Properties

Label 9801.2.a.cr.1.18
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 891)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.36405 q^{2} -0.139360 q^{4} -2.07738 q^{5} -0.103732 q^{7} -2.91820 q^{8} +O(q^{10})\) \(q+1.36405 q^{2} -0.139360 q^{4} -2.07738 q^{5} -0.103732 q^{7} -2.91820 q^{8} -2.83366 q^{10} -6.62590 q^{13} -0.141496 q^{14} -3.70186 q^{16} -3.79348 q^{17} +6.60020 q^{19} +0.289503 q^{20} -2.58108 q^{23} -0.684493 q^{25} -9.03808 q^{26} +0.0144561 q^{28} -9.95456 q^{29} -2.20217 q^{31} +0.786868 q^{32} -5.17450 q^{34} +0.215491 q^{35} +3.26024 q^{37} +9.00303 q^{38} +6.06221 q^{40} +1.43428 q^{41} +3.82125 q^{43} -3.52073 q^{46} -3.43538 q^{47} -6.98924 q^{49} -0.933685 q^{50} +0.923385 q^{52} +0.0632616 q^{53} +0.302710 q^{56} -13.5785 q^{58} -6.96732 q^{59} +4.24299 q^{61} -3.00388 q^{62} +8.47705 q^{64} +13.7645 q^{65} -5.43311 q^{67} +0.528658 q^{68} +0.293940 q^{70} +11.8294 q^{71} -12.2358 q^{73} +4.44715 q^{74} -0.919803 q^{76} +15.5747 q^{79} +7.69017 q^{80} +1.95644 q^{82} -4.92298 q^{83} +7.88049 q^{85} +5.21238 q^{86} +7.99493 q^{89} +0.687317 q^{91} +0.359699 q^{92} -4.68604 q^{94} -13.7111 q^{95} +3.09027 q^{97} -9.53369 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 26 q^{4} + 18 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 26 q^{4} + 18 q^{7} + 16 q^{10} + 18 q^{13} + 18 q^{16} + 36 q^{19} + 20 q^{25} + 46 q^{28} - 12 q^{31} + 42 q^{34} + 14 q^{37} + 42 q^{40} + 42 q^{43} + 26 q^{46} + 38 q^{49} + 36 q^{52} - 40 q^{58} + 62 q^{61} - 16 q^{64} + 38 q^{67} + 6 q^{70} + 2 q^{73} + 102 q^{76} + 94 q^{79} - 24 q^{82} + 42 q^{85} - 34 q^{91} + 66 q^{94} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36405 0.964531 0.482266 0.876025i \(-0.339814\pi\)
0.482266 + 0.876025i \(0.339814\pi\)
\(3\) 0 0
\(4\) −0.139360 −0.0696799
\(5\) −2.07738 −0.929032 −0.464516 0.885565i \(-0.653772\pi\)
−0.464516 + 0.885565i \(0.653772\pi\)
\(6\) 0 0
\(7\) −0.103732 −0.0392070 −0.0196035 0.999808i \(-0.506240\pi\)
−0.0196035 + 0.999808i \(0.506240\pi\)
\(8\) −2.91820 −1.03174
\(9\) 0 0
\(10\) −2.83366 −0.896081
\(11\) 0 0
\(12\) 0 0
\(13\) −6.62590 −1.83769 −0.918847 0.394613i \(-0.870879\pi\)
−0.918847 + 0.394613i \(0.870879\pi\)
\(14\) −0.141496 −0.0378163
\(15\) 0 0
\(16\) −3.70186 −0.925465
\(17\) −3.79348 −0.920053 −0.460027 0.887905i \(-0.652160\pi\)
−0.460027 + 0.887905i \(0.652160\pi\)
\(18\) 0 0
\(19\) 6.60020 1.51419 0.757095 0.653304i \(-0.226618\pi\)
0.757095 + 0.653304i \(0.226618\pi\)
\(20\) 0.289503 0.0647349
\(21\) 0 0
\(22\) 0 0
\(23\) −2.58108 −0.538193 −0.269096 0.963113i \(-0.586725\pi\)
−0.269096 + 0.963113i \(0.586725\pi\)
\(24\) 0 0
\(25\) −0.684493 −0.136899
\(26\) −9.03808 −1.77251
\(27\) 0 0
\(28\) 0.0144561 0.00273194
\(29\) −9.95456 −1.84852 −0.924258 0.381770i \(-0.875315\pi\)
−0.924258 + 0.381770i \(0.875315\pi\)
\(30\) 0 0
\(31\) −2.20217 −0.395522 −0.197761 0.980250i \(-0.563367\pi\)
−0.197761 + 0.980250i \(0.563367\pi\)
\(32\) 0.786868 0.139100
\(33\) 0 0
\(34\) −5.17450 −0.887420
\(35\) 0.215491 0.0364245
\(36\) 0 0
\(37\) 3.26024 0.535981 0.267990 0.963422i \(-0.413640\pi\)
0.267990 + 0.963422i \(0.413640\pi\)
\(38\) 9.00303 1.46048
\(39\) 0 0
\(40\) 6.06221 0.958519
\(41\) 1.43428 0.223998 0.111999 0.993708i \(-0.464275\pi\)
0.111999 + 0.993708i \(0.464275\pi\)
\(42\) 0 0
\(43\) 3.82125 0.582735 0.291367 0.956611i \(-0.405890\pi\)
0.291367 + 0.956611i \(0.405890\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −3.52073 −0.519104
\(47\) −3.43538 −0.501101 −0.250551 0.968103i \(-0.580612\pi\)
−0.250551 + 0.968103i \(0.580612\pi\)
\(48\) 0 0
\(49\) −6.98924 −0.998463
\(50\) −0.933685 −0.132043
\(51\) 0 0
\(52\) 0.923385 0.128050
\(53\) 0.0632616 0.00868965 0.00434482 0.999991i \(-0.498617\pi\)
0.00434482 + 0.999991i \(0.498617\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.302710 0.0404514
\(57\) 0 0
\(58\) −13.5785 −1.78295
\(59\) −6.96732 −0.907068 −0.453534 0.891239i \(-0.649837\pi\)
−0.453534 + 0.891239i \(0.649837\pi\)
\(60\) 0 0
\(61\) 4.24299 0.543260 0.271630 0.962402i \(-0.412437\pi\)
0.271630 + 0.962402i \(0.412437\pi\)
\(62\) −3.00388 −0.381493
\(63\) 0 0
\(64\) 8.47705 1.05963
\(65\) 13.7645 1.70728
\(66\) 0 0
\(67\) −5.43311 −0.663761 −0.331880 0.943322i \(-0.607683\pi\)
−0.331880 + 0.943322i \(0.607683\pi\)
\(68\) 0.528658 0.0641092
\(69\) 0 0
\(70\) 0.293940 0.0351326
\(71\) 11.8294 1.40389 0.701944 0.712232i \(-0.252316\pi\)
0.701944 + 0.712232i \(0.252316\pi\)
\(72\) 0 0
\(73\) −12.2358 −1.43209 −0.716045 0.698054i \(-0.754050\pi\)
