Properties

Label 2-985-1.1-c1-0-40
Degree $2$
Conductor $985$
Sign $-1$
Analytic cond. $7.86526$
Root an. cond. $2.80450$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.231·2-s − 0.400·3-s − 1.94·4-s + 5-s + 0.0926·6-s + 1.70·7-s + 0.912·8-s − 2.83·9-s − 0.231·10-s + 0.364·11-s + 0.779·12-s − 0.500·13-s − 0.395·14-s − 0.400·15-s + 3.68·16-s − 7.94·17-s + 0.656·18-s + 0.779·19-s − 1.94·20-s − 0.684·21-s − 0.0843·22-s + 3.38·23-s − 0.365·24-s + 25-s + 0.115·26-s + 2.33·27-s − 3.32·28-s + ⋯
L(s)  = 1  − 0.163·2-s − 0.231·3-s − 0.973·4-s + 0.447·5-s + 0.0378·6-s + 0.646·7-s + 0.322·8-s − 0.946·9-s − 0.0731·10-s + 0.109·11-s + 0.225·12-s − 0.138·13-s − 0.105·14-s − 0.103·15-s + 0.920·16-s − 1.92·17-s + 0.154·18-s + 0.178·19-s − 0.435·20-s − 0.149·21-s − 0.0179·22-s + 0.705·23-s − 0.0746·24-s + 0.200·25-s + 0.0226·26-s + 0.450·27-s − 0.628·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(985\)    =    \(5 \cdot 197\)
Sign: $-1$
Analytic conductor: \(7.86526\)
Root analytic conductor: \(2.80450\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 985,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
197 \( 1 - T \)
good2 \( 1 + 0.231T + 2T^{2} \)
3 \( 1 + 0.400T + 3T^{2} \)
7 \( 1 - 1.70T + 7T^{2} \)
11 \( 1 - 0.364T + 11T^{2} \)
13 \( 1 + 0.500T + 13T^{2} \)
17 \( 1 + 7.94T + 17T^{2} \)
19 \( 1 - 0.779T + 19T^{2} \)
23 \( 1 - 3.38T + 23T^{2} \)
29 \( 1 + 5.06T + 29T^{2} \)
31 \( 1 - 3.62T + 31T^{2} \)
37 \( 1 + 5.11T + 37T^{2} \)
41 \( 1 + 5.00T + 41T^{2} \)
43 \( 1 + 3.27T + 43T^{2} \)
47 \( 1 + 8.27T + 47T^{2} \)
53 \( 1 + 0.594T + 53T^{2} \)
59 \( 1 - 2.82T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 + 9.96T + 67T^{2} \)
71 \( 1 + 3.04T + 71T^{2} \)
73 \( 1 - 7.09T + 73T^{2} \)
79 \( 1 + 15.4T + 79T^{2} \)
83 \( 1 + 3.53T + 83T^{2} \)
89 \( 1 + 9.14T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.400257564612923688745760852362, −8.774685501949601766784603181296, −8.219030095208097075399036243508, −7.02717887595461921290434722962, −6.02821272710307928793436760780, −5.07550291748912268355338467949, −4.51273991461687147205305108993, −3.14614402679874471739677874155, −1.73460512528852913669178218645, 0, 1.73460512528852913669178218645, 3.14614402679874471739677874155, 4.51273991461687147205305108993, 5.07550291748912268355338467949, 6.02821272710307928793436760780, 7.02717887595461921290434722962, 8.219030095208097075399036243508, 8.774685501949601766784603181296, 9.400257564612923688745760852362

Graph of the $Z$-function along the critical line