 0
\(307\) 8427.74i 1.56676i −0.621541 0.783382i \(-0.713493\pi\)
0.621541 0.783382i \(-0.286507\pi\)
\(308\) −6094.79 + 2337.46i −1.12754 + 0.432432i
\(309\) 0 0
\(310\) 5278.47i 0.967086i
\(311\) 4650.78i 0.847979i −0.905667 0.423990i \(-0.860629\pi\)
0.905667 0.423990i \(-0.139371\pi\)
\(312\) 0 0
\(313\) 3019.06 0.545199 0.272599 0.962128i \(-0.412117\pi\)
0.272599 + 0.962128i \(0.412117\pi\)
\(314\) 4858.40 0.873169
\(315\) 0 0
\(316\) 17102.6i 3.04461i
\(317\) 4790.12i 0.848707i −0.905497 0.424353i \(-0.860501\pi\)
0.905497 0.424353i \(-0.139499\pi\)
\(318\) 0 0
\(319\) −1621.66 4228.38i −0.284625 0.742143i
\(320\) 1868.88i 0.326480i
\(321\) 0 0
\(322\) −11190.2 −1.93667
\(323\) 10307.6i 1.77564i
\(324\) 0 0
\(325\) 3279.53i 0.559741i
\(326\) 12516.9 2.12653
\(327\) 0 0
\(328\) 7830.25 1.31815
\(329\) 2517.53 0.421873
\(330\) 0 0
\(331\) −2129.04 −0.353543 −0.176771 0.984252i \(-0.556565\pi\)
−0.176771 + 0.984252i \(0.556565\pi\)
\(332\) 3140.87 0.519210
\(333\) 0 0
\(334\) −11591.2 −1.89892
\(335\) 1838.48i 0.299841i
\(336\) 0 0
\(337\) 4473.34i 0.723082i 0.932356 + 0.361541i \(0.117749\pi\)
−0.932356 + 0.361541i \(0.882251\pi\)
\(338\) −1427.17 −0.229667
\(339\) 0 0
\(340\) 13944.6i 2.22428i
\(341\) 1947.06 + 5076.83i 0.309205 + 0.806234i
\(342\) 0 0
\(343\) 6035.24i 0.950066i
\(344\) 11745.7i 1.84095i
\(345\) 0 0
\(346\) −4657.89 −0.723728
\(347\) 3349.52 0.518189 0.259094 0.965852i \(-0.416576\pi\)
0.259094 + 0.965852i \(0.416576\pi\)
\(348\) 0 0
\(349\) 11357.7i 1.74202i 0.491268 + 0.871009i \(0.336534\pi\)
−0.491268 + 0.871009i \(0.663466\pi\)
\(350\) 3933.63i 0.600747i
\(351\) 0 0
\(352\) 1214.89 + 3167.75i 0.183959 + 0.479663i
\(353\) 3609.53i 0.544238i −0.962264 0.272119i \(-0.912276\pi\)
0.962264 0.272119i \(-0.0877245\pi\)
\(354\) 0 0
\(355\) 122.674 0.0183404
\(356\) 190.445i 0.0283527i
\(357\) 0 0
\(358\) 4878.01i 0.720142i
\(359\) −199.970 −0.0293984 −0.0146992 0.999892i \(-0.504679\pi\)
−0.0146992 + 0.999892i \(0.504679\pi\)
\(360\) 0 0
\(361\) −1116.99 −0.162850
\(362\) −2806.73 −0.407510
\(363\) 0 0
\(364\) 7823.81 1.12659
\(365\) 5570.83 0.798878
\(366\) 0 0
\(367\) 7160.00 1.01839 0.509195 0.860651i \(-0.329943\pi\)
0.509195 + 0.860651i \(0.329943\pi\)
\(368\) 19471.0i 2.75813i
\(369\) 0 0
\(370\) 5728.01i 0.804824i
\(371\) 3505.78 0.490595
\(372\) 0 0
\(373\) 28.9446i 0.00401794i −0.999998 0.00200897i \(-0.999361\pi\)
0.999998 0.00200897i \(-0.000639476\pi\)
\(374\) 7552.03 + 19691.5i 1.04413 + 2.72252i
\(375\) 0 0
\(376\) 10941.8i 1.50074i
\(377\) 5427.92i 0.741517i
\(378\) 0 0
\(379\) −4354.80 −0.590214 −0.295107 0.955464i \(-0.595355\pi\)
−0.295107 + 0.955464i \(0.595355\pi\)
\(380\) −10790.3 −1.45666
\(381\) 0 0
\(382\) 11153.6i 1.49390i
\(383\) 2755.16i 0.367577i −0.982966 0.183789i \(-0.941164\pi\)
0.982966 0.183789i \(-0.0588362\pi\)
\(384\) 0 0
\(385\) −967.326 2522.24i −0.128051 0.333884i
\(386\) 20218.5i 2.66605i
\(387\) 0 0
\(388\) 30673.9 4.01348
\(389\) 8038.64i 1.04775i 0.851795 + 0.523876i \(0.175514\pi\)
−0.851795 + 0.523876i \(0.824486\pi\)