−0.716045 + 0.698054i \(0.754050\pi\)
\(74\) 4.44715 0.516970
\(75\) 0 0
\(76\) −0.919803 −0.105509
\(77\) 0 0
\(78\) 0 0
\(79\) 15.5747 1.75230 0.876148 0.482043i \(-0.160105\pi\)
0.876148 + 0.482043i \(0.160105\pi\)
\(80\) 7.69017 0.859787
\(81\) 0 0
\(82\) 1.95644 0.216053
\(83\) −4.92298 −0.540368 −0.270184 0.962809i \(-0.587084\pi\)
−0.270184 + 0.962809i \(0.587084\pi\)
\(84\) 0 0
\(85\) 7.88049 0.854759
\(86\) 5.21238 0.562066
\(87\) 0 0
\(88\) 0 0
\(89\) 7.99493 0.847461 0.423731 0.905788i \(-0.360720\pi\)
0.423731 + 0.905788i \(0.360720\pi\)
\(90\) 0 0
\(91\) 0.687317 0.0720504
\(92\) 0.359699 0.0375012
\(93\) 0 0
\(94\) −4.68604 −0.483328
\(95\) −13.7111 −1.40673
\(96\) 0 0
\(97\) 3.09027 0.313769 0.156885 0.987617i \(-0.449855\pi\)
0.156885 + 0.987617i \(0.449855\pi\)
\(98\) −9.53369 −0.963048
\(99\) 0 0
\(100\) 0.0953908 0.00953908
\(101\) 2.49785 0.248545 0.124273 0.992248i \(-0.460340\pi\)
0.124273 + 0.992248i \(0.460340\pi\)
\(102\) 0 0
\(103\) −14.1509 −1.39433 −0.697167 0.716909i \(-0.745556\pi\)
−0.697167 + 0.716909i \(0.745556\pi\)
\(104\) 19.3357 1.89602
\(105\) 0 0
\(106\) 0.0862922 0.00838143
\(107\) −5.05455 −0.488642 −0.244321 0.969694i \(-0.578565\pi\)
−0.244321 + 0.969694i \(0.578565\pi\)
\(108\) 0 0
\(109\) 16.0865 1.54081 0.770403 0.637557i \(-0.220055\pi\)
0.770403 + 0.637557i \(0.220055\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.384001 0.0362847
\(113\) −10.2015 −0.959673 −0.479837 0.877358i \(-0.659304\pi\)
−0.479837 + 0.877358i \(0.659304\pi\)
\(114\) 0 0
\(115\) 5.36189 0.499999
\(116\) 1.38727 0.128804
\(117\) 0 0
\(118\) −9.50380 −0.874895
\(119\) 0.393505 0.0360725
\(120\) 0 0
\(121\) 0 0
\(122\) 5.78767 0.523991
\(123\) 0 0
\(124\) 0.306895 0.0275599
\(125\) 11.8089 1.05622
\(126\) 0 0
\(127\) 3.42113 0.303576 0.151788 0.988413i \(-0.451497\pi\)
0.151788 + 0.988413i \(0.451497\pi\)
\(128\) 9.98941 0.882947
\(129\) 0 0
\(130\) 18.7755 1.64672
\(131\) 17.7504 1.55086 0.775432 0.631431i \(-0.217532\pi\)
0.775432 + 0.631431i \(0.217532\pi\)
\(132\) 0 0
\(133\) −0.684652 −0.0593668
\(134\) −7.41106 −0.640218
\(135\) 0 0
\(136\) 11.0701 0.949255
\(137\) −8.71168 −0.744289 −0.372144 0.928175i \(-0.621377\pi\)
−0.372144 + 0.928175i \(0.621377\pi\)
\(138\) 0 0
\(139\) −3.82825 −0.324708 −0.162354 0.986733i \(-0.551909\pi\)
−0.162354 + 0.986733i \(0.551909\pi\)
\(140\) −0.0300307 −0.00253806
\(141\) 0 0
\(142\) 16.1359 1.35409
\(143\) 0 0
\(144\) 0 0
\(145\) 20.6794 1.71733
\(146\) −16.6903 −1.38130
\(147\) 0 0
\(148\) −0.454347 −0.0373471
\(149\) −10.3566 −0.848445 −0.424223 0.905558i \(-0.639453\pi\)
−0.424223 + 0.905558i \(0.639453\pi\)
\(150\) 0 0
\(151\) −10.0155 −0.815051 −0.407526 0.913194i \(-0.633608\pi\)
−0.407526 + 0.913194i \(0.633608\pi\)
\(152\) −19.2607 −1.56225
\(153\) 0 0
\(154\) 0 0
\(155\) 4.57475 0.367453
\(156\) 0 0
\(157\) 11.6002 0.925793 0.462897 0.886412i \(-0.346810\pi\)
0.462897 + 0.886412i \(0.346810\pi\)
\(158\) 21.2448 1.69014
\(159\) 0 0
\(160\) −1.63462 −0.129228
\(161\) 0.267741 0.0211009
\(162\) 0 0
\(163\) −22.7972 −1.78562 −0.892808 0.450437i \(-0.851268\pi\)
−0.892808 + 0.450437i \(0.851268\pi\)
\(164\) −0.199882 −0.0156081
\(165\) 0 0
\(166\) −6.71521 −0.521201
\(167\) 4.56982 0.353623 0.176811 0.984245i \(-0.443422\pi\)
0.176811 + 0.984245i \(0.443422\pi\)
\(168\) 0 0
\(169\) 30.9026 2.37712
\(170\) 10.7494 0.824442
\(171\) 0 0
\(172\) −0.532528 −0.0406049
\(173\) −1.50022 −0.114060 −0.0570300 0.998372i \(-0.518163\pi\)
−0.0570300 + 0.998372i \(0.518163\pi\)
\(174\) 0 0
\(175\) 0.0710038 0.00536738
\(176\) 0 0
\(177\) 0 0
\(178\) 10.9055 0.817402
\(179\) 8.93750 0.668020 0.334010 0.942569i \(-0.391598\pi\)
0.334010 + 0.942569i \(0.391598\pi\)
\(180\) 0 0
\(181\) 20.9653 1.55834 0.779168 0.626815i \(-0.215642\pi\)
0.779168 + 0.626815i \(0.215642\pi\)
\(182\) 0.937537 0.0694949
\(183\) 0 0
\(184\) 7.53211 0.555275
\(185\) −6.77276 −0.497944
\(186\) 0 0
\(187\) 0 0
\(188\) 0.478754 0.0349167
\(189\) 0 0
\(190\) −18.7027 −1.35684
\(191\) 8.94242 0.647051 0.323526 0.946219i \(-0.395132\pi\)
0.323526 + 0.946219i \(0.395132\pi\)
\(192\) 0 0
\(193\) 5.71872 0.411643 0.205821 0.978590i \(-0.434013\pi\)
0.205821 + 0.978590i \(0.434013\pi\)
\(194\) 4.21529 0.302640
\(195\) 0 0
\(196\) 0.974019 0.0695728
\(197\) −6.94318 −0.494681 −0.247341 0.968929i \(-0.579557\pi\)
−0.247341 + 0.968929i \(0.579557\pi\)
\(198\) 0 0
\(199\) 24.0199 1.70273 0.851363 0.524576i \(-0.175776\pi\)
0.851363 + 0.524576i \(0.175776\pi\)
