Properties

Label 985.2.a.e
Level $985$
Weight $2$
Character orbit 985.a
Self dual yes
Analytic conductor $7.865$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [985,2,Mod(1,985)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("985.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(985, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.86526459910\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.21886214112361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{5} q^{3} + (\beta_{4} + \beta_{3} + \beta_1) q^{4} + q^{5} + ( - \beta_{4} - \beta_{3} + \beta_{2} - 1) q^{6} + (\beta_{9} + \beta_{7} + \beta_{6} + \cdots - 1) q^{7} + ( - \beta_{9} + \beta_{8} + \cdots - \beta_1) q^{8}+ \cdots + ( - \beta_{9} - \beta_{7} + \beta_{6} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 3 q^{3} + 2 q^{4} + 10 q^{5} - 9 q^{6} - 6 q^{7} - 6 q^{8} - 5 q^{9} - 2 q^{10} - 11 q^{11} - 5 q^{13} - 9 q^{14} - 3 q^{15} - 2 q^{16} - 4 q^{17} + 15 q^{18} - 28 q^{19} + 2 q^{20} - 7 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{9} - 2\nu^{8} - 8\nu^{7} + 14\nu^{6} + 19\nu^{5} - 25\nu^{4} - 15\nu^{3} + 13\nu^{2} + 2\nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{9} + 2\nu^{8} + 9\nu^{7} - 16\nu^{6} - 26\nu^{5} + 38\nu^{4} + 27\nu^{3} - 31\nu^{2} - 7\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{9} - 2\nu^{8} - 9\nu^{7} + 16\nu^{6} + 26\nu^{5} - 38\nu^{4} - 27\nu^{3} + 32\nu^{2} + 6\nu - 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{9} - \nu^{8} - 11\nu^{7} + 8\nu^{6} + 40\nu^{5} - 19\nu^{4} - 52\nu^{3} + 17\nu^{2} + 18\nu - 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -3\nu^{9} + 5\nu^{8} + 29\nu^{7} - 39\nu^{6} - 93\nu^{5} + 87\nu^{4} + 112\nu^{3} - 64\nu^{2} - 38\nu + 10 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 4\nu^{9} - 7\nu^{8} - 38\nu^{7} + 55\nu^{6} + 120\nu^{5} - 125\nu^{4} - 146\nu^{3} + 95\nu^{2} + 54\nu - 16 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -4\nu^{9} + 7\nu^{8} + 38\nu^{7} - 55\nu^{6} - 120\nu^{5} + 126\nu^{4} + 145\nu^{3} - 100\nu^{2} - 51\nu + 19 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( -8\nu^{9} + 14\nu^{8} + 75\nu^{7} - 108\nu^{6} - 232\nu^{5} + 238\nu^{4} + 273\nu^{3} - 177\nu^{2} - 96\nu + 31 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} - \beta_{8} - \beta_{6} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} + \beta_{7} - \beta_{6} + 5\beta_{4} + 5\beta_{3} + \beta_{2} + 7\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 7\beta_{9} - 7\beta_{8} + \beta_{7} - 6\beta_{6} + \beta_{3} + 7\beta_{2} + 26\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{9} - \beta_{8} + 9\beta_{7} - 7\beta_{6} + \beta_{5} + 25\beta_{4} + 24\beta_{3} + 9\beta_{2} + 43\beta _1 + 30 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 42 \beta_{9} - 39 \beta_{8} + 12 \beta_{7} - 31 \beta_{6} + 2 \beta_{5} + 3 \beta_{4} + 9 \beta_{3} + \cdots + 17 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 64 \beta_{9} - 13 \beta_{8} + 63 \beta_{7} - 40 \beta_{6} + 13 \beta_{5} + 125 \beta_{4} + 116 \beta_{3} + \cdots + 141 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 245 \beta_{9} - 206 \beta_{8} + 102 \beta_{7} - 156 \beta_{6} + 28 \beta_{5} + 36 \beta_{4} + 61 \beta_{3} + \cdots + 111 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.41585