\(390\) 0 0
\(391\) 24624.8i 3.18499i
\(392\) −10620.0 −1.36835
\(393\) 0 0
\(394\) 6859.66 0.877119
\(395\) 7077.67 0.901560
\(396\) 0 0
\(397\) 10575.3 1.33692 0.668462 0.743746i \(-0.266953\pi\)
0.668462 + 0.743746i \(0.266953\pi\)
\(398\) 11837.8 1.49089
\(399\) 0 0
\(400\) 6844.49 0.855561
\(401\) 14007.8i 1.74443i 0.489125 + 0.872214i \(0.337316\pi\)
−0.489125 + 0.872214i \(0.662684\pi\)
\(402\) 0 0
\(403\) 6517.07i 0.805554i
\(404\) −5914.93 −0.728413
\(405\) 0 0
\(406\) 6510.51i 0.795840i
\(407\) −2112.88 5509.20i −0.257325 0.670961i
\(408\) 0 0
\(409\) 7098.52i 0.858188i −0.903260 0.429094i \(-0.858833\pi\)
0.903260 0.429094i \(-0.141167\pi\)
\(410\) 6093.37i 0.733976i
\(411\) 0 0
\(412\) −16061.4 −1.92061
\(413\) −4007.30 −0.477449
\(414\) 0 0
\(415\) 1299.81i 0.153747i
\(416\) 4066.40i 0.479259i
\(417\) 0 0
\(418\) −15237.2 + 5843.73i −1.78295 + 0.683795i
\(419\) 1753.62i 0.204463i −0.994761 0.102232i \(-0.967402\pi\)
0.994761 0.102232i \(-0.0325983\pi\)
\(420\) 0 0
\(421\) −7738.53 −0.895850 −0.447925 0.894071i \(-0.647837\pi\)
−0.447925 + 0.894071i \(0.647837\pi\)
\(422\) 15811.7i 1.82394i
\(423\) 0 0
\(424\) 15236.9i 1.74521i
\(425\) 8656.20 0.987971
\(426\) 0 0
\(427\) 6385.05 0.723640
\(428\) −31211.5 −3.52491
\(429\) 0 0
\(430\) 9140.32 1.02508
\(431\) 7260.66 0.811447 0.405724 0.913996i \(-0.367020\pi\)
0.405724 + 0.913996i \(0.367020\pi\)
\(432\) 0 0
\(433\) −13808.4 −1.53253 −0.766267 0.642522i \(-0.777888\pi\)
−0.766267 + 0.642522i \(0.777888\pi\)
\(434\) 7816.89i 0.864568i
\(435\) 0 0
\(436\) 24258.4i 2.66460i
\(437\) −19054.6 −2.08582
\(438\) 0 0
\(439\) 2417.86i 0.262866i 0.991325 + 0.131433i \(0.0419578\pi\)
−0.991325 + 0.131433i \(0.958042\pi\)
\(440\) −10962.3 + 4204.22i −1.18774 + 0.455519i
\(441\) 0 0
\(442\) 25277.7i 2.72022i
\(443\) 7612.14i 0.816397i −0.912893 0.408199i \(-0.866157\pi\)
0.912893 0.408199i \(-0.133843\pi\)
\(444\) 0 0
\(445\) −78.8131 −0.00839573
\(446\) 7874.25 0.836001
\(447\) 0 0
\(448\) 2767.63i 0.291871i
\(449\) 9823.10i 1.03247i −0.856446 0.516237i \(-0.827332\pi\)
0.856446 0.516237i \(-0.172668\pi\)
\(450\) 0 0
\(451\) 2247.65 + 5860.60i 0.234673 + 0.611896i
\(452\) 13053.4i 1.35837i
\(453\) 0 0
\(454\) −5955.41 −0.615641
\(455\) 3237.78i 0.333603i
\(456\) 0 0
\(457\) 11281.5i 1.15477i −0.816473 0.577383i \(-0.804074\pi\)
0.816473 0.577383i \(-0.195926\pi\)
\(458\) −10359.2 −1.05689
\(459\) 0 0
\(460\) −25778.0 −2.61283
\(461\) 12836.5 1.29687 0.648433 0.761272i \(-0.275425\pi\)
0.648433 + 0.761272i \(0.275425\pi\)
\(462\) 0 0
\(463\) −10788.5 −1.08290 −0.541452 0.840732i \(-0.682125\pi\)
−0.541452 + 0.840732i \(0.682125\pi\)
\(464\) 11328.2 1.13341
\(465\) 0 0
\(466\) 12841.3 1.27653
\(467\) 9953.72i 0.986302i 0.869944 + 0.493151i \(0.164155\pi\)
−0.869944 + 0.493151i \(0.835845\pi\)
\(468\) 0 0
\(469\) 2722.60i 0.268056i
\(470\) 8514.71 0.835648
\(471\) 0 0
\(472\) 17416.7i 1.69845i
\(473\) 8791.16 3371.57i 0.854584 0.327748i
\(474\) 0 0
\(475\) 6698.13i 0.647013i
\(476\) 20650.7i 1.98849i
\(477\) 0 0