\(200\) 1.99749 0.141244
\(201\) 0 0
\(202\) 3.40719 0.239729
\(203\) 1.03261 0.0724747
\(204\) 0 0
\(205\) −2.97955 −0.208101
\(206\) −19.3026 −1.34488
\(207\) 0 0
\(208\) 24.5282 1.70072
\(209\) 0 0
\(210\) 0 0
\(211\) 4.05355 0.279058 0.139529 0.990218i \(-0.455441\pi\)
0.139529 + 0.990218i \(0.455441\pi\)
\(212\) −0.00881612 −0.000605494 0
\(213\) 0 0
\(214\) −6.89467 −0.471310
\(215\) −7.93818 −0.541379
\(216\) 0 0
\(217\) 0.228436 0.0155072
\(218\) 21.9428 1.48616
\(219\) 0 0
\(220\) 0 0
\(221\) 25.1352 1.69078
\(222\) 0 0
\(223\) −10.1265 −0.678117 −0.339059 0.940765i \(-0.610109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(224\) −0.0816233 −0.00545369
\(225\) 0 0
\(226\) −13.9153 −0.925634
\(227\) −6.54450 −0.434374 −0.217187 0.976130i \(-0.569688\pi\)
−0.217187 + 0.976130i \(0.569688\pi\)
\(228\) 0 0
\(229\) 15.4522 1.02111 0.510555 0.859845i \(-0.329440\pi\)
0.510555 + 0.859845i \(0.329440\pi\)
\(230\) 7.31390 0.482264
\(231\) 0 0
\(232\) 29.0494 1.90719
\(233\) −21.2711 −1.39351 −0.696757 0.717307i \(-0.745375\pi\)
−0.696757 + 0.717307i \(0.745375\pi\)
\(234\) 0 0
\(235\) 7.13658 0.465539
\(236\) 0.970965 0.0632044
\(237\) 0 0
\(238\) 0.536761 0.0347931
\(239\) −17.3437 −1.12187 −0.560936 0.827859i \(-0.689559\pi\)
−0.560936 + 0.827859i \(0.689559\pi\)
\(240\) 0 0
\(241\) 10.6429 0.685572 0.342786 0.939414i \(-0.388629\pi\)
0.342786 + 0.939414i \(0.388629\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −0.591303 −0.0378543
\(245\) 14.5193 0.927604
\(246\) 0 0
\(247\) −43.7323 −2.78262
\(248\) 6.42638 0.408076
\(249\) 0 0
\(250\) 16.1079 1.01875
\(251\) −27.9977 −1.76720 −0.883599 0.468245i \(-0.844887\pi\)
−0.883599 + 0.468245i \(0.844887\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 4.66660 0.292809
\(255\) 0 0
\(256\) −3.32802 −0.208001
\(257\) 17.9721 1.12107 0.560536 0.828130i \(-0.310595\pi\)
0.560536 + 0.828130i \(0.310595\pi\)
\(258\) 0 0
\(259\) −0.338191 −0.0210142
\(260\) −1.91822 −0.118963
\(261\) 0 0
\(262\) 24.2125 1.49586
\(263\) 13.7602 0.848493 0.424247 0.905547i \(-0.360539\pi\)
0.424247 + 0.905547i \(0.360539\pi\)
\(264\) 0 0
\(265\) −0.131418 −0.00807296
\(266\) −0.933901 −0.0572612
\(267\) 0 0
\(268\) 0.757158 0.0462508
\(269\) 14.3122 0.872628 0.436314 0.899794i \(-0.356284\pi\)
0.436314 + 0.899794i \(0.356284\pi\)
\(270\) 0 0
\(271\) −1.53931 −0.0935061 −0.0467531 0.998906i \(-0.514887\pi\)
−0.0467531 + 0.998906i \(0.514887\pi\)
\(272\) 14.0429 0.851477
\(273\) 0 0
\(274\) −11.8832 −0.717889
\(275\) 0 0
\(276\) 0 0
\(277\) −23.9125 −1.43676 −0.718381 0.695650i \(-0.755116\pi\)
−0.718381 + 0.695650i \(0.755116\pi\)
\(278\) −5.22193 −0.313191
\(279\) 0 0
\(280\) −0.628844 −0.0375806
\(281\) 15.2911 0.912193 0.456097 0.889930i \(-0.349247\pi\)
0.456097 + 0.889930i \(0.349247\pi\)
\(282\) 0 0
\(283\) 20.4839 1.21764 0.608821 0.793307i \(-0.291643\pi\)
0.608821 + 0.793307i \(0.291643\pi\)
\(284\) −1.64854 −0.0978228
\(285\) 0 0
\(286\) 0 0
\(287\) −0.148781 −0.00878227
\(288\) 0 0
\(289\) −2.60953 −0.153502
\(290\) 28.2078 1.65642
\(291\) 0 0
\(292\) 1.70518 0.0997879
\(293\) −10.8918 −0.636307 −0.318154 0.948039i \(-0.603063\pi\)
−0.318154 + 0.948039i \(0.603063\pi\)
\(294\) 0 0
\(295\) 14.4738 0.842696
\(296\) −9.51404 −0.552993
\(297\) 0 0
\(298\) −14.1269 −0.818352
\(299\) 17.1020 0.989034
\(300\) 0 0
\(301\) −0.396385 −0.0228473
\(302\) −13.6617 −0.786142
\(303\) 0 0
\(304\) −24.4330 −1.40133
\(305\) −8.81431 −0.504706
\(306\) 0 0
\(307\) 16.2173 0.925568 0.462784 0.886471i \(-0.346850\pi\)
0.462784 + 0.886471i \(0.346850\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.24020 0.354420
\(311\) 12.8007 0.725860 0.362930 0.931816i \(-0.381776\pi\)
0.362930 + 0.931816i \(0.381776\pi\)
\(312\) 0 0
\(313\) 12.1238 0.685275 0.342638 0.939468i \(-0.388680\pi\)
0.342638 + 0.939468i \(0.388680\pi\)
\(314\) 15.8232 0.892956
\(315\) 0 0
\(316\) −2.17049 −0.122100
\(317\) −8.38371 −0.470876 −0.235438 0.971889i \(-0.575652\pi\)
−0.235438 + 0.971889i \(0.575652\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −17.6100 −0.984432
\(321\) 0 0
\(322\) 0.365212 0.0203525
\(323\) −25.0377 −1.39314
\(324\) 0 0
\(325\) 4.53539 0.251578
\(326\) −31.0966 −1.72228
\(327\) 0 0
\(328\) −4.18553 −0.231107
\(329\) 0.356358 0.0196467
\(330\) 0 0
\(331\) −8.15077 −0.448007 −0.224003 0.974588i \(-0.571913\pi\)
−0.224003 + 0.974588i \(0.571913\pi\)
\(332\) 0.686066 0.0376528
\(333\) 0 0
\(334\) 6.23347 0.341080
\(335\) 11.2866 0.616655
\(336\) 0 0
\(337\) 30.0309 1.63589 0.817943 0.575299i \(-0.195114\pi\)
