Properties

Label 2-99-33.32-c3-0-1
Degree $2$
Conductor $99$
Sign $0.555 - 0.831i$
Analytic cond. $5.84118$
Root an. cond. $2.41685$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.00·2-s + 17.0·4-s + 7.07i·5-s − 10.4i·7-s − 45.5·8-s − 35.4i·10-s + (−13.0 − 34.0i)11-s + 43.7i·13-s + 52.4i·14-s + 91.2·16-s + 115.·17-s + 89.3i·19-s + 120. i·20-s + (65.4 + 170. i)22-s + 213. i·23-s + ⋯
L(s)  = 1  − 1.77·2-s + 2.13·4-s + 0.632i·5-s − 0.565i·7-s − 2.01·8-s − 1.11i·10-s + (−0.358 − 0.933i)11-s + 0.932i·13-s + 1.00i·14-s + 1.42·16-s + 1.64·17-s + 1.07i·19-s + 1.35i·20-s + (0.634 + 1.65i)22-s + 1.93i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $0.555 - 0.831i$
Analytic conductor: \(5.84118\)
Root analytic conductor: \(2.41685\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (98, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :3/2),\ 0.555 - 0.831i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.553058 + 0.295597i\)
\(L(\frac12)\) \(\approx\) \(0.553058 + 0.295597i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + (13.0 + 34.0i)T \)
good2 \( 1 + 5.00T + 8T^{2} \)
5 \( 1 - 7.07iT - 125T^{2} \)
7 \( 1 + 10.4iT - 343T^{2} \)
13 \( 1 - 43.7iT - 2.19e3T^{2} \)
17 \( 1 - 115.T + 4.91e3T^{2} \)
19 \( 1 - 89.3iT - 6.85e3T^{2} \)
23 \( 1 - 213. iT - 1.21e4T^{2} \)
29 \( 1 - 124.T + 2.43e4T^{2} \)
31 \( 1 + 149.T + 2.97e4T^{2} \)
37 \( 1 - 161.T + 5.06e4T^{2} \)
41 \( 1 + 172.T + 6.89e4T^{2} \)
43 \( 1 - 258. iT - 7.95e4T^{2} \)
47 \( 1 - 240. iT - 1.03e5T^{2} \)
53 \( 1 - 334. iT - 1.48e5T^{2} \)
59 \( 1 + 382. iT - 2.05e5T^{2} \)
61 \( 1 - 609. iT - 2.26e5T^{2} \)
67 \( 1 - 260T + 3.00e5T^{2} \)
71 \( 1 + 17.3iT - 3.57e5T^{2} \)
73 \( 1 + 787. iT - 3.89e5T^{2} \)
79 \( 1 + 1.00e3iT - 4.93e5T^{2} \)
83 \( 1 - 183.T + 5.71e5T^{2} \)
89 \( 1 - 11.1iT - 7.04e5T^{2} \)
97 \( 1 - 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75977322543258720876861977556, −11.97402586660741445439961276172, −11.03783579164371336922408025704, −10.22219742946359661512166214900, −9.324905199884385657068769338272, −8.007686385364032265363036912818, −7.28978805332794766963914698763, −5.97724073314869673571793506554, −3.26974492363847643678859257167, −1.30008869453229184012365063684, 0.72795141777962244672796958517, 2.52547317147681956120262272061, 5.20967757345229288175472990744, 6.86692278841092766955639420509, 8.038828585805256917547876735366, 8.804868506896879132669467353918, 9.893256841131316145379816971584, 10.64647298922751666724973175054, 12.05806569056965102567747483584, 12.77575246115107922383995746374

Graph of the $Z$-function along the critical line