\(478\) 12805.5 1.22534
\(479\) −2034.49 −0.194068 −0.0970338 0.995281i \(-0.530935\pi\)
−0.0970338 + 0.995281i \(0.530935\pi\)
\(480\) 0 0
\(481\) 7072.10i 0.670395i
\(482\) 30032.6i 2.83806i
\(483\) 0 0
\(484\) −16910.0 + 15207.4i −1.58809 + 1.42819i
\(485\) 12694.0i 1.18846i
\(486\) 0 0
\(487\) 8290.55 0.771418 0.385709 0.922621i \(-0.373957\pi\)
0.385709 + 0.922621i \(0.373957\pi\)
\(488\) 27750.9i 2.57423i
\(489\) 0 0
\(490\) 8264.33i 0.761927i
\(491\) 15107.5 1.38858 0.694288 0.719698i \(-0.255720\pi\)
0.694288 + 0.719698i \(0.255720\pi\)
\(492\) 0 0
\(493\) 14326.8 1.30881
\(494\) 19559.8 1.78145
\(495\) 0 0
\(496\) −13601.3 −1.23129
\(497\) −181.668 −0.0163962
\(498\) 0 0
\(499\) 5310.01 0.476370 0.238185 0.971220i \(-0.423448\pi\)
0.238185 + 0.971220i \(0.423448\pi\)
\(500\) 24164.1i 2.16131i
\(501\) 0 0
\(502\) 9814.66i 0.872609i
\(503\) −12434.1 −1.10221 −0.551104 0.834437i \(-0.685793\pi\)
−0.551104 + 0.834437i \(0.685793\pi\)
\(504\) 0 0
\(505\) 2447.81i 0.215695i
\(506\) −36401.5 + 13960.6i −3.19811 + 1.22653i
\(507\) 0 0
\(508\) 7754.35i 0.677252i
\(509\) 15549.5i 1.35406i −0.735954 0.677031i \(-0.763266\pi\)
0.735954 0.677031i \(-0.236734\pi\)
\(510\) 0 0
\(511\) −8249.85 −0.714192
\(512\) 24740.5 2.13552
\(513\) 0 0
\(514\) 27253.2i 2.33869i
\(515\) 6646.80i 0.568725i
\(516\) 0 0
\(517\) 8189.45 3140.80i 0.696657 0.267181i
\(518\) 8482.62i 0.719507i
\(519\) 0 0
\(520\) 14072.1 1.18674
\(521\) 13129.1i 1.10402i −0.833837 0.552011i \(-0.813861\pi\)
0.833837 0.552011i \(-0.186139\pi\)
\(522\) 0 0
\(523\) 7777.97i 0.650300i −0.945662 0.325150i \(-0.894585\pi\)
0.945662 0.325150i \(-0.105415\pi\)
\(524\) 45690.0 3.80911
\(525\) 0 0
\(526\) −24846.5 −2.05962
\(527\) −17201.6 −1.42184
\(528\) 0 0
\(529\) −33354.3 −2.74137
\(530\) 11857.1 0.971774
\(531\) 0 0
\(532\) 15979.4 1.30224
\(533\) 7523.19i 0.611380i
\(534\) 0 0
\(535\) 12916.4i 1.04379i
\(536\) −11833.1 −0.953565
\(537\) 0 0
\(538\) 18342.5i 1.46989i
\(539\) −3048.44 7948.63i −0.243610 0.635198i
\(540\) 0 0
\(541\) 7276.87i 0.578294i 0.957285 + 0.289147i \(0.0933716\pi\)
−0.957285 + 0.289147i \(0.906628\pi\)
\(542\) 15561.8i 1.23328i
\(543\) 0 0
\(544\) −10733.1 −0.845916
\(545\) 10039.0 0.789034
\(546\) 0 0
\(547\) 5405.93i 0.422561i 0.977426 + 0.211280i \(0.0677633\pi\)
−0.977426 + 0.211280i \(0.932237\pi\)
\(548\) 20669.9i 1.61127i
\(549\) 0 0
\(550\) 4907.49 + 12796.0i 0.380465 + 0.992041i
\(551\) 11086.0i 0.857131i
\(552\) 0 0
\(553\) −10481.3 −0.805989
\(554\) 21604.1i 1.65680i
\(555\) 0 0
\(556\) 3000.67i 0.228879i
\(557\) −19620.6 −1.49255 −0.746275 0.665638i \(-0.768160\pi\)
−0.746275 + 0.665638i \(0.768160\pi\)
\(558\) 0 0
\(559\) −11285.1 −0.853863
\(560\) 6757.35 0.509911
\(561\) 0 0
\(562\) 31556.2 2.36854
\(563\) −9812.61 −0.734551 −0.367276 0.930112i \(-0.619709\pi\)
−0.367276 + 0.930112i \(0.619709\pi\)
\(564\) 0 0
\(565\) 5401.98 0.402235
\(566\) 26990.2i 2.00439i
\(567\) 0 0
\(568\) 789.571i 0.0583269i
\(569\) 7357.91 0.542109 0.271054 0.962564i \(-0.412628\pi\)