0.817943 + 0.575299i \(0.195114\pi\)
\(338\) 42.1528 2.29281
\(339\) 0 0
\(340\) −1.09822 −0.0595596
\(341\) 0 0
\(342\) 0 0
\(343\) 1.45113 0.0783537
\(344\) −11.1512 −0.601230
\(345\) 0 0
\(346\) −2.04638 −0.110014
\(347\) 34.0155 1.82605 0.913025 0.407905i \(-0.133740\pi\)
0.913025 + 0.407905i \(0.133740\pi\)
\(348\) 0 0
\(349\) 23.5467 1.26043 0.630213 0.776422i \(-0.282967\pi\)
0.630213 + 0.776422i \(0.282967\pi\)
\(350\) 0.0968529 0.00517701
\(351\) 0 0
\(352\) 0 0
\(353\) 15.8273 0.842404 0.421202 0.906967i \(-0.361608\pi\)
0.421202 + 0.906967i \(0.361608\pi\)
\(354\) 0 0
\(355\) −24.5741 −1.30426
\(356\) −1.11417 −0.0590510
\(357\) 0 0
\(358\) 12.1912 0.644326
\(359\) 0.438445 0.0231403 0.0115701 0.999933i \(-0.496317\pi\)
0.0115701 + 0.999933i \(0.496317\pi\)
\(360\) 0 0
\(361\) 24.5627 1.29277
\(362\) 28.5977 1.50306
\(363\) 0 0
\(364\) −0.0957844 −0.00502047
\(365\) 25.4184 1.33046
\(366\) 0 0
\(367\) −13.8560 −0.723276 −0.361638 0.932319i \(-0.617782\pi\)
−0.361638 + 0.932319i \(0.617782\pi\)
\(368\) 9.55480 0.498078
\(369\) 0 0
\(370\) −9.23841 −0.480282
\(371\) −0.00656224 −0.000340695 0
\(372\) 0 0
\(373\) 7.01569 0.363259 0.181629 0.983367i \(-0.441863\pi\)
0.181629 + 0.983367i \(0.441863\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 10.0251 0.517006
\(377\) 65.9579 3.39701
\(378\) 0 0
\(379\) −9.97473 −0.512368 −0.256184 0.966628i \(-0.582465\pi\)
−0.256184 + 0.966628i \(0.582465\pi\)
\(380\) 1.91078 0.0980210
\(381\) 0 0
\(382\) 12.1979 0.624101
\(383\) 18.8601 0.963704 0.481852 0.876253i \(-0.339964\pi\)
0.481852 + 0.876253i \(0.339964\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.80064 0.397042
\(387\) 0 0
\(388\) −0.430659 −0.0218634
\(389\) 23.3474 1.18376 0.591880 0.806026i \(-0.298386\pi\)
0.591880 + 0.806026i \(0.298386\pi\)
\(390\) 0 0
\(391\) 9.79128 0.495166
\(392\) 20.3960 1.03015
\(393\) 0 0
\(394\) −9.47086 −0.477135
\(395\) −32.3547 −1.62794
\(396\) 0 0
\(397\) −27.6991 −1.39018 −0.695090 0.718923i \(-0.744636\pi\)
−0.695090 + 0.718923i \(0.744636\pi\)
\(398\) 32.7644 1.64233
\(399\) 0 0
\(400\) 2.53390 0.126695
\(401\) −15.1059 −0.754351 −0.377176 0.926142i \(-0.623105\pi\)
−0.377176 + 0.926142i \(0.623105\pi\)
\(402\) 0 0
\(403\) 14.5914 0.726849
\(404\) −0.348099 −0.0173186
\(405\) 0 0
\(406\) 1.40853 0.0699041
\(407\) 0 0
\(408\) 0 0
\(409\) −9.40802 −0.465197 −0.232598 0.972573i \(-0.574723\pi\)
−0.232598 + 0.972573i \(0.574723\pi\)
\(410\) −4.06427 −0.200720
\(411\) 0 0
\(412\) 1.97207 0.0971570
\(413\) 0.722733 0.0355634
\(414\) 0 0
\(415\) 10.2269 0.502019
\(416\) −5.21371 −0.255623
\(417\) 0 0
\(418\) 0 0
\(419\) −20.1038 −0.982137 −0.491069 0.871121i \(-0.663394\pi\)
−0.491069 + 0.871121i \(0.663394\pi\)
\(420\) 0 0
\(421\) −12.8452 −0.626039 −0.313019 0.949747i \(-0.601341\pi\)
−0.313019 + 0.949747i \(0.601341\pi\)
\(422\) 5.52926 0.269160
\(423\) 0 0
\(424\) −0.184610 −0.00896545
\(425\) 2.59661 0.125954
\(426\) 0 0
\(427\) −0.440134 −0.0212996
\(428\) 0.704401 0.0340485
\(429\) 0 0
\(430\) −10.8281 −0.522177
\(431\) 15.3007 0.737008 0.368504 0.929626i \(-0.379870\pi\)
0.368504 + 0.929626i \(0.379870\pi\)
\(432\) 0 0
\(433\) −12.0460 −0.578892 −0.289446 0.957194i \(-0.593471\pi\)
−0.289446 + 0.957194i \(0.593471\pi\)
\(434\) 0.311598 0.0149572
\(435\) 0 0
\(436\) −2.24181 −0.107363
\(437\) −17.0357 −0.814927
\(438\) 0 0
\(439\) −4.14815 −0.197980 −0.0989902 0.995088i \(-0.531561\pi\)
−0.0989902 + 0.995088i \(0.531561\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 34.2858 1.63081
\(443\) −19.0918 −0.907080 −0.453540 0.891236i \(-0.649839\pi\)
−0.453540 + 0.891236i \(0.649839\pi\)
\(444\) 0 0
\(445\) −16.6085 −0.787319
\(446\) −13.8130 −0.654065
\(447\) 0 0
\(448\) −0.879340 −0.0415449
\(449\) −3.41431 −0.161131 −0.0805655 0.996749i \(-0.525673\pi\)
−0.0805655 + 0.996749i \(0.525673\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.42167 0.0668699
\(453\) 0 0
\(454\) −8.92705 −0.418967
\(455\) −1.42782 −0.0669372
\(456\) 0 0
\(457\) −29.5442 −1.38202 −0.691011 0.722845i \(-0.742834\pi\)
−0.691011 + 0.722845i \(0.742834\pi\)
\(458\) 21.0776 0.984892
\(459\) 0 0
\(460\) −0.747232 −0.0348399
\(461\) 40.7758 1.89912 0.949560 0.313586i \(-0.101530\pi\)
0.949560 + 0.313586i \(0.101530\pi\)
\(462\) 0 0
\(463\) −38.7501 −1.80087 −0.900435 0.434990i \(-0.856752\pi\)
−0.900435 + 0.434990i \(0.856752\pi\)
\(464\) 36.8504 1.71074
\(465\) 0 0
\(466\) −29.0149 −1.34409
\(467\) −28.0641 −1.29865 −0.649325 0.760511i \(-0.724949\pi\)