2.24278
1.33777
0.888606
0.285611
0.231201
−0.638386
−1.23959
−1.39693
−2.12691
−2.41585 −0.108610 3.83635 1.00000 0.262386 4.32596 −4.43635 −2.98820 −2.41585
1.2 −2.24278 1.69515 3.03007 1.00000 −3.80186 −3.86416 −2.31023 −0.126460 −2.24278
1.3 −1.33777 −1.51312 −0.210373 1.00000 2.02421 −1.25982 2.95697 −0.710457 −1.33777
1.4 −0.888606 1.66962 −1.21038 1.00000 −1.48364 1.49037 2.85276 −0.212359 −0.888606
1.5 −0.285611 −1.26844 −1.91843 1.00000 0.362280 −2.73433 1.11915 −1.39107 −0.285611
1.6 −0.231201 −0.400645 −1.94655 1.00000 0.0926295 1.70963 0.912444 −2.83948 −0.231201
1.7 0.638386 1.45932 −1.59246 1.00000 0.931607 −2.37873 −2.29338 −0.870397 0.638386
1.8 1.23959 −2.93211 −0.463416 1.00000 −3.63462 2.16985 −3.05363 5.59727 1.23959
1.9 1.39693 0.475994 −0.0485756 1.00000 0.664932 −3.39303 −2.86172 −2.77343 1.39693
1.10 2.12691 −2.07716 2.52376 1.00000 −4.41794 −2.06572 1.11399 1.31459 2.12691
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 985.2.a.e 10
3.b odd 2 1 8865.2.a.t 10
5.b even 2 1 4925.2.a.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
985.2.a.e 10 1.a even 1 1 trivial
4925.2.a.j 10 5.b even 2 1
8865.2.a.t 10 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} + 2T_{2}^{9} - 9T_{2}^{8} - 16T_{2}^{7} + 26T_{2}^{6} + 38T_{2}^{5} - 27T_{2}^{4} - 32T_{2}^{3} + 6T_{2}^{2} + 7T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(985))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} + 3 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + 6 T^{9} + \cdots + 5308 \) Copy content Toggle raw display
$11$ \( T^{10} + 11 T^{9} + \cdots + 876 \) Copy content Toggle raw display
$13$ \( T^{10} + 5 T^{9} + \cdots + 17477 \) Copy content Toggle raw display
$17$ \( T^{10} + 4 T^{9} + \cdots - 137988 \) Copy content Toggle raw display
$19$ \( T^{10} + 28 T^{9} + \cdots - 25811 \) Copy content Toggle raw display
$23$ \( T^{10} + 24 T^{9} + \cdots - 2075712 \) Copy content Toggle raw display
$29$ \( T^{10} + 16 T^{9} + \cdots + 98764 \) Copy content Toggle raw display
$31$ \( T^{10} + 34 T^{9} + \cdots - 73173232 \) Copy content Toggle raw display
$37$ \( T^{10} - 5 T^{9} + \cdots + 2426304 \) Copy content Toggle raw display
$41$ \( T^{10} + 15 T^{9} + \cdots + 337193 \) Copy content Toggle raw display
$43$ \( T^{10} + 5 T^{9} + \cdots + 2284 \) Copy content Toggle raw display
$47$ \( T^{10} + 14 T^{9} + \cdots + 28474764 \) Copy content Toggle raw display
$53$ \( T^{10} + 15 T^{9} + \cdots + 317244 \) Copy content Toggle raw display
$59$ \( T^{10} + 49 T^{9} + \cdots + 12406847 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots - 1693803719 \) Copy content Toggle raw display
$67$ \( T^{10} + 2 T^{9} + \cdots - 6547 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 150197316 \) Copy content Toggle raw display
$73$ \( T^{10} - 18 T^{9} + \cdots + 506257 \) Copy content Toggle raw display
$79$ \( T^{10} + 11 T^{9} + \cdots + 74241116 \) Copy content Toggle raw display
$83$ \( T^{10} - 4 T^{9} + \cdots + 132 \) Copy content Toggle raw display
$89$ \( T^{10} + 5 T^{9} + \cdots - 10810148 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 2022756524 \) Copy content Toggle raw display
show more
show less