0.271054 + 0.962564i \(0.412628\pi\)
\(570\) 0 0
\(571\) 12130.9i 0.889078i −0.895759 0.444539i \(-0.853367\pi\)
0.895759 0.444539i \(-0.146633\pi\)
\(572\) 25450.6 9760.76i 1.86039 0.713493i
\(573\) 0 0
\(574\) 9023.68i 0.656169i
\(575\) 16001.8i 1.16056i
\(576\) 0 0
\(577\) −13644.7 −0.984462 −0.492231 0.870465i \(-0.663818\pi\)
−0.492231 + 0.870465i \(0.663818\pi\)
\(578\) −42112.1 −3.03050
\(579\) 0 0
\(580\) 14997.7i 1.07370i
\(581\) 1924.89i 0.137449i
\(582\) 0 0
\(583\) 11404.2 4373.71i 0.810142 0.310704i
\(584\) 35855.8i 2.54062i
\(585\) 0 0
\(586\) 7859.16 0.554025
\(587\) 8951.09i 0.629389i −0.949193 0.314694i \(-0.898098\pi\)
0.949193 0.314694i \(-0.101902\pi\)
\(588\) 0 0
\(589\) 13310.5i 0.931153i
\(590\) −13553.4 −0.945734
\(591\) 0 0
\(592\) 14759.7 1.02470
\(593\) −11208.6 −0.776189 −0.388095 0.921620i \(-0.626867\pi\)
−0.388095 + 0.921620i \(0.626867\pi\)
\(594\) 0 0
\(595\) 8545.99 0.588826
\(596\) −26976.6 −1.85403
\(597\) 0 0
\(598\) 46728.2 3.19542
\(599\) 4110.14i 0.280360i −0.990126 0.140180i \(-0.955232\pi\)
0.990126 0.140180i \(-0.0447682\pi\)
\(600\) 0 0
\(601\) 16087.0i 1.09185i −0.837834 0.545925i \(-0.816178\pi\)
0.837834 0.545925i \(-0.183822\pi\)
\(602\) −13535.9 −0.916416
\(603\) 0 0
\(604\) 22787.1i 1.53509i
\(605\) −6293.36 6997.97i −0.422912 0.470261i
\(606\) 0 0
\(607\) 15611.8i 1.04393i −0.852967 0.521965i \(-0.825199\pi\)
0.852967 0.521965i \(-0.174801\pi\)
\(608\) 8305.23i 0.553983i
\(609\) 0 0
\(610\) 21595.3 1.43339
\(611\) −10512.7 −0.696070
\(612\) 0 0
\(613\) 6206.87i 0.408961i −0.978871 0.204481i \(-0.934449\pi\)
0.978871 0.204481i \(-0.0655505\pi\)
\(614\) 42211.6i 2.77447i
\(615\) 0 0
\(616\) 16234.0 6226.04i 1.06183 0.407231i
\(617\) 8516.64i 0.555700i −0.960624 0.277850i \(-0.910378\pi\)
0.960624 0.277850i \(-0.0896219\pi\)
\(618\) 0 0
\(619\) 19648.7 1.27584 0.637922 0.770101i \(-0.279794\pi\)
0.637922 + 0.770101i \(0.279794\pi\)
\(620\) 18007.1i 1.16642i
\(621\) 0 0
\(622\) 23294.2i 1.50163i
\(623\) 116.714 0.00750572
\(624\) 0 0
\(625\) −625.000 −0.0400000
\(626\) −15121.4 −0.965453
\(627\) 0 0
\(628\) −16574.0 −1.05315
\(629\) 18666.5 1.18328
\(630\) 0 0
\(631\) −2063.47 −0.130183 −0.0650913 0.997879i \(-0.520734\pi\)
−0.0650913 + 0.997879i \(0.520734\pi\)
\(632\) 45554.3i 2.86717i
\(633\) 0 0
\(634\) 23992.1i 1.50291i
\(635\) 3209.03 0.200546
\(636\) 0 0
\(637\) 10203.6i 0.634663i
\(638\) 8122.32 + 21178.5i 0.504022 + 1.31421i
\(639\) 0 0
\(640\) 14621.2i 0.903050i
\(641\) 14470.7i 0.891666i −0.895116 0.445833i \(-0.852907\pi\)
0.895116 0.445833i \(-0.147093\pi\)
\(642\) 0 0
\(643\) −4528.17 −0.277720 −0.138860 0.990312i \(-0.544344\pi\)
−0.138860 + 0.990312i \(0.544344\pi\)
\(644\) 38174.6 2.33586
\(645\) 0 0
\(646\) 51627.3i 3.14435i
\(647\) 3313.49i 0.201340i 0.994920 + 0.100670i \(0.0320986\pi\)
−0.994920 + 0.100670i \(0.967901\pi\)
\(648\) 0 0
\(649\) −13035.6 + 4999.40i −0.788433 + 0.302378i
\(650\) 16426.1i 0.991204i
\(651\) 0 0
\(652\) −42700.5 −2.56485
\(653\) 3577.12i 0.214370i −0.994239 0.107185i \(-0.965816\pi\)