−0.649325 + 0.760511i \(0.724949\pi\)
\(468\) 0 0
\(469\) 0.563587 0.0260240
\(470\) 9.73468 0.449027
\(471\) 0 0
\(472\) 20.3320 0.935858
\(473\) 0 0
\(474\) 0 0
\(475\) −4.51780 −0.207291
\(476\) −0.0548387 −0.00251353
\(477\) 0 0
\(478\) −23.6577 −1.08208
\(479\) −15.8245 −0.723042 −0.361521 0.932364i \(-0.617742\pi\)
−0.361521 + 0.932364i \(0.617742\pi\)
\(480\) 0 0
\(481\) −21.6021 −0.984969
\(482\) 14.5175 0.661255
\(483\) 0 0
\(484\) 0 0
\(485\) −6.41966 −0.291502
\(486\) 0 0
\(487\) −5.74666 −0.260406 −0.130203 0.991487i \(-0.541563\pi\)
−0.130203 + 0.991487i \(0.541563\pi\)
\(488\) −12.3819 −0.560503
\(489\) 0 0
\(490\) 19.8051 0.894703
\(491\) −35.6797 −1.61020 −0.805101 0.593137i \(-0.797889\pi\)
−0.805101 + 0.593137i \(0.797889\pi\)
\(492\) 0 0
\(493\) 37.7624 1.70073
\(494\) −59.6532 −2.68392
\(495\) 0 0
\(496\) 8.15214 0.366042
\(497\) −1.22708 −0.0550422
\(498\) 0 0
\(499\) 26.6029 1.19091 0.595454 0.803390i \(-0.296972\pi\)
0.595454 + 0.803390i \(0.296972\pi\)
\(500\) −1.64568 −0.0735970
\(501\) 0 0
\(502\) −38.1903 −1.70452
\(503\) −32.2906 −1.43977 −0.719883 0.694095i \(-0.755805\pi\)
−0.719883 + 0.694095i \(0.755805\pi\)
\(504\) 0 0
\(505\) −5.18898 −0.230906
\(506\) 0 0
\(507\) 0 0
\(508\) −0.476768 −0.0211532
\(509\) −32.4304 −1.43745 −0.718725 0.695294i \(-0.755274\pi\)
−0.718725 + 0.695294i \(0.755274\pi\)
\(510\) 0 0
\(511\) 1.26924 0.0561479
\(512\) −24.5184 −1.08357
\(513\) 0 0
\(514\) 24.5150 1.08131
\(515\) 29.3969 1.29538
\(516\) 0 0
\(517\) 0 0
\(518\) −0.461311 −0.0202688
\(519\) 0 0
\(520\) −40.1676 −1.76147
\(521\) −13.4271 −0.588251 −0.294125 0.955767i \(-0.595028\pi\)
−0.294125 + 0.955767i \(0.595028\pi\)
\(522\) 0 0
\(523\) 17.9310 0.784069 0.392034 0.919951i \(-0.371771\pi\)
0.392034 + 0.919951i \(0.371771\pi\)
\(524\) −2.47370 −0.108064
\(525\) 0 0
\(526\) 18.7697 0.818398
\(527\) 8.35390 0.363901
\(528\) 0 0
\(529\) −16.3380 −0.710349
\(530\) −0.179262 −0.00778663
\(531\) 0 0
\(532\) 0.0954129 0.00413668
\(533\) −9.50343 −0.411639
\(534\) 0 0
\(535\) 10.5002 0.453964
\(536\) 15.8549 0.684828
\(537\) 0 0
\(538\) 19.5226 0.841677
\(539\) 0 0
\(540\) 0 0
\(541\) 14.7959 0.636126 0.318063 0.948070i \(-0.396968\pi\)
0.318063 + 0.948070i \(0.396968\pi\)
\(542\) −2.09969 −0.0901896
\(543\) 0 0
\(544\) −2.98497 −0.127979
\(545\) −33.4178 −1.43146
\(546\) 0 0
\(547\) 19.9452 0.852794 0.426397 0.904536i \(-0.359783\pi\)
0.426397 + 0.904536i \(0.359783\pi\)
\(548\) 1.21406 0.0518620
\(549\) 0 0
\(550\) 0 0
\(551\) −65.7021 −2.79900
\(552\) 0 0
\(553\) −1.61560 −0.0687022
\(554\) −32.6179 −1.38580
\(555\) 0 0
\(556\) 0.533504 0.0226256
\(557\) 13.0036 0.550981 0.275490 0.961304i \(-0.411160\pi\)
0.275490 + 0.961304i \(0.411160\pi\)
\(558\) 0 0
\(559\) −25.3192 −1.07089
\(560\) −0.797716 −0.0337096
\(561\) 0 0
\(562\) 20.8579 0.879838
\(563\) −43.7343 −1.84318 −0.921590 0.388164i \(-0.873110\pi\)
−0.921590 + 0.388164i \(0.873110\pi\)
\(564\) 0 0
\(565\) 21.1923 0.891567
\(566\) 27.9411 1.17445
\(567\) 0 0
\(568\) −34.5205 −1.44845
\(569\) 0.393421 0.0164931 0.00824654 0.999966i \(-0.497375\pi\)
0.00824654 + 0.999966i \(0.497375\pi\)
\(570\) 0 0
\(571\) 38.5003 1.61119 0.805594 0.592468i \(-0.201846\pi\)
0.805594 + 0.592468i \(0.201846\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −0.202945 −0.00847077
\(575\) 1.76673 0.0736779
\(576\) 0 0
\(577\) 0.0622460 0.00259134 0.00129567 0.999999i \(-0.499588\pi\)
0.00129567 + 0.999999i \(0.499588\pi\)
\(578\) −3.55954 −0.148057
\(579\) 0 0
\(580\) −2.88188 −0.119663
\(581\) 0.510670 0.0211862
\(582\) 0 0
\(583\) 0 0
\(584\) 35.7065 1.47754
\(585\) 0 0
\(586\) −14.8570 −0.613738
\(587\) −11.9027 −0.491278 −0.245639 0.969361i \(-0.578998\pi\)
−0.245639 + 0.969361i \(0.578998\pi\)
\(588\) 0 0
\(589\) −14.5348 −0.598896
\(590\) 19.7430 0.812806
\(591\) 0 0
\(592\) −12.0690 −0.496031
\(593\) 29.3055 1.20343 0.601717 0.798709i \(-0.294484\pi\)
0.601717 + 0.798709i \(0.294484\pi\)
\(594\) 0 0
\(595\) −0.817458 −0.0335125
\(596\) 1.44329 0.0591196
\(597\) 0 0
\(598\) 23.3280 0.953954
\(599\) 8.48712 0.346774 0.173387 0.984854i \(-0.444529\pi\)
0.173387 + 0.984854i \(0.444529\pi\)
\(600\) 0 0
\(601\) 20.3588 0.830452 0.415226 0.909718i \(-0.363703\pi\)
0.415226 + 0.909718i \(0.363703\pi\)
\(602\) −0.540690 −0.0220369
\(603\) 0 0
\(604\) 1.39576 0.0567927
\(605\) 0 0
\(606\) 0 0
\(607\) 30.5038 1.23811 0.619055 0.785348i \(-0.287516\pi\)
0.619055 + 0.785348i \(0.287516\pi\)
\(608\) 5.19349 0.210624
\(609\) 0 0
\(610\) −12.0232 −0.486805
\(611\) 22.7625 0.920871