0.994239 0.107185i \(-0.0341837\pi\)
\(654\) 0 0
\(655\) 18908.2i 1.12794i
\(656\) −15701.1 −0.934492
\(657\) 0 0
\(658\) −12609.5 −0.747063
\(659\) 1368.75 0.0809086 0.0404543 0.999181i \(-0.487119\pi\)
0.0404543 + 0.999181i \(0.487119\pi\)
\(660\) 0 0
\(661\) 1907.63 0.112251 0.0561256 0.998424i \(-0.482125\pi\)
0.0561256 + 0.998424i \(0.482125\pi\)
\(662\) 10663.6 0.626063
\(663\) 0 0
\(664\) −8366.00 −0.488951
\(665\) 6612.85i 0.385617i
\(666\) 0 0
\(667\) 26484.4i 1.53745i
\(668\) 39542.3 2.29033
\(669\) 0 0
\(670\) 9208.30i 0.530967i
\(671\) 20770.4 7965.80i 1.19498 0.458296i
\(672\) 0 0
\(673\) 2614.03i 0.149723i −0.997194 0.0748613i \(-0.976149\pi\)
0.997194 0.0748613i \(-0.0238514\pi\)
\(674\) 22405.4i 1.28045i
\(675\) 0 0
\(676\) 4868.66 0.277006
\(677\) −11895.5 −0.675307 −0.337654 0.941270i \(-0.609633\pi\)
−0.337654 + 0.941270i \(0.609633\pi\)
\(678\) 0 0
\(679\) 18798.5i 1.06248i
\(680\) 37142.8i 2.09465i
\(681\) 0 0
\(682\) −9752.13 25428.1i −0.547549 1.42770i
\(683\) 24116.5i 1.35109i 0.737321 + 0.675543i \(0.236091\pi\)
−0.737321 + 0.675543i \(0.763909\pi\)
\(684\) 0 0
\(685\) −8553.96 −0.477124
\(686\) 30228.5i 1.68240i
\(687\) 0 0
\(688\) 23552.4i 1.30513i
\(689\) −14639.4 −0.809459
\(690\) 0 0
\(691\) −7279.98 −0.400786 −0.200393 0.979716i \(-0.564222\pi\)
−0.200393 + 0.979716i \(0.564222\pi\)
\(692\) 15890.0 0.872902
\(693\) 0 0
\(694\) −16776.6 −0.917622
\(695\) −1241.79 −0.0677750
\(696\) 0 0
\(697\) −19857.2 −1.07912
\(698\) 56886.8i 3.08481i
\(699\) 0 0
\(700\) 13419.3i 0.724572i
\(701\) 32505.5 1.75138 0.875689 0.482875i \(-0.160407\pi\)
0.875689 + 0.482875i \(0.160407\pi\)
\(702\) 0 0
\(703\) 14444.1i 0.774920i
\(704\) 3452.81 + 9003.00i 0.184848 + 0.481979i
\(705\) 0 0
\(706\) 18078.9i 0.963752i
\(707\) 3624.97i 0.192830i
\(708\) 0 0
\(709\) −3264.46 −0.172919 −0.0864595 0.996255i \(-0.527555\pi\)
−0.0864595 + 0.996255i \(0.527555\pi\)
\(710\) −614.432 −0.0324778
\(711\) 0 0
\(712\) 507.268i 0.0267004i
\(713\) 31798.7i 1.67022i
\(714\) 0 0
\(715\) 4039.36 + 10532.4i 0.211278 + 0.550894i
\(716\) 16641.0i 0.868578i
\(717\) 0 0
\(718\) 1001.58 0.0520595
\(719\) 25591.6i 1.32741i 0.747995 + 0.663705i \(0.231017\pi\)
−0.747995 + 0.663705i \(0.768983\pi\)
\(720\) 0 0
\(721\) 9843.26i 0.508436i
\(722\) 5594.61 0.288379
\(723\) 0 0
\(724\) 9574.95 0.491506
\(725\) 9309.87 0.476910
\(726\) 0 0
\(727\) 33653.1 1.71682 0.858408 0.512968i \(-0.171454\pi\)
0.858408 + 0.512968i \(0.171454\pi\)
\(728\) −20839.4 −1.06094
\(729\) 0 0
\(730\) −27902.4 −1.41468
\(731\) 29786.6i 1.50711i
\(732\) 0 0
\(733\) 14383.4i 0.724778i 0.932027 + 0.362389i \(0.118039\pi\)
−0.932027 + 0.362389i \(0.881961\pi\)
\(734\) −35862.0 −1.80339
\(735\) 0 0
\(736\) 19841.1i 0.993688i
\(737\) −3396.64 8856.55i −0.169765 0.442653i
\(738\) 0 0
\(739\) 20920.5i 1.04137i 0.853749 + 0.520686i \(0.174324\pi\)
−0.853749 + 0.520686i \(0.825676\pi\)
\(740\) 19540.6i 0.970714i
\(741\) 0 0
\(742\) −17559.2 −0.868760
\(743\) 18892.5 0.932836 0.466418 0.884564i \(-0.345544\pi\)
0.466418 + 0.884564i \(0.345544\pi\)
\(744\) 0 0
\(745\) 11163.9i 0.549011i
\(746\) 144.973i 0.00711508i
\(747\) 0 0
\(748\) −25763.2 67175.9i −1.25935 3.28368i
\(749\) 19128.0i 0.933138i
\(750\) 0 0
\(751\) 28833.9 1.40102 0.700509 0.713643i \(-0.252956\pi\)
0.700509 + 0.713643i \(0.252956\pi\)
\(752\) 21940.4i 1.06394i
\(753\) 0 0
\(754\) 27186.6i 1.31310i
\(755\) −9430.14 −0.454567
\(756\) 0 0
\(757\) 36338.9 1.74473 0.872365 0.488856i \(-0.162586\pi\)
0.872365 + 0.488856i \(0.162586\pi\)
\(758\) 21811.7 1.04517
\(759\) 0 0
\(760\) 28741.0 1.37177
\(761\) −5978.88 −0.284802 −0.142401 0.989809i \(-0.545482\pi\)
−0.142401 + 0.989809i \(0.545482\pi\)
\(762\) 0 0
\(763\) −14866.8 −0.705391
\(764\) 38049.7i 1.80182i
\(765\) 0 0
\(766\) 13799.6i 0.650916i
\(767\) 16733.7 0.787769
\(768\) 0 0
\(769\) 21501.2i 1.00826i −0.863627 0.504132i \(-0.831813\pi\)
0.863627 0.504132i \(-0.168187\pi\)
\(770\) 4845.00 + 12633.1i 0.226756 + 0.591252i
\(771\) 0 0
\(772\) 68973.8i 3.21557i
\(773\) 398.575i 0.0185456i 0.999957 + 0.00927280i \(0.00295166\pi\)
−0.999957 + 0.00927280i \(0.997048\pi\)
\(774\) 0 0
\(775\) −11178.0 −0.518096
\(776\) −81702.7 −3.77958
\(777\) 0 0
\(778\) 40262.8i 1.85539i
\(779\) 15365.4i 0.706704i
\(780\) 0 0
\(781\) −590.960 + 226.644i −0.0270758 + 0.0103841i
\(782\) 123337.i 5.64007i
\(783\) 0 0
\(784\) 21295.2 0.970079
\(785\) 6858.94i 0.311855i
\(786\) 0 0
\(787\) 40678.9i 1.84250i −0.388976 0.921248i \(-0.627171\pi\)
0.388976 0.921248i \(-0.372829\pi\)
\(788\) −23401.2 −1.05791
\(789\) 0 0
\(790\) −35449.6 −1.59651
\(791\) −7999.80 −0.359596
\(792\) 0 0
\(793\) −26662.7 −1.19397
\(794\) −52968.0 −2.36746
\(795\) 0 0
\(796\) −40383.7 −1.79819
\(797\) 44293.9i 1.96860i 0.176513 + 0.984298i \(0.443518\pi\)
−0.176513 + 0.984298i \(0.556482\pi\)
\(798\) 0 0
\(799\) 27747.9i 1.22860i
\(800\) −6974.62 −0.308238
\(801\) 0 0
\(802\) 70160.2i 3.08908i
\(803\) −26836.5 + 10292.3i −1.17938 + 0.452312i
\(804\) 0 0
\(805\) 15798.0i 0.691687i
\(806\) 32641.8i 1.42650i
\(807\) 0 0
\(808\) 15755.0 0.685962
\(809\) 19692.0 0.855791 0.427896 0.903828i \(-0.359255\pi\)
0.427896 + 0.903828i \(0.359255\pi\)
\(810\) 0 0
\(811\) 4220.18i 0.182726i 0.995818 + 0.0913628i \(0.0291223\pi\)
−0.995818 + 0.0913628i \(0.970878\pi\)
\(812\) 22210.1i 0.959878i
\(813\) 0 0
\(814\) 10582.7 + 27593.7i 0.455679 + 1.18816i
\(815\) 17671.0i 0.759495i
\(816\) 0 0
\(817\) −23048.8 −0.986994
\(818\) 35554.0i 1.51970i
\(819\) 0 0
\(820\) 20787.0i 0.885262i
\(821\) 32899.6 1.39854 0.699272 0.714856i \(-0.253508\pi\)
0.699272 + 0.714856i \(0.253508\pi\)
\(822\) 0 0
\(823\) 38387.4 1.62588 0.812941 0.582346i \(-0.197865\pi\)
0.812941 + 0.582346i \(0.197865\pi\)
\(824\) 42781.1 1.80868
\(825\) 0 0
\(826\) 20071.2 0.845480
\(827\) −11091.3 −0.466362 −0.233181 0.972433i \(-0.574913\pi\)
−0.233181 + 0.972433i \(0.574913\pi\)
\(828\) 0 0
\(829\) 14819.2 0.620859 0.310429 0.950596i \(-0.399527\pi\)
0.310429 + 0.950596i \(0.399527\pi\)
\(830\) 6510.28i 0.272259i
\(831\) 0 0
\(832\) 11557.1i 0.481573i
\(833\) 26931.9 1.12021
\(834\) 0 0