\(612\) 0 0
\(613\) 34.4613 1.39188 0.695939 0.718101i \(-0.254988\pi\)
0.695939 + 0.718101i \(0.254988\pi\)
\(614\) 22.1212 0.892740
\(615\) 0 0
\(616\) 0 0
\(617\) 0.224835 0.00905152 0.00452576 0.999990i \(-0.498559\pi\)
0.00452576 + 0.999990i \(0.498559\pi\)
\(618\) 0 0
\(619\) 0.594526 0.0238960 0.0119480 0.999929i \(-0.496197\pi\)
0.0119480 + 0.999929i \(0.496197\pi\)
\(620\) −0.637537 −0.0256041
\(621\) 0 0
\(622\) 17.4608 0.700115
\(623\) −0.829329 −0.0332264
\(624\) 0 0
\(625\) −21.1090 −0.844360
\(626\) 16.5374 0.660969
\(627\) 0 0
\(628\) −1.61660 −0.0645092
\(629\) −12.3677 −0.493131
\(630\) 0 0
\(631\) 34.6701 1.38019 0.690097 0.723717i \(-0.257568\pi\)
0.690097 + 0.723717i \(0.257568\pi\)
\(632\) −45.4502 −1.80791
\(633\) 0 0
\(634\) −11.4358 −0.454175
\(635\) −7.10699 −0.282032
\(636\) 0 0
\(637\) 46.3100 1.83487
\(638\) 0 0
\(639\) 0 0
\(640\) −20.7518 −0.820286
\(641\) −21.8476 −0.862930 −0.431465 0.902130i \(-0.642003\pi\)
−0.431465 + 0.902130i \(0.642003\pi\)
\(642\) 0 0
\(643\) 30.5370 1.20426 0.602130 0.798398i \(-0.294319\pi\)
0.602130 + 0.798398i \(0.294319\pi\)
\(644\) −0.0373123 −0.00147031
\(645\) 0 0
\(646\) −34.1528 −1.34372
\(647\) −26.7412 −1.05131 −0.525653 0.850699i \(-0.676179\pi\)
−0.525653 + 0.850699i \(0.676179\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 6.18651 0.242655
\(651\) 0 0
\(652\) 3.17702 0.124422
\(653\) 29.3589 1.14890 0.574451 0.818539i \(-0.305216\pi\)
0.574451 + 0.818539i \(0.305216\pi\)
\(654\) 0 0
\(655\) −36.8744 −1.44080
\(656\) −5.30952 −0.207302
\(657\) 0 0
\(658\) 0.486091 0.0189498
\(659\) −36.5480 −1.42371 −0.711854 0.702328i \(-0.752144\pi\)
−0.711854 + 0.702328i \(0.752144\pi\)
\(660\) 0 0
\(661\) −3.81296 −0.148307 −0.0741535 0.997247i \(-0.523625\pi\)
−0.0741535 + 0.997247i \(0.523625\pi\)
\(662\) −11.1181 −0.432116
\(663\) 0 0
\(664\) 14.3662 0.557519
\(665\) 1.42228 0.0551537
\(666\) 0 0
\(667\) 25.6935 0.994857
\(668\) −0.636849 −0.0246404
\(669\) 0 0
\(670\) 15.3956 0.594783
\(671\) 0 0
\(672\) 0 0
\(673\) 15.0359 0.579591 0.289795 0.957089i \(-0.406413\pi\)
0.289795 + 0.957089i \(0.406413\pi\)
\(674\) 40.9637 1.57786
\(675\) 0 0
\(676\) −4.30658 −0.165638
\(677\) 30.1500 1.15876 0.579379 0.815058i \(-0.303295\pi\)
0.579379 + 0.815058i \(0.303295\pi\)
\(678\) 0 0
\(679\) −0.320559 −0.0123019
\(680\) −22.9969 −0.881889
\(681\) 0 0
\(682\) 0 0
\(683\) −45.7767 −1.75160 −0.875798 0.482677i \(-0.839664\pi\)
−0.875798 + 0.482677i \(0.839664\pi\)
\(684\) 0 0
\(685\) 18.0975 0.691468
\(686\) 1.97942 0.0755745
\(687\) 0 0
\(688\) −14.1457 −0.539300
\(689\) −0.419165 −0.0159689
\(690\) 0 0
\(691\) 24.7085 0.939956 0.469978 0.882678i \(-0.344262\pi\)
0.469978 + 0.882678i \(0.344262\pi\)
\(692\) 0.209071 0.00794768
\(693\) 0 0
\(694\) 46.3990 1.76128
\(695\) 7.95273 0.301664
\(696\) 0 0
\(697\) −5.44092 −0.206090
\(698\) 32.1190 1.21572
\(699\) 0 0
\(700\) −0.00989507 −0.000373999 0
\(701\) −36.8337 −1.39119 −0.695595 0.718434i \(-0.744859\pi\)
−0.695595 + 0.718434i \(0.744859\pi\)
\(702\) 0 0
\(703\) 21.5183 0.811577
\(704\) 0 0
\(705\) 0 0
\(706\) 21.5893 0.812525
\(707\) −0.259106 −0.00974470
\(708\) 0 0
\(709\) 8.15030 0.306091 0.153045 0.988219i \(-0.451092\pi\)
0.153045 + 0.988219i \(0.451092\pi\)
\(710\) −33.5204 −1.25800
\(711\) 0 0
\(712\) −23.3308 −0.874359
\(713\) 5.68399 0.212867
\(714\) 0 0
\(715\) 0 0
\(716\) −1.24553 −0.0465476
\(717\) 0 0
\(718\) 0.598063 0.0223195
\(719\) −35.0876 −1.30855 −0.654273 0.756258i \(-0.727025\pi\)
−0.654273 + 0.756258i \(0.727025\pi\)
\(720\) 0 0
\(721\) 1.46790 0.0546676
\(722\) 33.5048 1.24692
\(723\) 0 0
\(724\) −2.92171 −0.108585
\(725\) 6.81383 0.253059
\(726\) 0 0
\(727\) 22.5664 0.836940 0.418470 0.908231i \(-0.362566\pi\)
0.418470 + 0.908231i \(0.362566\pi\)
\(728\) −2.00573 −0.0743373
\(729\) 0 0
\(730\) 34.6720 1.28327
\(731\) −14.4958 −0.536147
\(732\) 0 0
\(733\) −34.5100 −1.27466 −0.637328 0.770593i \(-0.719960\pi\)
−0.637328 + 0.770593i \(0.719960\pi\)
\(734\) −18.9003 −0.697622
\(735\) 0 0
\(736\) −2.03097 −0.0748626
\(737\) 0 0
\(738\) 0 0
\(739\) −21.3031 −0.783646 −0.391823 0.920041i \(-0.628155\pi\)
−0.391823 + 0.920041i \(0.628155\pi\)
\(740\) 0.943851 0.0346967
\(741\) 0 0
\(742\) −0.00895125 −0.000328611 0
\(743\) 44.2579 1.62367 0.811833 0.583890i \(-0.198470\pi\)
0.811833 + 0.583890i \(0.198470\pi\)
\(744\) 0 0
\(745\) 21.5146 0.788233
\(746\) 9.56977 0.350374
\(747\) 0 0
\(748\) 0 0
\(749\) 0.524318 0.0191582
\(750\) 0 0
\(751\) −24.9595 −0.910786 −0.455393 0.890290i \(-0.650501\pi\)