\(835\) 16364.0i 0.678205i
\(836\) 51980.4 19935.4i 2.15045 0.824738i
\(837\) 0 0
\(838\) 8783.30i 0.362069i
\(839\) 21329.0i 0.877663i −0.898569 0.438831i \(-0.855393\pi\)
0.898569 0.438831i \(-0.144607\pi\)
\(840\) 0 0
\(841\) −8980.34 −0.368213
\(842\) 38759.6 1.58640
\(843\) 0 0
\(844\) 53940.3i 2.19989i
\(845\) 2014.83i 0.0820263i
\(846\) 0 0
\(847\) 9319.85 + 10363.3i 0.378080 + 0.420410i
\(848\) 30552.9i 1.23726i
\(849\) 0 0
\(850\) −43355.9 −1.74953
\(851\) 34506.8i 1.38999i
\(852\) 0 0
\(853\) 17901.8i 0.718578i 0.933226 + 0.359289i \(0.116981\pi\)
−0.933226 + 0.359289i \(0.883019\pi\)
\(854\) −31980.5 −1.28144
\(855\) 0 0
\(856\) 83134.6 3.31949
\(857\) −6828.52 −0.272180 −0.136090 0.990697i \(-0.543454\pi\)
−0.136090 + 0.990697i \(0.543454\pi\)
\(858\) 0 0
\(859\) 8439.55 0.335220 0.167610 0.985853i \(-0.446395\pi\)
0.167610 + 0.985853i \(0.446395\pi\)
\(860\) −31181.5 −1.23637
\(861\) 0 0
\(862\) −36366.2 −1.43693
\(863\) 11754.0i 0.463629i 0.972760 + 0.231815i \(0.0744663\pi\)
−0.972760 + 0.231815i \(0.925534\pi\)
\(864\) 0 0
\(865\) 6575.87i 0.258481i
\(866\) 69161.3 2.71385
\(867\) 0 0
\(868\) 26666.7i 1.04277i
\(869\) −34095.5 + 13076.2i −1.33097 + 0.510449i
\(870\) 0 0
\(871\) 11369.0i 0.442280i
\(872\) 64614.5i 2.50931i
\(873\) 0 0
\(874\) 95437.9 3.69363
\(875\) 14809.0 0.572156
\(876\) 0 0
\(877\) 44064.0i 1.69662i −0.529501 0.848309i \(-0.677621\pi\)
0.529501 0.848309i \(-0.322379\pi\)
\(878\) 12110.2i 0.465491i
\(879\) 0 0
\(880\) 21981.4 8430.27i 0.842039 0.322937i
\(881\) 1988.29i 0.0760352i 0.999277 + 0.0380176i \(0.0121043\pi\)
−0.999277 + 0.0380176i \(0.987896\pi\)
\(882\) 0 0
\(883\) 1677.78 0.0639430 0.0319715 0.999489i \(-0.489821\pi\)
0.0319715 + 0.999489i \(0.489821\pi\)
\(884\) 86233.0i 3.28091i
\(885\) 0 0
\(886\) 38126.6i 1.44570i
\(887\) −45311.6 −1.71524 −0.857618 0.514287i \(-0.828057\pi\)
−0.857618 + 0.514287i \(0.828057\pi\)
\(888\) 0 0
\(889\) −4752.26 −0.179287
\(890\) 394.748 0.0148674
\(891\) 0 0
\(892\) −26862.4 −1.00832
\(893\) −21471.2 −0.804598
\(894\) 0 0
\(895\) 6886.63 0.257201
\(896\) 21652.5i 0.807321i
\(897\) 0 0
\(898\) 49200.5i 1.82833i
\(899\) −18500.5 −0.686348
\(900\) 0 0
\(901\) 38640.2i 1.42874i
\(902\) −11257.7 29353.7i −0.415565 1.08356i
\(903\) 0 0
\(904\) 34769.0i 1.27920i
\(905\) 3962.46i 0.145543i
\(906\) 0 0
\(907\) 5307.53 0.194304 0.0971520 0.995270i \(-0.469027\pi\)
0.0971520 + 0.995270i \(0.469027\pi\)
\(908\) 20316.4 0.742536
\(909\) 0 0
\(910\) 16216.9i 0.590753i
\(911\) 29019.6i 1.05539i 0.849433 + 0.527696i \(0.176944\pi\)
−0.849433 + 0.527696i \(0.823056\pi\)
\(912\) 0 0
\(913\) −2401.43 6261.59i −0.0870491 0.226975i
\(914\) 56505.3i 2.04489i
\(915\) 0 0
\(916\) 35339.7 1.27473
\(917\) 28001.1i 1.00837i
\(918\) 0 0
\(919\) 41537.5i 1.49096i −0.666527 0.745481i \(-0.732220\pi\)
0.666527 0.745481i \(-0.267780\pi\)
\(920\) 68662.0 2.46056
\(921\) 0 0
\(922\) −64293.6 −2.29653
\(923\) 758.609 0.0270530
\(924\) 0 0
\(925\) 12129.9 0.431168
\(926\) 54035.9 1.91764
\(927\) 0 0
\(928\) −11543.6 −0.408338
\(929\) 48738.5i 1.72127i −0.509223 0.860634i \(-0.670067\pi\)
0.509223 0.860634i \(-0.329933\pi\)
\(930\) 0 0
\(931\) 20839.8i 0.733616i
\(932\) −43807.2 −1.53965
\(933\) 0 0
\(934\) 49854.8i 1.74657i
\(935\) 27799.8 10661.7i 0.972355 0.372915i
\(936\) 0 0
\(937\) 37129.8i 1.29453i −0.762263 0.647267i \(-0.775912\pi\)
0.762263 0.647267i \(-0.224088\pi\)
\(938\) 13636.6i 0.474681i
\(939\) 0 0
\(940\) −29047.3 −1.00789
\(941\) 2434.90 0.0843521 0.0421760 0.999110i \(-0.486571\pi\)
0.0421760 + 0.999110i \(0.486571\pi\)
\(942\) 0 0
\(943\) 36707.8i 1.26763i
\(944\) 34923.8i 1.20410i
\(945\) 0 0
\(946\) −44031.9 + 16887.0i −1.51332 + 0.580385i
\(947\) 6355.49i 0.218084i 0.994037 + 0.109042i \(0.0347783\pi\)
−0.994037 + 0.109042i \(0.965222\pi\)
\(948\) 0 0
\(949\) 34449.7 1.17838
\(950\) 33548.6i 1.14575i
\(951\) 0 0
\(952\) 55004.9i 1.87260i
\(953\) 6746.81 0.229329 0.114664 0.993404i \(-0.463421\pi\)
0.114664 + 0.993404i \(0.463421\pi\)
\(954\) 0 0
\(955\) 15746.3 0.533549
\(956\) −43685.0 −1.47790
\(957\) 0 0
\(958\) 10190.1 0.343660
\(959\) 12667.6 0.426545
\(960\) 0 0
\(961\) −7578.21 −0.254379
\(962\) 35421.7i 1.18715i
\(963\) 0 0
\(964\) 102454.i 3.42304i
\(965\) −28543.9 −0.952186
\(966\) 0 0
\(967\) 48052.2i 1.59799i 0.601339 + 0.798994i \(0.294634\pi\)
−0.601339 + 0.798994i \(0.705366\pi\)
\(968\) 45041.3 40506.2i 1.49554 1.34496i
\(969\) 0 0
\(970\) 63579.7i 2.10456i
\(971\) 22937.1i 0.758071i −0.925382 0.379035i \(-0.876256\pi\)
0.925382 0.379035i \(-0.123744\pi\)
\(972\) 0 0
\(973\) 1838.96 0.0605904
\(974\) −41524.5 −1.36605
\(975\) 0 0
\(976\) 55645.9i 1.82498i
\(977\) 9793.08i 0.320684i −0.987062 0.160342i \(-0.948740\pi\)
0.987062 0.160342i \(-0.0512597\pi\)
\(978\) 0 0
\(979\) 379.668 145.610i 0.0123945 0.00475353i
\(980\) 28193.1i 0.918975i
\(981\) 0 0
\(982\) −75668.1 −2.45893
\(983\) 16592.9i 0.538383i −0.963087 0.269192i \(-0.913243\pi\)
0.963087 0.269192i \(-0.0867565\pi\)
\(984\) 0 0
\(985\) 9684.26i 0.313265i
\(986\) −71757.9 −2.31768
\(987\) 0 0
\(988\) −66726.7 −2.14864
\(989\) −55063.3 −1.77039
\(990\) 0 0
\(991\) −44600.6 −1.42965 −0.714825 0.699303i \(-0.753494\pi\)
−0.714825 + 0.699303i \(0.753494\pi\)
\(992\) 13859.9 0.443602
\(993\) 0 0
\(994\) 909.913 0.0290349
\(995\) 16712.2i 0.532475i
\(996\) 0 0
\(997\) 22478.3i 0.714037i −0.934097 0.357019i \(-0.883793\pi\)
0.934097 0.357019i \(-0.116207\pi\)
\(998\) −26596.0 −0.843569
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.d.c.98.2 yes 8
3.2 odd 2 inner 99.4.d.c.98.7 yes 8
4.3 odd 2 1584.4.b.g.593.7 8
11.10 odd 2 inner 99.4.d.c.98.8 yes 8
12.11 even 2 1584.4.b.g.593.3 8
33.32 even 2 inner 99.4.d.c.98.1 8
44.43 even 2 1584.4.b.g.593.6 8
132.131 odd 2 1584.4.b.g.593.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.d.c.98.1 8 33.32 even 2 inner
99.4.d.c.98.2 yes 8 1.1 even 1 trivial
99.4.d.c.98.7 yes 8 3.2 odd 2 inner
99.4.d.c.98.8 yes 8 11.10 odd 2 inner
1584.4.b.g.593.2 8 132.131 odd 2
1584.4.b.g.593.3 8 12.11 even 2
1584.4.b.g.593.6 8 44.43 even 2
1584.4.b.g.593.7 8 4.3 odd 2