−0.455393 + 0.890290i \(0.650501\pi\)
\(752\) 12.7173 0.463752
\(753\) 0 0
\(754\) 89.9701 3.27652
\(755\) 20.8060 0.757209
\(756\) 0 0
\(757\) 40.7314 1.48041 0.740204 0.672382i \(-0.234729\pi\)
0.740204 + 0.672382i \(0.234729\pi\)
\(758\) −13.6061 −0.494194
\(759\) 0 0
\(760\) 40.0118 1.45138
\(761\) 19.3865 0.702762 0.351381 0.936233i \(-0.385712\pi\)
0.351381 + 0.936233i \(0.385712\pi\)
\(762\) 0 0
\(763\) −1.66868 −0.0604103
\(764\) −1.24621 −0.0450865
\(765\) 0 0
\(766\) 25.7261 0.929522
\(767\) 46.1648 1.66691
\(768\) 0 0
\(769\) −10.7672 −0.388276 −0.194138 0.980974i \(-0.562191\pi\)
−0.194138 + 0.980974i \(0.562191\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.796960 −0.0286832
\(773\) −29.3838 −1.05686 −0.528432 0.848976i \(-0.677220\pi\)
−0.528432 + 0.848976i \(0.677220\pi\)
\(774\) 0 0
\(775\) 1.50737 0.0541464
\(776\) −9.01802 −0.323728
\(777\) 0 0
\(778\) 31.8471 1.14177
\(779\) 9.46657 0.339175
\(780\) 0 0
\(781\) 0 0
\(782\) 13.3558 0.477603
\(783\) 0 0
\(784\) 25.8732 0.924042
\(785\) −24.0979 −0.860092
\(786\) 0 0
\(787\) 3.55720 0.126801 0.0634003 0.997988i \(-0.479806\pi\)
0.0634003 + 0.997988i \(0.479806\pi\)
\(788\) 0.967600 0.0344693
\(789\) 0 0
\(790\) −44.1335 −1.57020
\(791\) 1.05822 0.0376259
\(792\) 0 0
\(793\) −28.1137 −0.998346
\(794\) −37.7831 −1.34087
\(795\) 0 0
\(796\) −3.34741 −0.118646
\(797\) −35.0148 −1.24029 −0.620144 0.784488i \(-0.712926\pi\)
−0.620144 + 0.784488i \(0.712926\pi\)
\(798\) 0 0
\(799\) 13.0320 0.461040
\(800\) −0.538606 −0.0190426
\(801\) 0 0
\(802\) −20.6052 −0.727595
\(803\) 0 0
\(804\) 0 0
\(805\) −0.556199 −0.0196034
\(806\) 19.9034 0.701068
\(807\) 0 0
\(808\) −7.28922 −0.256434
\(809\) 19.1540 0.673419 0.336709 0.941609i \(-0.390686\pi\)
0.336709 + 0.941609i \(0.390686\pi\)
\(810\) 0 0
\(811\) −6.20233 −0.217793 −0.108897 0.994053i \(-0.534732\pi\)
−0.108897 + 0.994053i \(0.534732\pi\)
\(812\) −0.143904 −0.00505003
\(813\) 0 0
\(814\) 0 0
\(815\) 47.3585 1.65890
\(816\) 0 0
\(817\) 25.2210 0.882371
\(818\) −12.8330 −0.448697
\(819\) 0 0
\(820\) 0.415230 0.0145005
\(821\) 25.0661 0.874811 0.437406 0.899264i \(-0.355897\pi\)
0.437406 + 0.899264i \(0.355897\pi\)
\(822\) 0 0
\(823\) 2.93966 0.102470 0.0512350 0.998687i \(-0.483684\pi\)
0.0512350 + 0.998687i \(0.483684\pi\)
\(824\) 41.2953 1.43859
\(825\) 0 0
\(826\) 0.985847 0.0343020
\(827\) −32.2686 −1.12209 −0.561044 0.827786i \(-0.689600\pi\)
−0.561044 + 0.827786i \(0.689600\pi\)
\(828\) 0 0
\(829\) 1.05143 0.0365178 0.0182589 0.999833i \(-0.494188\pi\)
0.0182589 + 0.999833i \(0.494188\pi\)
\(830\) 13.9500 0.484213
\(831\) 0 0
\(832\) −56.1681 −1.94728
\(833\) 26.5135 0.918639
\(834\) 0 0
\(835\) −9.49324 −0.328527
\(836\) 0 0
\(837\) 0 0
\(838\) −27.4227 −0.947302
\(839\) 2.35866 0.0814299 0.0407149 0.999171i \(-0.487036\pi\)
0.0407149 + 0.999171i \(0.487036\pi\)
\(840\) 0 0
\(841\) 70.0932 2.41701
\(842\) −17.5216 −0.603834
\(843\) 0 0
\(844\) −0.564902 −0.0194447
\(845\) −64.1964 −2.20842
\(846\) 0 0
\(847\) 0 0
\(848\) −0.234185 −0.00804196
\(849\) 0 0
\(850\) 3.54191 0.121487
\(851\) −8.41496 −0.288461
\(852\) 0 0
\(853\) −29.2448 −1.00132 −0.500661 0.865643i \(-0.666910\pi\)
−0.500661 + 0.865643i \(0.666910\pi\)
\(854\) −0.600366 −0.0205441
\(855\) 0 0
\(856\) 14.7502 0.504151
\(857\) 28.2043 0.963439 0.481720 0.876325i \(-0.340012\pi\)
0.481720 + 0.876325i \(0.340012\pi\)
\(858\) 0 0
\(859\) 26.6444 0.909095 0.454548 0.890722i \(-0.349801\pi\)
0.454548 + 0.890722i \(0.349801\pi\)
\(860\) 1.10626 0.0377233
\(861\) 0 0
\(862\) 20.8709 0.710867
\(863\) 24.2053 0.823959 0.411979 0.911193i \(-0.364838\pi\)
0.411979 + 0.911193i \(0.364838\pi\)
\(864\) 0 0
\(865\) 3.11654 0.105965
\(866\) −16.4313 −0.558359
\(867\) 0 0
\(868\) −0.0318348 −0.00108054
\(869\) 0 0
\(870\) 0 0
\(871\) 35.9993 1.21979
\(872\) −46.9436 −1.58971
\(873\) 0 0
\(874\) −23.2376 −0.786022
\(875\) −1.22495 −0.0414110
\(876\) 0 0
\(877\) −9.16732 −0.309558 −0.154779 0.987949i \(-0.549467\pi\)
−0.154779 + 0.987949i \(0.549467\pi\)
\(878\) −5.65830 −0.190958
\(879\) 0 0
\(880\) 0 0
\(881\) −32.2415 −1.08624 −0.543122 0.839654i \(-0.682758\pi\)
−0.543122 + 0.839654i \(0.682758\pi\)
\(882\) 0 0
\(883\) −43.6444 −1.46875 −0.734375 0.678744i \(-0.762525\pi\)
−0.734375 + 0.678744i \(0.762525\pi\)
\(884\) −3.50284 −0.117813
\(885\) 0 0
\(886\) −26.0423 −0.874907
\(887\) −8.62161 −0.289485 −0.144743 0.989469i \(-0.546235\pi\)
−0.144743 + 0.989469i \(0.546235\pi\)
\(888\) 0 0
\(889\) −0.354880 −0.0119023
\(890\) −22.6549 −0.759393
\(891\) 0 0
\(892\) 1.41122 0.0472512
\(893\) −22.6742 −0.758763
\(894\) 0 0
\(895\) −18.5666 −0.620613
\(896\) −1.03622 −0.0346177
\(897\) 0 0
\(898\) −4.65729 −0.155416
\(899\) 21.9217 0.731129
\(900\) 0 0
\(901\) −0.239981 −0.00799494
\(902\) 0 0
\(903\) 0 0
\(904\) 29.7699 0.990133
\(905\) −43.5528 −1.44774
\(906\) 0 0
\(907\) −8.39800 −0.278851 −0.139426 0.990233i \(-0.544526\pi\)
−0.139426 + 0.990233i \(0.544526\pi\)
\(908\) 0.912040 0.0302671
\(909\) 0 0
\(910\) −1.94762 −0.0645630
\(911\) −31.5874 −1.04654 −0.523269 0.852168i \(-0.675288\pi\)
−0.523269 + 0.852168i \(0.675288\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −40.2999 −1.33300
\(915\) 0 0
\(916\) −2.15341 −0.0711508
\(917\) −1.84129 −0.0608047
\(918\) 0 0
\(919\) −40.9615 −1.35120 −0.675598 0.737270i \(-0.736115\pi\)
−0.675598 + 0.737270i \(0.736115\pi\)
\(920\) −15.6471 −0.515868
\(921\) 0 0
\(922\) 55.6204 1.83176
\(923\) −78.3802 −2.57992
\(924\) 0 0
\(925\) −2.23161 −0.0733750
\(926\) −52.8572 −1.73700
\(927\) 0 0
\(928\) −7.83292 −0.257128
\(929\) −11.3720 −0.373105 −0.186552 0.982445i \(-0.559731\pi\)
−0.186552 + 0.982445i \(0.559731\pi\)
\(930\) 0 0
\(931\) −46.1304 −1.51186
\(932\) 2.96433 0.0971000
\(933\) 0 0
\(934\) −38.2809 −1.25259
\(935\) 0 0
\(936\) 0 0
\(937\) −0.357906 −0.0116923 −0.00584614 0.999983i \(-0.501861\pi\)
−0.00584614 + 0.999983i \(0.501861\pi\)
\(938\) 0.768763 0.0251010
\(939\) 0 0
\(940\) −0.994553 −0.0324387
\(941\) 18.3556 0.598375 0.299187 0.954194i \(-0.403284\pi\)
0.299187 + 0.954194i \(0.403284\pi\)
\(942\) 0 0
\(943\) −3.70201 −0.120554
\(944\) 25.7920 0.839460
\(945\) 0 0
\(946\) 0 0
\(947\) 51.2153 1.66427 0.832137 0.554571i \(-0.187117\pi\)
0.832137 + 0.554571i \(0.187117\pi\)
\(948\) 0 0
\(949\) 81.0731 2.63175
\(950\) −6.16251 −0.199938
\(951\) 0 0
\(952\) −1.14832 −0.0372174
\(953\) −16.2172 −0.525327 −0.262664 0.964887i \(-0.584601\pi\)
−0.262664 + 0.964887i \(0.584601\pi\)
\(954\) 0 0
\(955\) −18.5768 −0.601132
\(956\) 2.41702 0.0781719
\(957\) 0 0
\(958\) −21.5855 −0.697396
\(959\) 0.903679 0.0291813
\(960\) 0 0
\(961\) −26.1504 −0.843562
\(962\) −29.4664 −0.950033
\(963\) 0 0
\(964\) −1.48320 −0.0477706
\(965\) −11.8800 −0.382429
\(966\) 0 0
\(967\) 32.5309 1.04612 0.523061 0.852295i \(-0.324790\pi\)
0.523061 + 0.852295i \(0.324790\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −8.75675 −0.281162
\(971\) −2.21917 −0.0712166 −0.0356083 0.999366i \(-0.511337\pi\)
−0.0356083 + 0.999366i \(0.511337\pi\)
\(972\) 0 0
\(973\) 0.397111 0.0127308
\(974\) −7.83875 −0.251170
\(975\) 0 0
\(976\) −15.7070 −0.502768
\(977\) 21.3581 0.683306 0.341653 0.939826i \(-0.389013\pi\)
0.341653 + 0.939826i \(0.389013\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −2.02341 −0.0646354
\(981\) 0 0
\(982\) −48.6690 −1.55309
\(983\) 14.4569 0.461104 0.230552 0.973060i \(-0.425947\pi\)
0.230552 + 0.973060i \(0.425947\pi\)
\(984\) 0 0
\(985\) 14.4236 0.459575
\(986\) 51.5099 1.64041
\(987\) 0 0
\(988\) 6.09453 0.193893
\(989\) −9.86295 −0.313624
\(990\) 0 0
\(991\) 4.68782 0.148914 0.0744568 0.997224i \(-0.476278\pi\)
0.0744568 + 0.997224i \(0.476278\pi\)
\(992\) −1.73282 −0.0550171
\(993\) 0 0
\(994\) −1.67381 −0.0530899
\(995\) −49.8985 −1.58189
\(996\) 0 0
\(997\) 33.7831 1.06992 0.534961 0.844877i \(-0.320326\pi\)
0.534961 + 0.844877i \(0.320326\pi\)
\(998\) 36.2877 1.14867
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cr.1.18 24
3.2 odd 2 inner 9801.2.a.cr.1.7 24
11.5 even 5 891.2.f.g.487.4 48
11.9 even 5 891.2.f.g.730.4 yes 48
11.10 odd 2 9801.2.a.cq.1.7 24
33.5 odd 10 891.2.f.g.487.9 yes 48
33.20 odd 10 891.2.f.g.730.9 yes 48
33.32 even 2 9801.2.a.cq.1.18 24
99.5 odd 30 891.2.n.l.784.9 96
99.16 even 15 891.2.n.l.190.9 96
99.20 odd 30 891.2.n.l.433.9 96
99.31 even 15 891.2.n.l.136.9 96
99.38 odd 30 891.2.n.l.190.4 96
99.49 even 15 891.2.n.l.784.4 96
99.86 odd 30 891.2.n.l.136.4 96
99.97 even 15 891.2.n.l.433.4 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.4 48 11.5 even 5
891.2.f.g.487.9 yes 48 33.5 odd 10
891.2.f.g.730.4 yes 48 11.9 even 5
891.2.f.g.730.9 yes 48 33.20 odd 10
891.2.n.l.136.4 96 99.86 odd 30
891.2.n.l.136.9 96 99.31 even 15
891.2.n.l.190.4 96 99.38 odd 30
891.2.n.l.190.9 96 99.16 even 15
891.2.n.l.433.4 96 99.97 even 15
891.2.n.l.433.9 96 99.20 odd 30
891.2.n.l.784.4 96 99.49 even 15
891.2.n.l.784.9 96 99.5 odd 30
9801.2.a.cq.1.7 24 11.10 odd 2
9801.2.a.cq.1.18 24 33.32 even 2
9801.2.a.cr.1.7 24 3.2 odd 2 inner
9801.2.a.cr.1.18 24 1.1 even 1 trivial